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Introduction 

The Problem 

Virtual Reality (VR) systems, today, have become much more common sought after and 

researched  technologies that are rapidly expanding in complexity and breadth of use. They have 

applications in entertainment, education, and medical instruction, to name a few.  In addition to 

virtual reality video games, these technologies are utilized for instructive purposes in training 

doctors, pilots, and other professionals whose preparation normally requires expensive 

simulation. All of these applications demand an even greater level of user interaction.  Audio 

cues in these environments are crucial features to making artificial environments true to form. 

When a person turns their head, they expect both their visual field to change as well as the 

relative direction of incoming sounds. It can be very disorienting for a user to have mismatching 

visual and auditory information. This expanding market for immersive environments is the 

motivation behind developing real-time systems capable of dynamically reacting to a user’s 

position relative to his environment and to engage more of his senses than just sight.    

There are several key indicators utilized by acoustic rendering systems that enable a user 

to track sound in a spatial environment.   First, the location of sound sources relative to the 

receiver creates differences in the way sound propagates to the right and left ears.  This effect 

can be modeled by head related transfer functions, the recorded frequency response of sound 

reaching an individual’s ears.  In room environments, secondary considerations include the early 

reflections and late reverberation; that is the higher order reflections in a room.  Each individual 
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room geometry and its wall properties will uniquely determine the acoustics of an enclosed 

space.  The absorption coefficients of each surface and air allow us to derive the amount of 

reverberation and dissipation of sound in the room.  There exist several models that can simulate 

these effects fairly accurately. 

Prior Work 

There has been a lot of research done on this particular problem and many of the 

implementations work very well at mimicking actual auditory environments. At the same time, 

many of them require a larger amount of computing power than we have available for this 

project.  

With regards to previous 18-551 work, Group 2 of Spring 2001 also did audio processing 

using head related transfer functions in their project, “Music to the Ears: Creating Multi-

Dimensional Sound for a Virtual Environment.”  The entirety of their project consisted in 

implementing HRTFs to render a virtual audio environment while ignoring the discrepancies that 

would arise from different environments and not just in the relative positions of the listener and 

the sound source.  Upon its conception, our project had the novelty of accounting for different 

possible environments by doing room modeling and accounting for reverberation.  This would 

have made it much more computationally expensive because it would have involved applying 

HRTF filtering for each reflection as well as doing the Schroeder Reverberation calculations and 

integrating them into the final signal.  This would also have meant that our code would have had 

to be more efficient and optimized than that of the previous group if we wanted to implement it 

in real time.  Our implementation would have more accurately represented the real environment.  
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However, due to certain unavoidable circumstances pertaining to our original group’s 

dynamic we were unable to implement the room modeling and late reverberation models. Given 

that the core of the project consisted of implementing the HRTF’s and that we encountered some 

problems in implementing the FFT and IFFT (which will be discussed later),  we were unable to 

pick up the slack with regards to the room modeling and Schroeder reverberation calculations 

when it became clear that they would not be done otherwise. The end result is that our 

implementation achieved nearly the same purpose as Group 2’s project in 2001.  One notable 

difference is that Group 2 made use of the codec while we output our signal through the PC 

sound card.  It should also be noted that they utilized HRIR’s from the MIT Media Lab’s 

KEMAR Dummy-Head Database, whereas we used a portion of the UC Davis CIPIC HRTF 

Database- a database whose measurements were taken from real subjects. 

Our Solution 

The intended goal of this project was to model the reception of sound in a small 

rectangular room as a user changes head orientation and position with respect to the location of 

the sound source.   The proposed implementation would include filtering a monaural sound 

source with HRTFs (Head Related Transfer Functions) to reproduce the reception of sound by an 

individual after it is transformed by their specific anthropometry.   Head Related Impulse 

Responses, which are used to obtain the HRTFs, vary somewhat from person to person but due 

to memory constraints we did not individualize the HRIRs by user. 

Additionally, we had planned to perform room modeling. Each sound source creates a 

series of early reflections that have to be accounted for separately since they are perceptually 

distinguishable from one other.   These can be generated by using the Image Source Model 
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which makes simplifying assumptions about the room to derive new receiver-to-source vectors.  

