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Harmonic equalizer 
G R O U P  5 ,  F A L L  ‘ 0 6  

THE PROBLEM 
With the advent of digital recording and editing, the recording industry has 

sacrificed the rich sound of the past for the speed, ease and in-expense digital has to 
offer. Many ‘audiophiles’ directly criticize sampling as the reason for this lack of what 
many were used to with analog tape, however with the sampling rates now available 
(96khz) even a trained ear can not distinguish the difference between analog and digital. 
Furthermore, digital recording has the lowest noise floor, largest dynamic range, and 
least THD (total harmonic distortion) of any other recording medium. So what is it that 
people complain about; what is it that recording engineers and producers strive for? If it’s 
not the sampling, it must be something else that’s being done differently. 

THEORETICAL SOLUTION: 
The fact of the matter is when recording digitally, and manipulating the recording 

with digital filters (“plug-ins”) the signal if anything is too perfect. Recordings made in 
the 70’s and 80’s got most of their signature ‘sound’ from what electrical engineers 
would consider a nightmare: over-saturating tape (purposefully distorting the signal), 
over-driving tube amplifiers, and etc. It is obvious to us that the human ear does not 
want to hear the perfect reproduction of a rock band crammed in a small studio room. 
The magic of an album comes from manipulating analog devices to add desired ‘noise’.   

 If it’s un-called for artifacts that the ear likes, then as engineers we must identify 
what our ears want to hear so that we can deliver. The most sought after sound, 
especially with recording vocals, is the brilliance and clarity in running the signal through 
high quality tube amplifiers. This brilliance is as a result of how a vacuum tube distorts; 
take for example a solid-state op-amp. When an op-amp distorts, the output ‘rails’ to 
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match exactly its supply voltage. If forced a sinusoidal input of greater amplitude than its 
supply voltage, the output will greatly resemble a square wave. If there is any “ramping 
up” (non ideality in the square wave) it would be as a result of the op-amp’s slew rate. If 
this same process was done to a vacuum tube amplifier, the output would still be greatly 
sinusoidal before clipping. This can be understood as the ‘slew rate’ of a vacuum tube 
being far less to that of its solid-state brethren. What the ear picks up on with a 
distorting tube is since it distorts sinusoidal-ly, all harmonics are present, as opposed to 
the solid-state square wave type distortion which is only odd harmonics. Odd harmonics 
are not very musical since they do not correspond to notes in the musical scale which are 
pleasing (i.e. octaves, 4ths, 5ths).  

OUR PROJECT AND SOLUTION: 
Why be forced to add tube sound to add upper harmonics when harmonics are 

already there? We’ve re-thought and improved upon one of the most powerful devices a 
recording engineer has at their disposal: the parametric equalizer. Our never-before-
attempted version will, with the user’s control, be capable of filtering and consequently 
highlight the upper harmonics a tube normally would be used for. 

 Our device operates very similarly to a standard parametric equalizer which 
controls gain, frequency, and Q for four bands: low, low-mid, high-mid, and high. We 
however add to each band controls for gain, Q, and shape which filter the upper 
harmonics. To describe better in detail, listed below is each control’s functionality: 

(items in bold can be found on a regular parametric eq) 

• Frequency: defines the fundamental center frequency 
• Q: controls the q of only the fundamental filter 
• Gain: controls the gain of only the fundamental filter 
• Harmonic Gain: controls the gain of all the harmonic filters 
• Harmonic Q: controls the Q of all the harmonic filters 
• Shape: alters the gain of individual harmonic filters to “shape” their response 

 



Harmonic equalizer 

 

 

Page 3 

*Note: there is no ‘harmonic frequency’ control; this is because the center frequency of 
each harmonic filter is determined by the fundamental frequency. Each harmonic is a 
multiple of the fundamental, so for example the 2nd harmonic of the fundamental 
frequency = 2*fundamental frequency. 

