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1. Introduction 
Driving Under the Influence (DUI) is a major problem in the United States.  For those 

repeatedly convicted of this felony, the court requires that he or she must purchase a 

Breath Alcohol Ignition Interlock Device.  This device requires you to pass a breathalyzer 

exam before ignition of your vehicle.  If your Blood Alcohol Content (BAC) registers 

above the limit, the starter on your vehicle would be locked out, and you could not start 

your vehicle.  However, a person can circumvent this situation by having a sober person 

take the breathalyzer test.  A more intelligent system is needed to overcome this 

instability. 

 

Our solution is to create a “drunken speech classifier”.  This classifier will not only have 

the ability to determine whether speech is drunk or sober, but it will also verify that the 

speaker is who he or she claims to be.  It is important to note that our project will focus 

on the drunk/sober classification.  Future work can be done to complete the voice 

verification and create the entire system. 

 

Are people really interested in this product?  Currently, there are attempted solutions to 

overcome the instability in the interlock system.  The interlock system has the “rolling or 

running retest”, in which the driver must perform arbitrary tasks (such as humming, or 

sucking in air) while the vehicle is in motion.  According to the US National Highway 

Traffic Safety Administration (NHTSA) guidelines, there is only one subsequent test 

required for those with the interlock system (whereas the Canadian standard calls for 

multiple running retests)
1,2
.  Not only is this dangerous to have people drive and take non-

sense tests, but it clearly does not prevent the intoxicated from getting behind the wheel. 

 

Our solution, the “Drunkalyzer”, will give accurate, instantaneous results and ensure the 

safety of all drivers on the road.  The system consists of a database of both drunk and 

sober speech.  The person under test will have to read from a screen a random phrase or 

sentence.  The person will speak into the device, and it will classify the person as either 

drunk or sober.  The key here is that the phrases are generated at random.  That way no 

one can pre-record phrases to deceive the system.   

 

This project has never been attempted in 18551 Digital Communication and Signal 

Processing Systems Designs.  For future work that can be done to improve this system, 

please see the Section 20. 

 

 

2. Our Algorithm 
The following is a brief description of our algorithm.  More details will be included in 

later sections. 

                                                 
1
 http://www.totaldui.com/ignition_interlocks.htm 

2
 http://www.1800duilaws.com/article/interlock.asp 
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We used Mel Frequency Cepstral Coefficients (MFCC’s) to characterize speech.  The 

MFCC’s tell how much energy is in different frequency bands.  MFCC’s are used to tell 

what phoneme was said.  For example, the MFCC’s for the sound <a> will be different 

than the MFCC’s for the sound <e>.  It was our belief that the MFCC’s would also be 

able to tell the difference between a sober person saying <a> and a drunk person saying 

<a>. 

 

We created a large database of people saying the same phrases both drunk and sober.  We 

separated the database into four sets: drunk males, sober males, drunk females, sober 

females.  Next, we use the LBG Algorithm to break each of these sets into 100 

codebooks.  We store the location of the center of each codebook, known as a centroid. 

 

Then, we have a test subject speak into a microphone.  We break the person’s speech into 

small segments, and find the MFCC’s of that segment.  If the person is male, we compare 

each segment to the 100 male drunk centroids and the 100 male sober centroids (if the 

person is female, we compare to the female sets).  Next, we find what the closest centroid 

is.  If the closest centroid is from the sober set, then we say the current segment is sober; 

if the closest centroid is from the drunk set, we say the current segment is drunk.  Finally, 

we calculate the total number of drunk and sober segments from the entire speech 

sample.  If more segments were drunk, then we say the person was drunk; and if more 

segments were sober, then we say the person was sober. 

3. Database 
A significant portion of the project was creating a database.  The database consists of 

several native English speakers and their corresponding Blood Alcohol Content (BAC).  

We spent several nights collecting the data under careful supervision. 

 

We had a list of several tongue-twisters for the speakers to say (see Appendix 1: List of 

Phrases).  First we had everyone read the list in their sober state.  Then, we had our 

subjects drink alcohol.   As they were drinking, we had them say the same phrases, and 

we recorded their BAC.  So, we had all of our subjects saying the same phrases over a 

wide range of BAC.   

 

In the end we had a total of seven female speakers and 5 male speakers.  Each person said 

the 12 phrases at several BAC levels.  Each reading (meaning the person saying the 12 

tongue twisters) consisted of about 1 minute of speech, sampled at 16 kHz, mono.  There 

are approximately 10 minutes of recordings for each group (sober male, sober female, 

drunk male, drunk female). 

 

Before calculating the MFCC’s of the wave files, we made necessary changes to any 

portions of the waveforms.  We cut out any laughter, and tried to eliminate silence by 

using the Audacity program on the lab PC’s to edit our .wav files. 