These echoes are filtered individually with separate HRTFs to account for different angles, 

delays, and attenuation.  Thus, multiple head related transfer functions are necessary to model 

this phenomenon for a single sound source depending on the number of discernable early 

reflections in the desired environment.  The last aural cue we had planned to include in our 

model is the late reverberation which can be generated using the Schroeder Late Reverberation 

Model.   

The following graphs represent how we intended to implement our solution.   The PC 

would calculate the new position vectors for each of the early reflections in addition to their 

respective scale factors and sample delays.  Thus, the information being transferred for each 

reflection would include the azimuth and elevation index, attenuation, and delay.  This 

information would be sent in three arrays contained within a packet struct- one for the HRIR 

index for each reflection, one for the attenuation, and one for the delays.  A block of the signal 

would also be contained within the packet. While the DSK processed the signal, the PC would 

calculate the Schroeder Late Reverberations using the original block of input signal to be added 

to the processed signal returned by the DSK. 
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PC Implementation Part I 

 

Once the DSK received this data, it would use the information associated with each 

reflection, convolve the corresponding HRIRs with the input signal, attenuate and delay each 

reflection by the appropriate factors, and sum the result.  
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DSK Implementation 

 

The processing of the signal in the DSK would consist of taking the FFT of the signal as 

well as the FFT of the appropriate HRIRs for each reflection to obtain the corresponding HRTFs. 

Then the frequency response of the signal would be multiplied with the frequency responses of 

each of the reflections.  Subsequently, the IFFT of the result would be taken- effectively 

convolving the HRIR with the input signal.  This would be done for both the left and right side 

individually and then, the results would be interleaved before being sent to the PC.   
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PC Implementation Part 

II  

Once the PC receives the processed result from the DSK it would simply have to sum the 

Schroeder Late Reverberation Calculations and then output the signal through the soundcard. 

As far as getting the system to operate in real-time the idea was that by chopping the 

sound signal into small process-able blocks we would be able to filter the signal a block at a time 

and output it a block at a time.  Then we would simply have to optimize the code so that the 

output was fluid and uninterrupted.  By implementing our system in this way we wouldn’t have 

to limit the size of the overall signal. It would also make our code much more adaptable to 

receiving a streaming sound input which would be the ultimate goal in a virtual reality audio 

rendering system, although not within the scope of our project. 
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Databases and Algorithms 

The UC Davis CIPIC HRTF Database 

The database of head related transfer functions was taken from the UC DAVIS Center for 

Image Processing and Integrated Computing.  The portion of the database which was made 

available on public domain includes measurements taken from 45 voluntary subjects and 

includes 250,000 data points for each subject.  The data was generated by situating subjects at 

the center of a hoop of 1m radius where speakers were placed along the hoop and microphones 

in the subject’s right and left ear.  An impulse was, then, sent through the speakers and the 

microphones recorded an impulse response of length 200 for each ear at 44.1 kHz sampling rate 

and 16-bit resolution.   The raw impulse responses were subsequently filtered using a hanning 

window to remove any reflections that may have been captured by the head related impulse 

response.  This was performed for 25 separate azimuths ranging from -90 to 90 degrees and 50 

elevations ranging from 45 to 130.625 degrees.  The diagram below demonstrates the 

distribution of data points along the 1 meter hoop which were taken at irregular intervals for 

uniform sampling.  (CIPIC Interface Database) 

 

For the project, we chose to use the data from only one subject due to memory constraints on the 

DSK.  Each database of 250,000 floats translated into ~1 Megabyte of memory.  We assumed 
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that the difference in measurements between two separate subjects would be close to negligible 

to the human ear.  Had time permitted, we would have experimented to see if the anthropometry 

made any difference.  The types of measurements taken on each subject are thoroughly 

documented on their website.   

Image Source Model 

Traditionally, the derivation of room reflections in most room models require  a series of 

complex computations in which each reflection has to be traced using trigonometric calculations.   

The model that we had intended to employ was the image source model, developed by Jont B. 