 

The three basic functions of a bandpass filter controllable by an equalizer: 
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Demonstration of what we can control with our device. In this example we can see how the 
fundamental filter (f1) can have a different gain and q from the harmonic filters (f2, f3, f4). Filters are 
placed according to the harmonic series: f2 = f1*2, f3=f1*3, f4=f1*4. The frequency “f1” is controlled 

by the user. 
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 In order to be fully ‘dynamic’, meaning the user can enter in any combination of 
settings with each band’s 6 controls, our device accepts commands from the user via a 
GUI, enters them in to our ‘filter generator’ (calculates the coefficients and specs of each 
filter) whose output is fed into direct form II filter implementation which filters the 
incoming audio. 
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PRIOR 18-551 GROUP PROJECTS 
 Our project is unique in many ways. Not only does it (as explained above) re-think 
the operation of a standard EQ. No commercial plug ins incorporate as many filters as our 
device in one implementation either. We did use the experience of our 18-551 
predecessors to decide on what type of pitch tracking algorithm to use.  

• Group 9 Spring 2003 
• Group 9 Spring 2000 
• Group 9 Spring 2002 

The above groups were all groups that we studied their pitch tracking algorithms. I guess 
Group 9 in Spring is a popular assignment for pitch trackers! Below in our pitch tracking 
segment, we use Group 9, Spring 2003’s analysis of auto correlation as a comparison to 
our method. 

OPERATION: 
O U R  D E V I C E  C A N  O P E R A T E  I N  O N E  O F  T W O  W A Y S :  

1) Digital Plug-in: when audio originates from the PC, is then sent to the DSK for 
processing, and then sent back to PC for output, and or recording. This scenario would 
be typically used in the home / project studio situation where (because of its cost 
efficiency) dsp is at the center of all operations. 

2)Analog Plug-in: when an audio signal is sent to the line in of the DSK, then processed, 
and sent back out the line out. In this case, all A/D is fixed at 96khz. This scenario would 
be typically used in the professional recording studio situation where our device would 
most likely be used only to slightly accentuate an audio track. Routing in such cases 
usually is completely done in the analog domain with extremely high end audio consoles. 

THE NEXT TWO FIGURES ARE THE DATAFLOW DIAGRAMS OF WHAT IS EXPLAINED 
ABOVE.  
 



Harmonic equalizer 

 

 

Page 6 

Digital Plug-in Dataflow: 
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ANALOG PLUG-IN DATAFLOW: 
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BACKGROUND RESEARCH ON FILTERS: 
As in any engineering design problem, it is generally not possible to give a precise 
answer to what is best. No single type of filter and no single design method is best for all 
circumstances. If we neglect phase considerations, it is generally true that a given 
magnitude-response specification can be met most efficiently with an IIR filter. However, 
we must make sure that our system’s delay is not excessive to the point that it may 
become audible.  

 The chief properties of FIR and IIR filters are outlined below. 

IIR Filters 

Properties of IIR Filter:  

1. Better magnitude response 
2. Fewer coefficients 
3. Less storage is required for storing variables. Fewer taps and thus less hardware than FIR. 
4. A lower delay 
5. It is closer to analog models 
6. A variety of frequency-selective filters can be designed using closed form design 

formulas. 

A variety of frequency-selective filters can be designed using closed form design 
formulas. Once the problem has been specified in terms appropriate for a given 
approximation method(e.g. Butterworth, Chebyshev etc), then the order of the filter that 
will meet the specifications can be computed and the coefficients of the discrete time 
filter can be obtained by straight forward substitution into a set of design equations. 

These methods are limited to frequency-selective filters and they permit only the 
magnitude response to be specified. If other magnitude shapes are desired, an 
algorithmic procedure is required. 
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FIR Filters 

Properties of FIR filters:  

1. A linear phase 
2. It is unconditionally stable (since no non-zero poles) 
3. It is insensitive to quantization effects 
4. No limit cycle issues (i.e., the filter oscillating) 
5. It is easy to design  
6. Closed form design equations do not exist for FIR filters. 

The simplest method of FIR filter design is called the window method. Some of the 
common window functions are: 

1. Rectangular 
2. Bartlett 
3. Henning 
4. Hamming 
5. Blackman 
6. Kaiser  

Although the window method is easy to apply, some iteration is necessary to meet a 
prescribed specification. The Parks-McClellan algorithm leads to lower order filters than 
the window method does. The design problem for FIR filters is more under control than 
the IIR design problem. This is because of the optimality theorem for FIR filters which is 
applicable in a wide variety of applications. 