 

We then divided out database into a training set and a test set.  We used about 90% of the 

database for our training set.  We used the training set for the LBG Algorithm (we took 
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them MFCC’s of all of the data in the training set, then separated those into codebooks; 

see Section 5).  We could not bring in drunk people for our demo; therefore, we had to 

choose some of the phrases in our database to be in our test set.  We randomly selected 

10% of the database to use to test our system.  Our test system consisted several different 

males and females saying the 12 tongue twisters.  We then used these samples to test our 

system (see the results in Section 7).    

 

4. MFCC’s 

4.1 Description 

The problem of classifying if a person’s speech sounds drunk or sober is very similar to a 

speaker identification problem or a language identification problem.  We have to take a 

speech sample, extract information (features) from it, and find the closest match of those 

features.  There are two dominant methods of extracting the features: the filter-bank 

spectrum analysis model, and the linear predictive coding (LPC) spectral analysis method 

[8].  Chapter 3 of the book Fundamentals of Speech Recognition by Lawerence Rabiner 

and Biing-Huang Juang describes both of these methods in detail.     

 

The idea of the LPC method is that the current speech sample can be approximated by a 

linear combination of past speech samples, such that 

 

                             s[n] ≈ a1s[n-1] + a2s[n-2] + … + aps[n-p]    [8] 

 

One must also include an excitation source in the model, which we will call G*u[n].  The 

excitation source will be a pulse train for voiced sounds and white noise for unvoiced 

sounds.  When including this term, the model becomes 

 

                                        s[n] = ∑ (ais[n-i] + G*u[n])     [8] 

 

By calculating the ai terms, one can create an all-pole model of the current speech 

sample. 

 

The LPC model has been shown to work well [8].  However, there are some 

disadvantages to the LPC model.  First, LPC approximates speech linearly at all 

frequencies [11].  As stated in Section 4.2 MFCC Calculation, humans do not perceive 

speech linearly, so therefore the LPC will not accurately model human hearing.  Second, 

the LPC model includes a lot more high frequency information than other models do 

[11].  High frequencies contain more noise, and this noise will negatively affect the 

performance of the system [11].       

 

The second popular feature extraction method is the filter bank method.  The idea of the 

filter bank method is to calculate the total energy in different frequency bands.  A signal 

is passed through a series of bandpass filters.  Then, the total energy from the output of 

each bandpass filter is calculated.  The location of the bandpass filters is important.  The 

filters can be spaced linearly, logarithmically, or non-uniformly [8].  The problem with 
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spacing the filters linearly or logarithmically is that human hearing is neither linear nor 

logarithmic.  Therefore, a non-uniform filter bank will give the most accurate 

representation of human hearing [8]. 

 

One popular example of a non-uniform filter bank is the Mel-Frequency scale.  Human 

hearing is approximately linear below 1 kHz and approximately logarithmic above 1 kHz 

[8].  The mel-scale tries to approximate human hearing.  The mel-scale frequency 

(mel(x)) is given by 

 

                                            Mel(x) = 2595*log10(1 + x/700)                                          [11] 

 

Mel Frequency Cepstral Coefficients (MFCC’s) can be calculated using a mel-scale 

based filter bank.  The full calculation is described in Section 4.2.  The MFCC’s give the 

total energy in different frequency bands based on the mel-scale.  This gives an accurate 

estimation of human hearing.  MFCC’s can capture phonetically important characteristics 

of speech [11].   

 

MFCC’s are very popular in many speech applications.  MFCC’s have been the popular 

choice in language identification problems [11][1].  They have also been used in accent 

detection [12].  We consulted with Professor Tanja Schultz from the Language 

Technology Institute when we were developing our algorithm, and she suggested using 

MFCC’s for our application.  We then consulted with Professor Richard Stern, and he 

agreed with Professor Schulz’s recommendation.  Because of the popularity of MFCC’s, 

the fact that MFCC’s model human hearing much better than the LPC’s, and the 

recommendations of very experienced researchers, we decided to use MFCC’s as our 

feature set. 

 

In searching online, we found could not find much code available to calculate MFCC’s.  

Eventually, we found MFCC code available from the European Telecommunications 

Standards Institute (ETSI).  The code is available free for download from www.etsi.org , 

along with a very good reference document [3].   

 

The code from ETSI needed to be changed in order to work on the DSK.  It was 

originally designed to read from an input file, then write the MFCC’s to an output file.  

We had to change this to read from either the codec or from a .wav file.  The code 

originally stopped whenever it reached the end of its input file.  We had to change this to 

fit our setup.  We had a counter keep track of the current location in the input speech 

buffer we were operating on.  Whenever this counter went beyond the length of the 

buffer, the code returned 0 and ended.  Also, we had to change it so that the MFCC’s 

would be stored in an array, and sent back to the PC. 