Allen and David A. Berkley at Bell Laboratories.   The assumptions behind the model are that 

we are dealing with a room of rectangular geometry and that the walls are relatively rigid.   This 

facilitates the calculation of new position vectors from the replicated sources to the receiver.   In 

addition, Allen and Berkley claim that the solution derived from the image source model 

approach the exact solution derived from the wave equation as the walls become rigid.    

Given a source and receiver vector in a 

three-dimensional cube, the first degree reflections 

can be calculated by mirroring the source over 

each wall to create a phantom source.  The 

properties of these phantom sources are then 

calculated as if they were independent sound 

sources directed at the receiver.   
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Original Source Vector:  S = <  xs , ys ,  zs  > 
Receiver Vector: R =  < xr ,  yr ,  zr > 
Receiver-Source Vector: S-R = <xs-xr ,  ys-yr ,  zs-zr>  

 

 

 

The subsequent reflections become the eight permutations of <xs ± xr, ys ± yr, zs ± zr>. And 

then, using arctan() you can derive the azimuth and elevation angles between the receiver and the 

sound source. (Allen and Berkley, 945) 

 

PC Side Implementation 

 Our original plans called for the PC doing a lot of work. Among the PC's responsibilities 

were reflection vector calculation (i.e. finding the image source locations), calculating the 

Schroeder reverberation and merging it with the processed sound blocks returned by the DSK, as 

well as running the graphic user interface (GUI) and any other user input. 

 What we had originally planned on creating was a program which could take at least one 

input sound source and, in real time (or with at least minimal latency), process it using HRTFs, 

reflections, and reverberations to give it a directional quality. The idea behind the whole process 

was to be able to use the directional sound to give a user the feeling of a virtual environment 

using sound. With this goal in mind the project had to have several key elements to it: It must be 

able to change the sound's direction in real time, which implies moving either the source position 

or receiver position while the sound is playing and being processed. The program must also be 

able to use different room types and reverberation parameters to make the virtual environment 

more realistic. To do all of these things the GUI must keep track of receiver position, source 
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position, room dimensions and characteristics, reflection options, and reverberation parameters. 

It must also read in sound files, output the processed sound, and transfer and receive blocks of 

data to and from the DSK. All of this must be done asynchronously since the user can input new 

data and/or configurations at any time. 

 In order to handle all of these events we decided to use QT 4.3 to write our GUI. It uses a 

system of signals and slots to handle asynchronous events and it has many features which helped 

us out a lot, including integrated TCP networking, pre-made widgets (e.g. sliders, tabs, and input 

boxes), and very good documentation. 

 Our explanation of the PC side code will start with a description of the outer layer of the 

GUI, what the user would see and interact with. We will describe each feature and it's intended 

purpose as well as it's final state at the end of the project. 

 Below is a screenshot of the Source tab in the GUI. It contains sliders and boxes to 

change the position of the source. The user would have the choice of what coordinate system 

they wanted to work in using the drop down box above the sliders. This would let them work in 

either Cartesian (x, y, z) or Interaural-Polar (Phi, Theta, R) coordinates. The Cartesian 

coordinates would be referenced to the bottom right corner of the room, while the Interaural-

Polar coordinates are referenced by the Receiver's position. Unfortunately, at the moment, the 

sliders only work to change the Cartesian coordinates of the Source. The boxes are not enabled 

and will not affect the Source position. To the right of the position coordinates is the source file 

information section. This section lists general information for the loaded sound file. This 

information is just set to default values since, currently, the file name and information must be 
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hard-coded. 

 

 Next is the Receiver tab. It is very similar to the Source tab in that it contains the same 

position inputs. It is slightly different though because the polar coordinate input is simple 

spherical coordinates with the bottom-right of the room as center. Again, the sliders are currently 

the only method of inputting a Receiver position. 
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 To the right of the sliders and boxes is a section for inputting HRTF databases. It was 

planned to allow the user to input multiple databases and choose which sounded best to them. 

Unfortunately, this feature was not finished and the database file to load must be hard-coded. 