 

How to choose which filter to use: 

 Our obvious number one criterion is how the filter sounds, and how close to real 
time we can get this filter to perform. Hence translated into engineering language, this 
relates to passband ripple in amplitude, excessive phase shift, and the filter’s order.  
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So first IIR vs. FIR: 
 

 IIR FIR 

Phase Difficult to control, no 
particular techniques 

available 

Linear phase always 
possible. 

Stability Can be unstable, 

Can have limit cycles 

Always Stable, 

No limit cycles. 

Order Less More 

History Derived from analog 
filters / circuitry 

None, it’s the rookie. 

 

 Starting with phase, right away it may seem that a FIR filter should win out over an 
IIR since linear phase seems like a great way of controlling the group delay of our filter. 
We’ve adhered to a maximum of 3ms delay, as to make our device as perceivably real-
time as possible. This means our group delay must not be any more than a total of 3ms. 
We also chose not to use a filter which shifts any more than 180 degrees in the pass band 
to prevent the possibility of when summing the processed sound with the original to 
achieve a wet/dry mix, certain frequencies that are meant to be gain-ed would actually be 
attenuated because of their close to one period phase shift.  

So to compare, we’ll look at (next three figures) a single bandpass filter centered at 
1000hz, a Q of 7, and at unity gain. For suspense we won’t say what type of filter we 
used until later, though we in this case are comparing our filter, a Butterworth IIR, and an 
equiripple FIR. To do so we will find their Bode plot, (mag in blue and phase in green on 
top of each other) and then plot / find their maximum group delay.  
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The next two figures are the group delay plots for the two IIR filter examples above. 
These plots are group delay measured in samples vs. frequency. We did not plot the 
group delay of the FIR filter since it is trivial. The FIR filter’s phase is perfectly linear, 
hence the group delay (the derivative of the phase vs. frequency) is a constant. This 

filter’s delay is 53 samples. 
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 Aside from delay, filter order is another very important deciding factor. In the 3 
examples above, the FIR filter had an order of 106! This is extremely high compared to 
the two IIRs, where the Butterworth had an order of 4, and ours had an order of 2. Not 
only was our filter extremely low order (for one bandpass), when repeated to form the 
harmonics that could potentially have different gains and Qs, the order still remained at 2 
for our operating ranges. This was extremely computationally efficient as we never had to 
worry about the chance of having different order filters. This was a clear choice to us, 
though to further demonstrate the true power of our filter vs. an FIR, we plot the 
frequency response of the FIR filter and our filter as they would have to be used in our 
device; numerous parallel filters centered at harmonic values. The next two figures are 
how our filter vs. the FIR filter would operate with our device at 1000hz, unity gain, and a 
Q of 7 for the fundamental and all harmonics. Our filter actually is picture with a gain of 
1dB instead of 0dB(unity). This is only because our code would not allow an input of 0dB 
since it is intended only to add harmonics; if there was a gain of 0dB, there is no point in 
using the device since it should do nothing. 

THE DECISION: 
 The decision was clear cut… our filter had better average group delay, and far 
better filter order. Also when implemented in our device, it was a lot more uniform, and 
did not develop massive ripples in higher frequencies as the FIR did.  

 SO WHAT KIND OF FILTER DID WE USE? (drum roll): 

Second-order IIR peaking (resonator) digital filter 

Why was this so suspenseful / interesting? Referring to our table comparing IIR and FIR 
filters above, we ended up choosing a filter that is the exact mathematical representation 
of ‘historical analog filters’. Can we say RLC circuit? Perhaps it’s just coincidence, but it 
sure is strange that we go through all of this trouble to find out that to get a sound our 
ear liked…. a sound our ear liked back in the 70’s with all that analog gear… we end up 
with the closest thing digital can represent.  
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OUR BASIC FILTER FUNCTION: 
( I N  M A T L A B )  

function [b,a] = filterCode(Fs,CenterFreq,Q,Gain) 

%(Sampling Rate , Center Frequency , Q , Gain) 

 

%relationships 

Wo = CenterFreq/(Fs/2); 