 

Their code uses the following algorithm to calculate the MFCC’s. 
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4.2 MFCC Calculation 

The algorithm used by ETSI was standard across many sources we found [3][6] [9].  A 

block diagram is shown in Figure 1 [9].  The following section describes the algorithm 

(details taken from document that accompanies the code from ETSI [3]). 

 

 
Figure 1: Block Diagram of MFCC Calculation 

 

First, the signal needs to be sampled.  This is done in one of two ways in our project: 

sampling by the codec or sending .wav file from the PC to DSK.  Next, the signal is sent 

through a notch filter that removes the DC offset.  In speech, the DC term is not 

important.  But, if it were to be included, it could possibly skew our data.  Therefore, it is 

removed by used the following notch filter: 

 

sof[n] = sin[n] - sin[n-1] + 0.999* sof[n-1] 
 

where sof[n] is the offset-free input signal, and sin is the original input speech. 

 

The signal is then divided into smaller segments.  We decided to use a 25 ms segment of 

speech.  This is a standard segment size, because speech is approximately stable over a 

25 ms period [3].  Each frame will overlap the next frame by 10 ms (see Figure 2).  ETSI 

uses 10 ms overlap standard in their code, so we decided to keep it.  Because we are 

using a 16 kHz sampling rate, each frame will be 400 samples, and will overlap 160 

samples.  We calculate the MFCC’s on one frame, then move on and calculate the 

MFCC’s on the next, and continue until all frames have been used. 

 

 
Figure 2: Framing of input data 

 

Next, pre-emphasis is done on the frame of speech.  This is done in order to make the 

signal less affected by finite precision effects [8].  In order to do this, we use a simple 

low-pass filter: 

 

spe[n] = sof[n]  - 0.97* sof[n-1] 
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where spe[n] is the output of the pre-emphasis filter. 

 

The 25 ms frame is then passed through a Hamming Window.  This is done to reduce 

discontinuities and the beginning and end of a segment [3].  The Hamming Window is 

defined by the function: 

 

sw[n] = {0.54 – 0.46*cos[2π(n-1)/(N-1)]}* spe[n], 1 ≤ n ≤ N 

 
where sw[n] is the output of the window, and N is the frame length (400). 

 

This signal is now FFT’d.  The current 400 sample segment is zero padded to a length of 

512.  A 512 point FFT is then taken, using an FFT algorithm that was included with the 

ETSI software. 

 

The result of the FFT is then transformed from a regular frequency scale to the Mel 

Frequency Scale.  The Mel Frequency Scale was developed empirically to attempt to 

model human hearing.  It was found that human hearing is approximately linear below 1 

kHz, and approximately logarithmic above 1 kHz [9].   

 

To do this, the signal is multiplied by a series of triangular weighting functions, as shown 

in Figure 3 [8].  The ETSI software creates these filters.  The filters are equally spaced on 

the mel-scale, using the formula Mel(x) = 2595*log10(1 + x/700) [11], where Mel(x) is 

the Mel Frequency and x is the regular frequency in Hz.  23 filters are used.  

 

 

 
Figure 3: Triangular Weighting Filters used in MFCC Calculation 

 (NOTE: Our filters extend to 8 kHz, which is not shown in this picture) 

 

The FFT is multiplied by each of the 23 triangular filters individually.  This gives the 

energy for each frequency in that band.  Then, the energy for each frequency in a band is 

added together.  This gives the total energy in each band.  The result is 23 numbers, each 

representing the total energy for one of the triangular filters.  Let fbanki represent the total 

energy in the i
th
 frequency band, where 1 ≤ i ≤ 23. 
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Next, the natural log is taken of the 23 sums, so that fi = ln(fbanki), i = 1…23.  Finally, a 

Non-linear transformation is performed on fi.  In this case, a Discrete Cosine Transform 

is used, using the equation  

                                                                [3] 

 

Ci is the Cepstral coefficient.  There are 13 total Cepstral coefficients.  The ETSI code 

does all of this.  We provide it with the input buffer, and it performs all of the above 

calculations to get the MFCC’s.   

 

This algorithm is standard across several sources [3][6][9].  We are taking the the FFT of 

some signal, then taking the DCT of that result later.  By taking the DCT of and FFT 

output, we are converting the signal to the “Cepstral domain.” [2].  This gives 

information about the rate of change of the different frequency bands.  This process is 

standard in all calculations of MFCC’s [3][6][9]. 

 

5. LBG Algorithm 
 

The Linde-Buzo-Gray (LBG) algorithm is a multidimensional clustering algorithm 

similar to the common K-means algorithm.  Figure 4 [10] below shows an example of a 

two dimensional clustering partition generated by the LBG algorithm.  The red stars are 

codevectors that represent the center of the blue encoding region.  All input vectors that 

lie within a codevectors encoding region are assigned to the respective codevector.  This 

partitioning of codevectors is referred to as a codebook. 
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Figure 4: Two-Dimensional Codebook generated by the LBG algorithm 

 

The algorithm starts by first generating an initial set of codevectors.  Two common 

generation techniques are random assignment and splitting.  Random assignment 

selects the specified number of codevectors from the input data set at random.  