In the Reflections tab the user is able to choose how many reflections of each order they would 

like to be computed. The order number means the number of reflections before reaching the 

receiver. So first order is one bounce, second is two bounces, etc. Unfortunately, we were only 

able to calculate the first order reflections due to the complexity of the calculations along with 

time constraints. So while the option to change the number of reflections of each order is 

included in the GUI, the only one which has an effect is the first order. 

 Finally, the Reverb tab is very simple and just contains an on/off button for the Schroeder 

reverberation. This tab doesn't currently do anything since there isn't any reverb being used 

anyway. This tab will eventually have reverberation options on it as well, such as wet/dry setting 

and reverberation time. 

 Above all the tabs are two boxes which were going to allow the user to drag and drop the 

source and receiver positions as well as visualize the current positions. The receiver and source 

icons (seen on both Receiver and Source tabs) would be movable and would automatically 

change the position of either one when the user dragged the icon to a new position. Also, the 

icons would move and update if the user changed the position with the sliders or boxes. Since 

these features were mostly just eye-candy, they were not developed further than taking up space 

in the GUI window. 

 Below the tabs are several items: a disabled slider, a time, and play, pause, and stop 

buttons. The slider, along with the time stamp, was meant to show the current position of the 

sound being played, however, neither have yet been attached to anything. The play, pause, and 
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stop buttons were set up to do just as they sound. However, since there was no output signals 

from the DSK, this button was only tested on hard-coded sounds. 

 There are several action tabs at the top of the window (e.g. File, Source, Acoustics, etc.); 

while these were originally planned to have more options than the tabs had room for, they were 

never implemented due to time constraints. 

 

PRE-DSK 

 Now that the shell of the GUI has been covered we will delve more into the structure and 

function of the code. To give the explanation more direction, first we will describe the flow of 

data. Also, to make the description easier and less wordy, we will use the assumption that the 

user only controls the source and receiver position for now. 

 When the program is started the first thing that is done is the GUI loads the HRIR 

database and starts a TCP server which listens for the DSK client. When the DSK connects to the 

TCP server a socket is opened and the HRIR database is sent to the DSK for storage. After the 

HRIR is sent the GUI initializes the SDL libraries which includes initializing the sound card for 

output. This involves sending the SDL libraries the output specifications which are currently 

hard-coded to 44.1 kHz sample rate, 2 channels (stereo), and a 1168 sample buffer. The SDL 

libraries will open the sound card for writing and pause playback. At this point the GUI, using 

the SDL libraries reads a wave file into memory, using the class AudioFile as a storage and 

retrieval medium. 

 The GUI is now ready to start sending and receiving packets of data to and from the 

DSK. When the GUI receives a command from the DSK to send a packet of data it gathers 

together all the needed data and puts it into a pre-made packet structure. The structure contains 
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many different bits of data: a sequence number, an end of signal flag, an exit flag, 1024 samples 

of signal data, and several variables describing the positions of any image sources. The sequence 

number will be used later once the result packet has been sent back from the DSK and the end of 

signal and exit flags have obvious functions. The 1168 samples of signal data are arranged so 

that the first 199 overlap the set of samples from the previous packet. 

 The set of variables which are used to describe the image sources are interaural-polar 

coordinates, attenuation coefficient, and sample offset. So the packet sent contains one variable 

with the number of image sources (up to 9 plus the original source) as well as four arrays: one 

containing the azimuth variables of all sources (image and original), another containing 

elevation, another attenuation, and lastly offset. Azimuth, obviously, means the position of that 

source along the azimuth arc. Elevation is the same as azimuth, just in the up-down arc. 

Attenuation means the amount to multiply the signal by for this particular source in order to 

account for wall absorption and inverse square law. The final parameter, offset, is the number of 

samples to offset this source by from the original source to account for extra distance traveled. 

Both image sources and the original source are affected by attenuation. The reason the original 

source is affected by attenuation is because the attenuation due to the inverse square law gives 

the sound distance. Even though both image sources and the original source are affected by 

distance attenuation, only image sources are affected by offset since, with only one original 

source, all offset is relative to that original source. 