BW   = CenterFreq/Q; 

BW = BW/(Fs/2); 

 

%normalize 

BW = BW*pi; 

Wo = Wo*pi; 

 

Gb   = 10^(-Gain/20); 

beta = (Gb/sqrt(1-Gb.^2))*tan(BW/2); 

gainc = 1/(1+beta); 

 

%coefficient calculation (Raj Output) 

b2  = (1-gainc)*[1 0 -1]; 

a  = [1 -2*gainc*cos(Wo) (2*gainc-1)]; 

 

b=b2*(10^(Gain/20)); 
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EXTRA FEATURES: 
 Our mission in designing this device was to improve upon the use, operation, and 
sound of equalizers. We therefore found that we did not have to be locked into the 
traditional methods of equalizer operation, where fundamental frequencies are chosen as 
frequencies in hz. Musically ‘1320 hz’ makes little sense. So why do we hold recording 
engineers who are usually of mainly musical backgrounds to our engineering standards 
of hz? Why not relate what the user is doing to the music; so instead of 1320hz, we say 
“E”. Better yet, why not let the DSK choose for you! The next figure demonstrates how the 
user has the choice between “Mathematical” (traditional method of picking hz), “Musical” 
(our method where the user selects a musical note), or “Auto” (where the DSK does the 
thinking). 
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At first it may seem trivial selecting a musical note for a frequency since a musical 
note surely must represent some frequency right? Wrong! The harmonic series governs 
the way a string vibrates; harmonics are integer multiples of the fundamental frequency. 
Knowing this, Pythagoras back in the day figured out a bunch of perfect ratios which 
calculate any musical interval is in frequency. This is how to calculate a musical note’s 
frequency in hz. For example: the standard reference frequency is “A 440hz”. If I wanted 
to know the frequency of the E above that A, I would know musically, that is an interval of 
a fifth. I then would look up on Pythagoras’ chart and see that an interval of a fifth is a 
3/2 ratio. Hence E then must be 440*3/2 = 660hz.  

 Here’s the problem: Pythagoras sure was right, however he wasn’t much of a 
musician. His method will work fine for anything that’s ‘in one key’… uses only notes 
associated with the key of A (the reference standard). If a song changes keys 
(“modulates”) the octaves and subsequent harmonics of this new key will not line up, 
simply put… the instrument will sound out of tune and horrible. So now fast forward a 
few years to J.S. Bach’s day. One of Bach’s most famous compositions were the Prelude 
and Fugues of “The Well Tempered Clavier”. Well tempered is the literal translation from 
German of what we now call “equal temperament tuning”. Sometimes also called 12-tet 
tuning, 12-tet is the solution to Pythagoras’ problem. Since there are 12 notes in one 
octave, 12-tet evenly divides the frequencies between an octave amongst the 12 notes. 
This means that the notes aren’t perfectly in tune, nor are their harmonics, however one 
could consider 12-tet an ‘average value’ of musical notes. This is what allows music to be 
played on any instrument in any key. . The formula for 12-tet is as follows: 
440*2^(x/12).   

440 is the same reference value as before, and x is the number of notes away from 
the reference you are calculating. So just as before, let’s find E but now in 12-tet. E is 7 
notes above A, so: 440*2^(7/12) = 659.3 hz. In this case there is only a small change 
however as you go up in frequency or in the musical scale, the intervals get wider and 
wider.  

 We need to use this information since our project walks a fine line between ‘perfect 
tuning’ and 12-tet. That’s why we decided to have the option of choosing between 
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Pythagoras’ or 12-tet tuning. So now if a song is tuned in 12-tet (which it probably is) 
when the user selects “E” the device will center its filters properly.  

 How about the lazy recording engineers? Well our device can think for them. If the 
input signal is monophonic (one instrument playing one note at a time) we’ve 
implemented a pitch tracking algorithm which can figure out the fundamental frequency, 
and set the filters to align to whatever fundamental frequency is being played.  

MULTITRACKING 
 To better demonstrate the possibilities of our device in a professional recording 
environment, we added two-track capability to the digital plug-in scenario so that one 
file is processed with our device (sent through the DSK) and one is played at the same 
time through the sound card. This demonstrates how a single track in a mix can be 
accentuated without having to make the track’s volume unnecessarily loud. 