Splitting starts with one codevector, then partitions it into two, dividing up the input 

data roughly equally between the two vectors.  This division process is then repeated 

until the specified number of codevectors is reached. 

 

We start with a training set T = {x1, x2,…,xM}, where M = 60,000 and xm is a 1-

dimensional vector with thirteen MFCC values.  The user specifies a parameter N, 

where N is the number of codevectors (red stars).  Let cn denotes the nth codevector 

with its encoding region for denoted by Sn.  The encoding region is determined by 

the Euclidian distance to the nearest codevector. Now given an input source vector xi 

we determine which region Sn it lies in and assign it to the codevector cn that was 

used to generate the region.  In other words if the source vector xi is in the encoding 

region Sn, then its approximation (denoted by  Q(xm)) is cn.   

 

Once the entire assignment has been made the distortion of the entire system is 

calculated.  The metric typically used is the mean squared-error distance measure, 

which is given by: 
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                                                    [7] 

 

The next step is to generate a new set of codevectors that reduces the total distortion 

of the system.  This is done by determining the center of all input vectors assigned to 

a specific codevector.  The codevector is then assigned to this location, which 

minimizes the distortion for all the input vectors that lie within its region.  After all of 

the codevectors are updated, we then go through the entire input data and reassign 

each vector to its new closest codevector.  The system distortion is then recalculated.  

If the change is greater than the specified threshold represented by epsilon, then the 

codebook is accepted.  Otherwise the process of updating the codevectors and 

reassigning the input vectors is repeated. 

 

 

 
Figure 5: LBG codebook optimization [7] 
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Our implementation of the algorithm, written entirely by Joe in Java, takes in thirteen 

dimensional MFCC vectors and generates codebooks containing a specified number of 

codevectors.  This code is run separately from the code implemented on the DSK.  In our 

case we had the algorithm generate codebooks containing 100 and 500 codevectors for 

male sober (BAC <0.08), male drunk (>0.08), female sober (<0.08), and female drunk 

(>0.08) MFCC’s.  More, alternate codebooks can easily be generated by supplying the 

code with only the MFCC’s you would like to cluster.  After the codebooks are generated 

they are then saved to disk to be sent to the DSK to perform the classification.   

 

The LBG algorithm typically calls for a training set from a large database.  Each of our 

four training sets consists of about ten minutes of speech segments.  Utilizing the DSK 

we take the ten minutes of speech and generate the sets of MFCC vectors.  Since each 

MFCC is evaluated at 25ms segments overlapped by 10ms, the total number of MFCC 

vectors in the training set is: 10*60 seconds / 25 ms ≈ 30,000  vectors (each with 13 Mel 

Coefficients). 

 

6. Executing the Algorithm 
First, we had to create the database.  Once we had the database, we separated it into four 

groups: male drunk, male sober, female drunk, female sober.  We took each sample 

(sample here meaning one person saying one phrase) in the database, and calculated the 

MFCC’s for it.  We got one set of 13 values for each 25 ms segment.  So, for a 10 second 

speech sample, there were approximately 500 sets of MFCC’s (10 sec/25ms, but it will be 

slightly higher because of the overlap).  We had about 10 minutes of speech for each 

group (male drunk, female drunk, etc.).  Therefore, we have about 30,000 sets of 

MFCC’s for each group. 

 

We then used the LBG Algorithm to organize that data.  As stated in Section 5, the LBG 

Algorithm will group the 30,000 sets of MFCC’s into 100 different codebooks for each 

group.  The center of each codebook is called the centroid.  Ideally, each centroid 

represents the average MFCC’s for a particular phoneme.  Our hypothesis is that the 

average MFCC’s for one phoneme said drunk will be different from the average MFCC’s 

of the same phoneme said sober.   

 

We calculate the locations of all of the centroids on the PC.  This only needs to be done 

once.  We find the locations of the centroids, then save this information to a .txt file.  

When we first start our program, we send the data in the .txt file from the PC to the DSK.  

So, the DSK has the locations of all of the centroids stored in external memory (in 

variables such as ‘male_drunk’, ‘female_sober’, etc.).   