 The vector containing all of the information describing the image sources is calculated by 

the GUI anytime the user changes either the room configuration, the source position, or the 

receiver position. This way the vector is always up-to-date and a packet can be sent at any time 

without recalculating the image source vectors. While we were not able to test the overall speed 
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of our send and receive loop, we assumed that it would be fast enough so that the user would not 

notice any latency in the movement of either source or receiver. 

 

Reflection Calculation 

 The reflections, or image sources, are calculated using a method which essentially 

reflects the room and source across one of the walls and uses the new position of the source as an 

"image source." The diagram below shows how this geometric reflection of the room and source 

leads to image sources. The number of reflections is an exponential function, so for any 

particular order of reflections there are up to (6^N) image sources in a three dimensional 

rectangular room, where N is the order of reflections. With the number of image sources growing 

so rapidly, not many orders need to be calculated to get an overwhelming number of reflections. 

This is why we limited our reflections to four orders (although this is probably more than 

enough). 

 

Reverberation Calculation 

 For each packet of signal data that is sent to the DSK a reverberation signal is calculated 

using the sent signal. This reverberation signal is stored for retrieval after the corresponding 

result signal is sent back from the DSK. 

 The reverberation signal is calculated using a Schroeder reverberator. The code which we 

used to implement the reverberator is called Freeverb (ccrma.stanford.edu). It uses eight comb 

filters and four all-pass filters on each channel. It allows the user to change several different 

parameters: room size, damping, wet/dry, width, and mode. The documentation is fairly poor, so 

we had to guess how many of these parameters affect the final output. Wet/dry is pretty common 
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and changes the amount of reverberation signal ("wet") and unchanged signal ("dry") which are 

returned. The damping parameter determines how much of the higher frequencies the "room" 

absorbs. Room size and width seem to be related, but there is no exact definition in the 

documentation as to what they do or how they change the output. Our best guess is they make 

the room sound larger by increasing the delays. Finally, mode determines whether the 

reverberation should be held. In other words if the signal is being sent in blocks, like we are, 

should the reverberation be held over from block to block. 

 

POST-DSK 

 After both the signal block and image source vector have been sent to the DSK and the 

corresponding reverberation signal is calculated and stored, the GUI must wait for the DSK to 

return a result block of signal. When a result packet is sent by the DSK, it will contain several 

things: a sequence number, and two arrays of 969 samples of signal. The sequence number is just 

a check to make sure the packets are arriving in order and also to help align the result data with 

the reverberation data. The two arrays contain the left and right samples of the result signal. 

These are the outputs from the FFTs. These signals emulate what the left and right ear should be 

hearing, taking into account the HRTFs and reflections. The last part in making the sound more 

realistic is adding the stored reverberation. Once this reverberation is directly added, the two 

signals, left and right, are interleaved in preparation for output to the sound card. 

 

Sound Card Output 

 While all the other calculations are going on the sound card must be continuously filled 

with valid samples, otherwise the user will hear blips and glitches where random data is sent out. 
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The way the SDL sound processing works is, when a device is opened a callback function must 

be given. Whenever the sound card needs new samples to put in it's buffer, it calls the specified 

callback function. We wrote this function to then call a function in our Soundcard class which 

holds a circular buffer of current output data. Every time the sound card calls the callback 

function a certain number of samples are written to the sound card's buffer and the head of the 

circular buffer is moved forward. Also, anytime a packet is received from the DSK, after being 

added with the reverb, it should be added to the circular buffer. There are several methods which 

track both the size of the buffer and the receptivity of the DSK, making sure that new packets go 

out as soon as possible. However, we were unable to test this system due to problems integrating 

the DSK and the PC as well as time constraints. Even without test, though, we believe that the 

DSK was processing fast enough to fill the buffer before there was any underrun. 

 

What We Implemented 

Sound Signal 

We implemented our system to work with a sound signal that satisfies the following 

characteristics: 

• 44.1 kHz 

• Monaural 

• Binary File 

The last requirement has to do with how we implemented the readDBsFromFile() function on the 

PC.  If one wanted to read files saved in a different format one would have to edit the function 

accordingly. 
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Memory Allocation 

 The HRIR Databases for each user are 1MB per side. This adds up to a total of 2MB 

when you take both the left and the right.  Since we only have 256KB of internal memory we had 

no choice but to place them in external memory.  