PITCH TRACKING 
Pitch Tracking: 

The basic idea behind the idea we used for pitch tracking was to use Instantaneous 
Frequency Distributions (IFD).  If we take the IFD of a given sample, then the first 
maximum is considered to be our fundamental frequency.  However, computational 
considerations require us to estimate the IFD of a given signal rather than compute it 
directly.  In an attempt to do so, we used Charpentier’s method, as referenced in our 
reference section. Our method of computing the IFD is to compute two Short Time Fourier 
Transforms (STFT).  Using these STFTs, we are then able to estimate the magnitude of the 
derivative of the phase or the IFD of the given signal.  The STFTs are related to each other 
in a manner that makes this process equivalent to the evaluation of phase shifts due to 
an infinitesimal displacement of the time window. 

The first step in implementing this algorithm requires us to compute the STFT of a 
signal which is represented by: 
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However, calculating the STFTs using this method would require the use of two 
FFTS which is computational inefficient.  So we can instead one FFT of the original signal.  
Then apply the Henning window using the following formula: 

 

We can calculate derive the second STFT using the original FFT using: 

 

 

Now that we have our two STFTs, we can calculate the change in phase between 
two time shifted signals using: 

 

Now that we have our approximation of the IFD, we traverse through this set of 
frequencies until we hit the first set of three adjacent frequencies whose corresponding 
magnitude or Xk is above a threshold.  The middle of these three frequencies is our 
fundamental frequency.   
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A quick example of the STFT vs. IFD of a violin playing an A 440hz. 
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Same plot, but now zoomed in on the fundamental frequency, which is the first spike in 
the plot above.  Note the red line is our threshold, which is how we determine when the 
fundamental energy is present. 
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PITCH TRACKING METHOD DECISION  
As Group 9 of Spring 2003 found, using the Autocorrelation method to detect pitch 

was “terribly computationally inefficient”. Autocorrelation involves shifting a FFT multiple 
times to figure out when both versions match, producing a peak. Since harmonics will line 
up, this will produce a strong peak at the fundamental frequency. The main benefit to 
Autocorrelation is it is impervious to noise. The biggest disadvantage aside from 
inefficiency is it can misinterpret a harmonic as the fundamental. Charpentier’s algorithm 
is way faster since it only involves one FFT and a few multiplies instead of a FFT and many 
shifts and multiplies. We chose to use Charpentier since noise was not much of an issue 
with our high fidelity recordings, and our device needs to be as efficient as possible. In 
the long run, Charpentier’s method is a very accurate of detecting monophonic pitches, 
making this an easy decision. 

 

 

 

 

 

On the next page is an example of our pitch tracking algorithm’s output. A musical 
scale (consecutive notes) from A to E played on a violin is the input.
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Even though we once said our pitch tracking didn’t have to be ‘dead on’ since the filter’s 
Q would always be wider than any small pitch tracking error (of +- Input frequency * 
2^(1/12) hz), our pitch tracker seems to be right on anyway, so c’est la vie. 
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Controls: 

• Master Controls 
• Band 1 Controls 
• Band 2 Controls 
• Presets 

Selection of Audio Files:  

The GUI allows the user to select one or two audio files. This is done by right-
clicking on the GUI. The second audio file is to make use of the added on multitrack 
feature. 

How the GUI works: 

We first created a basic form onto which we then added components like track 
bars, radio buttons, file select dialog boxes, text boxes, labels and buttons. These 
components are used to control parameters of the filter such as gain, frequency, quality 
etc. 

The user can adjust the controls and choose audio files as per his/her wishes. 
When he/she presses the send button, all the filter parameters from the GUI are captured 
in a floating point array. A connection is then established between the PC and the DSK as 
was done in the labs. These parameters are then sent to the DSK where the filter is 
created dynamically and the audio file is processed. 
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CODE USED AND WHAT WE HAD TO MODIFY: 
 

We used C code we found online to play the music real time.  We had to modify the 
code so that it would fit our buffer size.  Furthermore, the code played music it read from 
a file where as we need to play music that was being sent to us in packets from the DSK.   
We also modified the code for communication between the PC and the DSK.  This was 
done so that we could send more 5 commands between the two.  The rest of the code 
that we used was integrated into our program without many changes. 