 

The DSK is then ready to classify a user as drunk or sober.  The user clicks the ‘Start’ 

button on a GUI on the PC.  The GUI then displays a phrase for the user to say, and the 

user says it into the microphone.  The codec samples the speech signal, and stores this 

data into a buffer (we actually used 2 buffers in order to get real-time calculations; see 

Section 8).        
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We then break the buffer into 25 ms segments, and calculate the MFCC’s on each 

segment.  We now know the MFCC’s for the current speech segment, and also the 

average MFCC’s for the different phonemes for both drunk and sober people.  So, we 

compare the current MFCC’s to all of the drunk centroids and to all of the sober centroids 

(for either a male or a female).  We find the Euclidean distance between the current 

MFCC’s and the closest centroid in both the drunk and sober sets.  If the distance to the 

closest drunk centroid is less than the distance to the closest sober centroid, then we say 

that the current segment is drunk (and vice-versa).   

 

We keep a running total of how many segments were drunk and how many segments 

were sober.  When the user has finished saying the phrase, he/she hits the ‘Stop’ button 

on the GUI.  We do the final classification based on the total number of drunk and sober 

segments.  If the total number of drunk segments is greater than the total number of sober 

segments, then we say that the person is drunk; and if the total number of sober segments 

is greater than the total number of drunk segments, then we say that the person is sober. 

 

We debated using an alternate way to make our final classification.  Instead of counting 

the number of drunk segments vs. the number of sober segments, we could have used the 

total distance.  For each segment, we calculate the distance to the closest centroid.  We 

then could keep a running total of the distances to the closest centroids.  At the end, we 

would see if the total distance to the closest centroid for each 25 ms segment was greater 

for drunk or sober.  If the total distance was less to the sober centroids, then the person 

was sober, and vice-versa.  However, we had good accuracy using the other method, and 

decided not to implement this method.  It may or may not have improved our accuracy 

some, but probably not significantly. 

 

7. Results 
We said that if between 45% and 55% of the segments were drunk/sober, then the current 

sample was too close to call.  If a sample was too close to call, we did not use that sample 

in our results. 

 

We tested our system on the following groups: 

• Males in database 

o Read phrases in database and phrases not in database 

• Males not in database 

o Read phrases in database and phrases not in database 

• Females in database 

o Read phrases in database and phrases not in database 

• Females not in database 

o Read phrases in database and phrases not in database 

 

We had good accuracy with all of these groups.  This leads us to believe that our system 

will work for any user, even if they have not trained their voice for the database.  Also, 

we believe that our system will work no matter what phrase the user says.  These results 

are described below. 
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We did several different experiments to test our system.  First, we had a person whose 

voice was used in the database (Rob) speak phrases that were used in the database.  There 

were 12 phrases in the database, and Rob spoke each of them into the microphone while 

sober.  He spoke 3 randomly selected phrases a second time, to get a total of 15 phrases.  

The system correctly identified Rob as being sober 12/15 times, or an accuracy of 80%. 

 

Next, Rob spoke 5 phrases that were not in the database (See Appendix 1).  He spoke 

each phrase twice.  The system correctly identified Rob as being sober 10/10 times, for 

100% accuracy. 

 

Originally, we thought that the system would only be able to accurately characterize a 

person if they said phrases that we used in making the database.  However, this 

assumption is not correct.  When we break a sound into 25 ms segments, we are basically 

just looking at one phoneme.  Therefore, it does not matter what word was spoken.  We 

calculate the MFCC’s for each phoneme, not for each word.  So, as long as we have all 

phonemes in our database, it does not matter what word is said.  The system will be able 

to characterize any phrase that a user says. 

 

Next, we have a person whose voice was not used to make the database (Joe) try our 

system.  Joe read the same phrases as Rob read.  The system correctly characterized Joe 

as being sober 11/15 times, for an accuracy of 73%.  This is very close to the accuracy 

that we got when Rob spoke (12/15).  Therefore, our system can be used on a user who 

has not trained their voice. 

 

This is because the centroids we use for comparison represent the average of all of the 

males.  The MFCC’s for each male in the database are combined together.  The LBG 

Algorithm breaks the MFCC’s into 100 groups (each representing about 1 phoneme).  It 

then finds the center of that group.  So, the LBG Algorithm is taking the average value 

for all of the males for each phoneme.  Therefore, it does not matter if the person 

speaking trained their voice in the database.  As long as the user’s voice is close to the 

average, the system will work. 

 

We then did the same thing for females.  In our system, the GUI on the PC tells the DSK 

if the user is male or female.  Therefore, a male user is only compared to male 

codebooks, and a female user is only compared to female codebooks. 

 

We had females who were in the database read phrases in the database, and then read 

phrases not in the database.  We then had a female who was not in the database read 

phrases in the database and not in the database.  We found that the female in the database 

was correctly identified as being sober 19/24 (79%).  For a female not in the database, the 

system correctly characterized her as sober 15/20 (75%).  These numbers are very close 

to what we found for the males, which indicates that the system works equally well for 

both males and females.    
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We now knew that the system could correctly characterize a sober person.  We had to 

now test if it could correctly characterize a drunk person.  We tested this in two ways.  