 In our original implementation design, only the databases would have been stored in 

external memory.   Everything else, including the signal blocks, would have been stored in 

internal memory.  This way it would be more accessible and require less access time therefore 

making our code run faster. However, in our final implementation we ended up sending the input 

signal all at once to the DSK, instead of chopping it up into smaller blocks and sending the signal 

over one block at a time. This meant that the entire signal had to be store on the DSK. Given that 

the signal we chose to process required ~2.5MB of memory we had to store it in external 

memory.  

 

Algorithm Implementation 

The first step in our implementation was to read in each of the databases for the right and 

left ear and the input signal from file into three float arrays onto the PC.    Then, using a socket 

network connection with the DSK as the client and the PC serving as the host, the three signals 

would be sent to the DSK to be stored in external memory.  On the DSK side we had to allocate 

memory for the databases and the signal.  

Once the DSK allocates memory and receives the databases and the input signal it calls 

the overlapSave function to process the information.  Based on the size of our input, the size of 
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the input block that overlapSave processes with each individual call (1168*sizeof(float)), and 

taking into consideration the fact that every time overlapSave is called the block of input signal 

processed overlaps the block processed in the previous call by 199 samples,  we determined that,  

for an input signal of the size being used, we needed to call overlapSave 625 times to ensure  that 

the signal would be processed in its entirety.  

In order for overlapSave to be called, we needed to calculate the reflection index that it 

takes as a parameter.  In each iteration, a new HRIR is selected based upon the given azimuth 

and elevation.  This reflection index is fed to the overlap save function to select the appropriate 

impulse response whose first element is indexed by the following equation: 

 Index = 200*azimuth_index + 5000*elevation_index 

Originally, every input signal block was supposed to be sent to the DSK with accompanying 

arrays containing the azimuth and elevation information for each reflection as well as for the 

original signal (along with other information).   We were not able to achieve the full 

functionality we desired on the PC side code.   As a result, instead of obtaining azimuth and 

elevation information from the PC, we simply hard coded their values. One of the ways we did 

this was using two nested for loops in such a way that every 25 samples the azimuth would 

increase by one, starting at 0 and ending at 24. In this way we would cover the entire azimuth 

range.  The result was that the processed signal sounded as if the speaker started speaking on 

your left side and then walked around you while he talked until he ended up speaking on your 

right side. 

This HRIR is read into a local static array, interleaved with zeros, and transformed using 

a 256 point FFT using the Cache –Optimized Mixed Radix FFT function provided in the c67x 
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library.  The 1168 points of the full input array are, then, read into a static array and taken 256 

points at a time to be interleaved with zeros  and Fourier transformed.  The HRTF and the 

frequency response of the 256 point input blocks are multiplied and inverse FFTed with the 

Cache-Optimized IFFT.  Taking the last 57 samples of the output gives us the un-aliased 

convolution result.   Each call to overlap save produces 969 samples of filtered signal. 

 

 

The above diagram illustrates our implementation of overlap-save in which the algorithm is 

broken down to process 1168 sample blocks at a time.  The array below shows how we 

accounted for the first aliased 199 samples in the input array-by zero-padding once.  

 

At the end of each call to overlap-save, the resulting segment of filtered input (N = 969) is sent 

back to the PC where it is written to a file.  Thus, 1250 files in total are written to file and 
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comprise the output from both the right and left signals.  We, then, wrote a Matlab function to 

patch together the files into a 607701 x 2 matrix and played with soundsc to verify that the 

filtering was successful. 

 

FFT/IFFT 

The Fast Fourier Transform  and Inverse Fast Fourier Transform we chose were the cache-

optimized mixed radix single precision floating point functions provided by the TI c67x library.  