WHAT CODE WE WROTE: 
• Read wav files  

• Calculates the filters and their properties.  

• Charpentier’s pitch tracking code  

• GUI  

• Filtering Code  

SPEED ISSUES: 
One large concern for us was the fact that our project had to run real time.  This 

was a monumental task that required us to optimize our code such that it could run with 
as few cycles as possible.  In order to do so, we had to keep the limitations of the DSK 
and the PC in mind. 

The first hurdle in achieving real time processing is the transfer rate between the 
PC and DSK.  Ideally, we would get 2MB/s transfer rate from the PC to the DSK and 
10MB/s transfer rate from the DSK to the PC.  However, the actual transfer rate between 
the PC and DSK and the transfer rate between the DSK and PC was not ideal.  The reason 
these numbers are not ideal has to do with the fact that we are only 1024 samples at a 
time.  With such a small transfer, the overheads costs make up a large portion of the total 
transfer cost. 
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The other major timing concern for us was the actual processing of the input 
samples.  First we had to find a reasonable level for our sample size.  If the sample size 
was too large, we would take too long to process the whole sample.  If the sample size 
was too small, it would cost more to transfer and process the data per sample.  We 
decided to process 1024 samples at a time on the DSK.  This was a nice balance between 
size and speed. 

Our original code for processing the samples was not optimized.  The code 
required approximately 393 cycles to process each sample.  When we looked at TI code 
already available, we found that TI provided us with code for filtering signals through a 
bi-quad.  Using the TI assembly code, we could achieve speeds of almost 4 cycles per bi-
quad filter.  As we might use up to 14 filters, this would provide us with speeds of 56 
cycles per sample.  However, despite working with the teaching assistant we were not 
able to implement the assembly version of this filter.  So we opted to use the C version of 
the same code.  The C version of the bi-quad filtering code was still more efficient at 
filtering our signal than the original code.  We were able to get 226 cycles per sample by 
using the TI C code. 

The pitch tracking algorithm takes 4.13 million cycles with full optimization in 
inclusive mode.  However, the exclusive average for the pitch tracking algorithm is only 
0.386 million cycles.  Ideally, the fft function should only take 14,448 cycles to compute 
the fft.  After profiling the pitch tracking algorithm range by range, we found that 3.8 
million cycles our of 4.13 million cycles was used by our shifting loop.  The reason this 
requires 3.8 million cycles is that pow(), sqrt(), and cos()  require more than 1000 cycles.  
Since we use these functions frequently in this loop, the required number of cycles is very 
large.  If there was a way to decrease the number of cycles required to run the math.h 
functions, then we might be able to run pitch tracking in real time as well. 
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The main functions in our code are pitch tracking, create filter, and run filter.  The 
following table will illustrate the cycles required to run each function under different 
levels of optimization: 

 

 

 

Pitch 
Tracking 

(cycles) 

Create Filter 
(cycles) 

Run Filter (cycles) 

No Optimization Took Too 
Long 

100897 55365 

Local Optimization(-
o1) 

Took Too 
Long 

52243 16463 

Function (-o2) Took Too 
Long 

52177 16450 

Full Optimization (-
o3) 

4.13 MM 52149 16421 

 

Another concern we had regarded memory.  Our initial algorithm required a 
circular buffer of size 2048.  We split it into two buckets of size 1024 each.  We would 
bring in 1024 samples into the first bucket and process it.  We then sent the processed 
sample back out and brought the next 1024 samples into the second bucket.  The reason 
for this was the fact that a FIR filter is dependent on data from the past.  By using this 
circular buffer, we could access points we needed that were in the past.  However, this 
method was inefficient and we used the TI filter.  This allowed us to cut the required 
amount of memory in half.  This becomes an issue because we attempt to place all of our 
data on chip.  By doing so, we decrease the number of cycles required to access each 
sample. 
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Comparison and results 

 So how do we know if our project is working how we want? 

• Input white noise, and FFT that output. 
• Our ears. 