First, we had saved .wav files of previously recorded drunk people saying phrases.  These 

.wav files were not used in generating the codebooks.  We parsed the .wav files, and sent 

the raw data from the PC to the DSK.  Second, we had a drunk person come in and speak 

into the microphone.  The person was under very close supervision of the other group 

members while doing this, so that all people/equipment would be safe and the results 

would be accurate. 

 

We had recordings (.wav files) of a female in the database saying phrases in the database.  

We sent these 12 phrases from the PC to the DSK, and had the DSK characterize the 

person.  The DSK correctly characterized the person as drunk 12/12 times (100%).  

Unfortunately, because of the lack of girls in ECE who were willing to get drunk for this, 

we were not able to have a drunk girl come in and test our system in person. 

 

We were able to have a drunk male come in and test the system.  The male was in the 

database, and said phrases in the database and phrases not in the database.  The system 

correctly identified him as drunk 13/17 times (76%).  We also had recordings of a male 

saying phrases in the database stored as a .wav file.  The DSK correctly identified his as 

drunk 11/12 times (91%). 

 

Figure 6 contains a table of all of our results. 

 

 

Male 

Drunk 

Male 

Sober 

Female 

Drunk 

Female  

Sober 

Correct 24 42 12 34 

Incorrect 5 8 0 10 

% Correct 83% 84% 100% 77% 
Figure 6: Table of Results 

 

Also, we wanted to see what would happen if we input ambient noise into the system.  

Ideally, the system would characterize ambient noise as being neither drunk nor sober.  

Ambient noise should show up as ‘too close to call’.  We did 21 samples of this.  5 were 

said to be sober, 6 were said to be drunk, and 10 were too close to call.  The ones that 

were characterized as drunk or sober were very close to our threshold (around 60% of 

segments were drunk or sober).  We think that we set our threshold too close.  We think 

we should have made the threshold of something being too close to call at closer to 60%.  

If we were to increase the threshold to about 60%, we expect to see that ambient noise 

will always show up as neither drunk nor sober. 

 

Some phrases were recognized incorrectly a lot.  For example, the phrase “Sally sells sea 

shells by the sea shore” was usually recognized as being drunk, even when a sober person 

said it.  This is probably because the <s> sound sounds like a person slurring their 

speech.  Other phrases with high inaccuracy were “which wristwatches are swiss 

wristwatches” and “lesser leather never weathered wetter weather better”.  These phrases 

both have a lot of fricative sounds (<s>, <th>, <sh>, etc.).  We believe that our classifier 
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has trouble with fricatives.  If we would have omitted these three phrases, our accuracy 

would have been much better. 

 

Also, noise was a big factor in our performance.  The lab environment in which we were 

testing was very noisy.  This caused problems in our testing, and also problems in our 

demo.  When we were recording .wav files on the PC, we had a very quiet environment.  

So, the database is made of a lot of very clean .wav files.  When we sent a .wav file from 

the PC and told the DSK to classify it, it was right almost 100% of the time.  So, if we 

had a quieter environment in which to test, our results would probably be higher. 

 

8. DSK 
Most of the work is done on the DSK.  The DSK collects the input data, either by 

receiving a .wav file from the PC or by reading directly from the codec.  If reading from 

the codec, we set the sampling frequency to 16 kHz.  We have 2 different buffers to store 

the data from the codec, each of length 4000 (will store ¼ second of input data).  We fill 

up the first buffer.  Once that is full, we send that to the function that will calculate the 

MFCC’s for those 4000 points.  While the DSK is calculating the first set of MFCC’s, it 

is using interrupts to fill the second buffer with data from the codec.  When the second 

buffer is full, the MFCC’s are calculated on that buffer, and the new input data is stored 

in the first buffer again.  The MFCC calculation takes much less than ¼ second, so we 

never have an issue. 

 

The DSK can also read a .wav file from the PC.  We saved all .wav files on the PC as 

mono, 16 bit, 16 kHz samples.  There is code on the PC to parse the .wav file and get the 

raw data, then send that to the DSK.  The DSK mallocs the appropriate space in external 

memory, then saves the data from the .wav file there.  It then takes the whole .wav file 

and calculates the MFCC’s on each 25 ms segment of it. 

 

The DSK also does the comparison to the codebooks.  Whenever the program is started, 

the PC sends the four groups of codebooks (male drunk, male sober, female drunk, 

female sober) to the DSK.  These are stored in external memory.  For every 25 ms 

segment, the DSK compares the current MFCC’s to each of the codebooks.  It then 

determines what the closest codebook is, and if it is drunk or sober.  Finally, the DSK 

makes the final classification of whether there were more drunk or sober segments. 

 

9. PC 
The PC has the GUI which allows the user to control the DSK.  The GUI will be 

discussed more in Section 12.   