Our initial reasons for choosing these two algorithms were the benchmarks provided on the TI 

website in which the Cache Optimized algorithms were projected to out-perform the Decimation 

in Frequency algorithm for N=256.  The number of cycles for each single precision floating point 

fft are listed below for N=256:  

 

 -SP Complex DIF FFT (radix4)   

  (14*n/4 + 23)*log4(n) + 20, cycles = 3696 

 -SP Out-of-Place Cache-optimized mixed radix FFT w/ digit reversal    

  3*ceil(log4(N)-1)*N + 21 * ceil(log4(N)-1) + 2*N + 44, cycles=2923 

 -SP Cache-optimized mixed radix Inverse FFT 

  3*ceil(log4(N)-1)*N + 21 * ceil(log4(N)-1) + 2*N + 44, cycles=2923 

 

We also based our decision off of the profiled results from Fall 2007, Group 7’s midterm 

presentation in which they had compared the number of cycles needed to execute the cache-

optimized FFT to that of the decimation in frequency algorithm.   
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Optimization 

Because we didn't obtain the functionality we needed on the PC side, we were unable to do much 

optimizing beyond that which pertains to data transfers.  There are two main instances that occur 

in our code were data transfers between external and internal memory. Each instance is called 

numerous times during the execution of our code.  The first instance consists of transferring the 

block of signal to be processed from external,  where all ~2.5MB of the signal are stored, to 

internal. We estimated the required transfer time for 1168 sample block. 

 

CPU Transfers (a.k.a for loops) :  7.125 cycles/word * 1168 words = 8,322 cycles 

EDMA Transfers (using dmaCopyBlk) : 2.25 cycles/word * 1168 words  = 2,628 cycles 

 

The actual transfer times calculated using Function Profiling were as follows: 

 

CPU Transfers : 9, 007 cycles 

EDMA Transfers : 3, 127 cycles 

 

So in this case, for the purpose of optimization, we employed dmaCopyBlk to transfer our data 

from external to internal. 

The other instance involves accessing the appropriate impulses from the HRIR databases: 

We estimated the following times: 

CPU Transfers:   

 worst case (in internal then external) = 7.125 cycles/word * 200 words = 1,425 cycles 
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 best case (found it in internal) = 1.5 cycles/word * 200 words  = 300 cycles 

EDMA Transfers : 2.25 cycles/word * 200 words = 450 cycles + 30 cycle overhead = 480 cycles 

 

In practice we obtained the following numbers: 

 CPU Transfers: 632 cycles 

 EDMA Transfers: 653 cycles 

We believe that this is partly due to the fact that it when the position doesn't change (i.e. azimuth 

and elevation don't change) then the CPU transfer approaches the best case scenario because it 

keeps accessing the same information. In this case we decided to go with the CPU transfer 

because it gave us the best time (even if only marginally) and because our implementation is 

such that the transfers are closer to a best case scenario. If the implementation were to be 

changed (like say for example to finish implementing our proposed project) this particular 

decision would need to be re-evaluated for the sake of optimization. 

Finally it should be noted that our code was run at an optimization level 3 (as in 18-551Lab 3). 

 

The Problems We Encountered 

Over the course of our project there were a few notable roadblocks that impeded our 

progress and are noteworthy for future 18-551 project groups.  The first problem we had 

encountered in implementing our algorithms on the DSK was how to properly use the Cache-

Optimized Mixed Radix FFT and IFFT.  

 

FFT and IFFT Implementation Problems 
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   In the given user guides, the buffers referenced by the input pointer *x and the result 

pointer *y must be double word aligned. Unfortunately, when we researched the term, we 

misunderstood the definition and did not understand how this requirement would affect our code. 

Double worded means that the complex time data, x, and twiddle factors, w, have to be aligned 

on double-word (8 byte) boundaries.   Originally when we were writing our code we declared the 

following variables: 

static float *hrir_database_R; //4 bytes 
static float *hrir_database_L; // 4 bytes 
 
before declaring the variables that would be used in the FFT: 
 
static float hrtf[512];//multiple of 8 bytes 
static float intermediateResult[512]; //multiple of 8 bytes 
static float w[512]; //multiple of 8 bytes 
static float block[512]; //multiple of 8 multiple 
 
By pure coincidence the pointers, which were declared first, totaled 8 bytes and therefore the 

double word alignment was maintained.  As a result we were under the impression that we had 

gotten the both the FFT and the IFFT working.   Later, we modified our implementation to add 

another float pointer as follows: 

 
static float *hrir_database_R; //4 bytes 
static float *hrir_database_L; // 4 bytes 
static float *s;//4 bytes 
 