 

Below is an example implementation of our device: 

 

 

Fund: 440hz, Q:1, Gain 20, 
 Harm: Q: 10, Gain 10.                             Filter Order: 12  
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After running white noise through our device this is the output: 

It is quite clear that our system is responding as expected. Though now for the real 
test, listening. While picking music for examples, and playing with the filter settings to 
process the audio examples, there was definetly a learning curve for even us (the ones 
who built the darn thing). Being personally used to standard EQs, it definitly took some 
getting used to in order to start producing results. Not to brag, but our filters sounded 
darned good. Even if we piped in a commercial (already mixed and mastered) cd, we still 
could get certain qualities out of the track.  
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After processing three examples, one commercial stereo track, one just piano, one 
just violing, we took a poll from fellow lab partners to see which version they prefered… 
processed or unprocessed.  

Ear test: 3 different audio samples (25 participants): 

 Favored Abstain Disliked 

Sample 1  

(“Fallen”) 
18 5 2 

Sample 2  

(Piano Chords) 
15 6 4 

Sample 3  

(Violin)  
21 4 0 

Clearly the majority was in our device’s favor. But was it? I believe it’s more a 
testament to the fact that I used our device properly. Just as easily I used our device to 
make the samples sound a certain way, I could have made it sound another way in which 
more people could have disliked. Though in my professional opinion what differs our 
project from any other commercial device, to achieve the same sound and result, it would 
have taken nearly a day to create the same samples. Where as it took me 30 mins to 
settle on a good result with our device.  

CONCLUSION 
In conclusion, our project was a huge success. It was a bit bumpy the night of our 

demo, where a small bug had to be quickly attended to, however nonetheless we got it 
back working. We would like to acknowledge Prof. Casasent, his TAs: Eric Chu, Rohit 
Patnaik, and Xinde Hu, and Faculty Assistant Marilyn Patete for all of their countless help 
and support through out the design and construction of this project. Thank you!
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http://www.insomniavisions.com/documents/tutorials/wave.php 

This tutorial is designed to help you use the windows waveOut interface for playing 
digital audio. Through this tutorial I will build a windows console application for playing 
raw digital audio. When we started out project, we had very little knowledge about how 
music is stored in a digital format. This tutorial gave us a good background on ‘sample’, 
‘sample size’ , ‘channels’ and ‘sampling rate’ and how these concepts are related to the 
quality of the music. 

The higher the sampling rate, the more like the analogue wave your sampled wave 
becomes, so the higher the quality of the sound. The larger the sample sizes the higher 
the quality of the audio. We followed the basic structure of the tutorial and modified it to 
suit our needs. We changed the buffer size and the sampling rate to hear the effect on 
the quality of music.  

The steps involved were: 

• Introduction to Digital Audio 
• Opening a Sound device 
• Playing a sound 
• Streaming audio to the device 
• The buffering scheme 
• The Driver program 

As the audio file was being sent to the DSK for processing, the part of the file that the 
DSK had finished processing was sent back to the PC and played using the above 
buffering scheme. 
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We also found the above tutorial at the following website. The tutorial at 
insomniavisions.com was more detailed. 

http://www.planet-source-
code.com/vb/scripts/ShowCode.asp?txtCodeId=4422&lngWId=3 
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http://www.codeguru.com/cpp/g-m/multimedia/audio/article.php/c8935/ 

This article taught us how PCM audio is stored and processed on a PC. 

It also explained the structure of wave files and showed us how to work with them using 
code written in C++. It provided us with a good theoretical background on the structure 
of wave files and how to process them. 

4. Microsoft MSDN 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/multimed/htm/_win32_playsound.asp 

Before we learned about the waveOut interface of windows and how to use a 
buffering scheme to play streaming music, we looked up the PlaySound function on 
Microsoft MSDN. The PlaySound function plays a sound specified by the given file name, 
resource, or system event. 

We realized that this function would not be enough for our needs as it did not 
incorporate a buffering scheme and it required a full wave file to play. Our project starts 
playing the processed sound file even before processing is complete and thus the 
PlaySound function was not sufficient for our needs. Initially however, it did give us some 
insight into how sound is played on a PC and what parameters could be changed. 
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