 

Also, the PC was used to calculate the codebooks by using the LBG Algorithm.  This 

algorithm only needed to be run once, so there was no need to put it onto the DSK. 
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10. Signal Flow 
Figure 7 shows our signal flow diagram.  Speech can be input in 2 ways: through the 

codec or from the PC.  If it comes through the codec, the person speaks into a 

microphone.  The microphone is connected to the ‘Mic In’ input.  The codec then 

samples this at 16 kHz, and stores the result in internal memory. 

 

If the speech is input from the PC, the sound must be saved on the PC as a .wav file.  The 

.wav file is 16 kHz, 16 bits, single channel.  The appropriate network connects are made, 

and the data is sent through the Ethernet cable to the DSK.  The PC first sends the length 

of the file to the DSK.  The DSK then mallocs the appropriate space into external 

memory.  The PC then sends the .wav file over.  The DSK reads the file using the 

rcvData() function given to us in Lab 3. 

 

The codebooks are stored as .txt files on the PC.  Those are also sent through the Ethernet 

cable to the DSK.  The DSK stores those in external memory as well. 

 

 
Figure 7: Signal Flow Diagram 

 

11. Data Rates and Memory Management 
We sampled all sounds at 16 kHz.  Initially, we wanted to store the entire input sound 

wave on internal memory.  Then, once the user was done speaking, we would calculate 

the MFCC’s.  However, we found that we could only store 1 second of input data in 

internal memory.  Our code was 233 kB, all stored in internal memory.  We also had 

several other variables that we were storing in internal memory, so we only had enough 

space to store 1-2 seconds of input data at one time. 

 

To solve this, we decided to calculate MFCC’s at the same time that we were reading in 

new data.  We had 2 buffers, each of length 4000.  As described in Section 8, we fill one 

buffer, then calculate the MFCC’s on that buffer.  As we’re calculating those MFCC’s, 

we’re reading data from the codec into the second buffer.  Once the second buffer is full, 

we calculate the MFCC’s on that buffer, then start filling the first again.  We calculate the 

MFCC’s for each 25 ms segment.  Once we calculate an MFCC for a 25 ms segment, we 

find if its closest codebook is drunk or sober.  Then we increase the total number of drunk 

or sober segments by 1.  This way, the user can speak for as long as necessary and we can 
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give them results essentially in real time.  As soon as the user hits ‘Stop’, they have their 

result. 

 

Our biggest speed issue was when we were comparing the current 25 ms segment’s 

MFCC’s to all of the codebooks.  For each 25 ms segment, we have to compare 13 

elements in a vector to 200 other 13 element vectors.  This requires us to find the 

Euclidean distance, which means we have to take (x1+x2)^2 13 times.  Originally, we 

were using the pow() function to do that operation.   

 

When running our code, we noticed that it was slow and figured that the problem was in 

the comparison function.  So, we did Profile Function on the comparison function of our 

code.  The profile results were: 

 

Include: 4,345,007  Exclude: 200,848 

 

The only function that our comparison function called was pow().  Therefore, we figured 

the problem was with pow().  Instead of calling pow(), we decided to just do the actual 

multiplication ([x1*x2]*[x1*x2]).  We profiled the code again, and the results were: 

 

Include: 125,028  Exculde: 125,028 

 

This was a massive improvement in speed.  By not using pow(), the comparison function 

now takes 2% of the time that it used to.  Before, it used to take 5-10 seconds to 

determine if a person was drunk or sober.  Now, it is essentially instantaneous.  As soon 

as the user hits the stop button, the result is displayed. 

12. GUI 
We wrote a GUI to allow the user to control the DSK board.  Figure 8 shows a screenshot 

of our GUI.   

 

 
Figure 8: Screenshot of GUI 
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The GUI will allow the user to choose how the sound will be input, either through the 

microphone or by sending a .wav file from the PC.  If the person chooses to send a .wav 

file, the GUI will open a dialog box that allows the user to choose which .wav file to use.  

Then, the GUI will send the file to the DSK.  All necessary networking requirements are 

done in the code for the GUI.  The DSK then calculates MFCC’s for the .wav file. 

 

If GUI also enables the user to speak into a microphone.  The user will hit the ‘Start 

Recording’ button.  The GUI then sends a command to the DSK that tells the DSK to 

enable interrupts.  The DSK then records from the codec, and calculates all MFCC’s. 

 

The DSK then classifies the speech as drunk, sober, or too close to call.  The DSK sends 

this result back to the GUI, and the GUI will display the result for the user. 

 

Also, the GUI conveniently provides new drink recipes for the user. 