 
 
static float hrtf[512];//multiple of 8 bytes 
static float intermediateResult[512]; //multiple of 8 bytes 
static float w[512]; //multiple of 8 bytes 
static float block[512]; //multiple of 8 multiple 
 
 
This new float was 4 bytes and consequently shifted the buffers below it by four bytes.  Since we 

did not explicitly cast our parameters appropriately, our resulting fast Fourier transform outputs 
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were incorrect.  Because we did not understand what double word alignment meant, we wasted a 

lot of time trying to determine why the FFT and IFFT provided the correct result one moment 

and, then, entirely wrong answers the next.  We mistakenly came to believe that the problem had 

something to do with memory because the FFT suddenly stopped working when we added a float 

pointer and allocated memory in external. Eventually, with the help of one of the TA’s (Rohit 

Patnaik), we were able to determine the actual problem- that our inputs were not double word 

aligned as the documentation stated.   The quick solution that we implemented was to simply 

move the pointer declaration beneath the buffer declarations. Since the buffers all had sizes 

multiples of 8 bytes they were naturally double word aligned and the FFT worked properly.  

However, it may not always be the case that your variables fall on a double-word aligned 

boundary.  With Rohit’s help we learned that the proper way to make sure that your buffers are 

double word aligned would be to follow the directions on page 139 of TMS320C6000 

Optimizing Compiler User's Guide (Rev. N) (http://www-s.ti.com/sc/techlit/spru187n): 

 
#pragma DATA_ALIGN (array_x, 8); 
float array_x[256]; 
 
This will ensure that array_x is aligned on an 8-byte boundary, regardless of when the array is 

declared with respect to the other variables. 

 

Results 

 We implemented our system using various variations in azimuth and elevation.  For the 

purposes of observing the basic behavior of our code we processed the signal using Azimuth = 0 

and Elevation = 0 and then using Azimuth = 24 and Elevation = 0. When the azimuth equals zero 

this corresponds with the sound source being on your left size and when it equals 25 it 
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corresponds with the sound source being on your right side. The following plots consist of the 

magnitude vs. sample number for each of the two mentioned implementations. 
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The blue signal is the left side signal and the green signal is the right side signal. The left hand 

signal is much greater in magnitude when the azimuth is zero. This makes sense since this is 

when the sound source is on your left side which would mean that the signal would sound much 

louder in that ear. When the azimuth is 24 the situation is reversed.  

 In the following figures we’ve plotted the case where the azimuth varies from 0 to 24 

while the elevation remains constant. Again you can see that initially, when the azimuth is zero, 

the left side signal (the blue one) has greater magnitude but as the sound moves towards the right 

side (an azimuth of 24) the right side (the green one) starts to gain in magnitude as the left side 

decreases. 
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The two plots represent the same varying signal. The only difference is that in the top figure the 

left side signal is in front of the right side signal and in the second figure it is behind the right 

side signal. 
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 As far as variations in elevation are concerned, plots for signals processed using different 

elevations but with a fixed azimuth present a slight variation. But the changes were so small as to 

be barely noticeable. 
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The changes in elevation were even harder to hear than they were to see in the plot. We were 

unable to distinguish any difference in elevation from listening to the processed signal let alone 

determine the origin of the signal, elevation-wise.   

 

Conclusion 

Our system implemented the core HRTF filtering very successfully, but we failed to deliver 

when it came to the novelty part of our project. Changes in azimuth were audibly distinguishable 

but changes in head elevation are go unnoticed.  We have yet to determine the cause of this or 

how to incorporate other spatial cues to suggest a sound source location.  According to the 

research that we did prior to our implementation, the Schroeder model and the Image Source 

model would have served as sufficiently accurate representations of reality for the small room 

environment we had intended to simulate.  Future 18-551 groups can do a multitude of other 

variations of this project in addition to our intended implementation of room acoustics.  Dynamic 

control and real-time processing are endeavors worth pursuing as possible projects.  
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