 

13. Contributions 
Below is what each group member did on this project. 

 

Rob: Worked on code for MFCC’s, integrated MFCC code onto DSK, reading data from 

codec and storing into 2 buffers, integrating DSK with GUI 

 

Christina: In charge of database, researched algorithm, researched MFCC’s vs. LPC,  

data collection/algorithm verification 

 

Chris: Wrote entire GUI, worked on integrating GUI with DSK, in charge of all 

networking (sending large .wav files from PC to DSK, etc.) 

 

Joe: Wrote code to generate codebooks, researched different algorithms for codebooks 

(decided on LBG), wrote code to compare each MFCC vector to all codebooks, helped 

debug code 

 

Our final schedule was as follows: 

• October 31: Finalize algorithm details (decided to use MFCC’s) 

• November 10: Had code for MFCC’s working on DSK 

• November 21: Had all communication working between PC and DSK; able to 

send .wav files from PC to DSK, calculate MFCC’s, and send MFCC’s back to 

PC; PC stores MFCC’s in a .txt file 

• November 25: Codebooks generated on PC 

• December 1: Able to read from codec 

• December 2: Store data from codec into the dual buffer; able to calculate MFCC’s 

in real time; testing of full system 

• December 3: Finalize testing of system; compile all results listed in 

presentation/report 
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14. Improvements 
This was the first time that a project like this was attempted, so there are some things that 

we realized we should have done differently.  First, we thought that having the people say 

tongue twisters would give us the biggest difference between drunk and sober.  So, when 

developing the database, we had people recite tongue twisters.   

 

However, this was not the best choice.  First, the sober people had difficulties saying the 

tongue twisters.  Also, we realized that the database should include all phonemes.  We 

should have had the people say “broadcast phrases” (phrases that include all phonemes).  

The tongue twisters did a bad job characterizing all phonemes. 

 

Also, as stated earlier, some of the tongue twisters always came up being drunk.  Phrases 

like “Sally sells sea shells by the sea shore” always are characterized as drunk.  This is 

probably because the <s> sound is just a lot of high frequency noise.  If a person is saying 

a lot of <s> sounds, then they sound like they are drunk.  This is another reason that using 

tongue twisters is bad.  We should have used just normal phrases. 

 

Future work could also be done to create the entire system.  Ideally, the system would 

have a speaker identification system to make sure that the person speaking was the 

correct person.  It would then determine based on their speech if the person was drunk or 

sober.  Future projects could concentrate on combining these two aspects into an entire 

system. 

 

Also, we tried to design a user-independent system.  We put all of the speech samples 

from all of the users into one large database (one for males, one for females).  This means 

that we train on system on the average of many different people.  We could have 

designed a user-dependent system.  This would have improved our results.  We could 

have had one person say the phrases many times.  Then, we would have used the LBG 

Algorithm to develop 100 codebooks for that one person.  By using only one person, it 

could have improved our numbers.   
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Below is a description on the information we found from each source. 

 

[1] Group 5 from 2002 did a language identification project.  We read over their project 

to see how they did that, since it is similar to ours.  They also used MFCC’s, and we got 

the idea of vector quantization from them. 

 

[2] Told why we need to take a DCT after we already take an FFT, which was a question 

asked of us at our demo 

 

[3] ETSI provided code to calculate MFCC’s.  You can find this code by going to 

www.etsi.org, then searching for ES 201 108.  It is a free download.  Also, they provide a 

document detailing the calculation of the MFCC’s.   

 

[4] Talks about a use of MFCC’s 

 

[5] Scott Judy did a research project involving speech recognition of drunk speech.  This 

was done in 11-751, and we read it to see what previous research has been done. 

 

[6] Discusses the process of calculating MFCC’s 

 

[7] Details the LBG Algorithm.  Used this as a reference in writing the LBG Algorithm in 

Java. 
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[8] Book details different methods of feature extraction, namely LPC and filter banks.  

We consulted this book in deciding which method to use. 

 

[9] Discusses MFCC’s, and process involved in calculating them.  Also discusses 

Gaussian Mixture Models, which was a technique we were considering instead of LBG 

Algorithm 

 

[10] Describes Vector Quantization and codebooks 

 

[11] Discusses differences between LPC’s and MFCC’s, benefits of each 

 

[12] Uses of MFCC’s 



 Group 4 2006 - 23 

Appendix 1: List of Phrases 
We used the following phrases when testing the system.  (*) denotes phrases not included 

in our database. 

 

unique new york 

sally sells sea shells by the seashore 

three free throws 

black bloody bat 

shy shelly says she shall sew sheets. 

so they flew through a flaw in the flue 

lovely lemon liniment 

which wristwatches are swiss wristwatches 

lesser leather never weathered wetter weather better 

moose noshing much mush 

old oily Ollie oils old oily autos. 

Quick kiss.  Quicker kiss. 

 

Initialize the board support library* 

Insert code here* 

TCP server socket* 

call the function* 

example of digit-reversal* 


