
 1

Project Report 18-551, Fall 2006

Strike a Pose: The 3-D Modeler

Group 2

Steven Nielsen (snielsen@andrew.cmu.edu)

Garrett Jenkinson (wgj@andrew.cmu.edu)

Gary Garvin (ggarvin@andrew.cmu.edu)

 2

The Problem

The production of accurate 3-dimensional models of objects and surfaces is a

common problem for many engineering and artistic tasks. From computer aided design

problems and biometric recognition, to video game and animated movie creation, there are

many uses for three-dimensional modeling. Unfortunately for most people, the devices

required to obtain these models can be quite expensive, far too much for the independent

artist or hobby engineer. Without expensive laser distance measurement technology it is non-

trivial to transition special information into an accurate three dimensional model in the

computer, and this difficult task can be rather computationally intensive if clever tricks and

algorithms are not properly employed.

The Solution

 We propose a solution which will allow us to construct a cheap and accurate three

dimensional scanner. We plan to keep the total cost of the project under $75, and be able to

reconstruct at least a 6” by 6” by 6” object with a fair degree of detail. We have found

Matlab code which served as a proof-of-concept for many of the theoretical foundations of

our project, however this rather rudimentary script provided little actual code to our final

implementation. In fact with the exception of the invariable trigonometric operations the

code had to be completely re-written and transposed into C. The basic setup of our system

 3

will involve placing the desired object on a rotating platform, and then projecting a vertical

line with a laser on the object.

By photographing the object at a near perpendicular to the laser we achieve a method

of measuring the distance from the axis of rotation to the surface of the object. By rotating the

object 360 degrees we obtain enough information to reconstruct the three-dimensional

surface. Since our setup will not have the detailed accuracy of the more expensive laser

scanners we hope to obtain the general shape and some surface details of the object. The

industrial expensive solution manipulates a series of laser rangefinders with an intense

rotational feedback controlling method to obtain extremely accurate depth information to

analyze a stationary object. By using a camera as the only sensor and keeping the rig

stationary while rotating the object to obtain directional information, we have found a clever

way of turning a complicated robotic controls and problem into a cheap and efficient video

processing problem.

What We’ve Done

In order to execute this project, we first had to construct a fairly simple rig from parts

which most people can obtain at a low cost (indeed, we spent no money on any parts during

our construction with the exception of $3 of black paint). This involved first constructing a

rotating platform on which the object to be scanned will sit, and a secondly erecting a

structure that had a sturdy support for a camera and laser pointer. It was very important that

neither of these objects shift position or vibrate excessively during a scan, since doing so will

skew results in the reconstruction process. The rig also had to support the cylindrical lens

 4

whose task is to convert the laser pointer’s singular dot into a more usable vertical laser stripe.

The rotating platform can be quite simple as well and we were looking into using a record

player to fulfill this requirement, but ended up constructing our own rotating platform from

available materials we found for free.

We used a simple motor with low speed and high torque to rotate the object at a

constant speed. Since we do not know the size and weight of all objects that we may want to

scan it is important that this motor has the strength to rotate heavier loads. We initially

planned to drive the rotating platform by a system of belts driven by the motor, but for the

sake of simplicity and reliability we directly connected the motor to the rotating platform.

The entire platform is designed to support rather heavy, uneven loads so it needs to be strong

enough to maintain a level surface as the object moves about the full circle. To accommodate

these uneven loads which would destabilize our platform, we dissected a plastic Frisbee to

provide a track-like support system around the perimeter of the rotating platform. The plastic

Frisbee is ideal because it is an inexpensive and readily available part which is already

circular and adds only a reasonable amount of friction resistance to the system.

The motor choice was based on our desire for a slow rotating platform. The motor

selected was able to plug directly into the wall and is geared for 8 rotations a minute. This

gearing gives the motor ample amounts of torque which is ideal for larger, more massive

objects. Due to the added friction and weight of objects we found that we were not getting

the ideal 8 revolutions per minute. This can easily be accommodated by timing the actual

rotation time, and adjusting the parameters in the GUI to access the full rotation in the AVI

file. As long as we have access to a full rotation, a slower motor is no hindrance and actually

provides the model with greater angular detail.

 5

The webcam used in this project was a Logitech Quickcam Pro 4000 which was

made available by Professor Casasent from previous 551 projects. We use a lower resolution

video mode which takes 640 by 480 pixel video at 15 frames per second. Since a rotation of

our platform takes 12 seconds to complete, we are provided 180 images corresponding to a

vertical stripe of information about the object every two degrees. The Logitech webcam

proved troublesome since Logitech does not provide a compatible software development kit

(SDK). If this project were to be reattempted in the future, a webcam with a higher frame

rate and resolution would improve upon the model reconstruction.

3d Laser Scanner Set-Up

For the vertical laser beam, we iterated our design multiple times in search of an ideal,

cost-effective solution. We began our project using an inexpensive red keychain laser which

 6

we shined through the stem of a wine glass. The wine glass stem approximates a cylindrical

lens and the quality of the glass (i.e. the lack of imperfections and bubbles) make it an ideal

cheap solution to our problem. We experimented with various cylindrical acrylic dowels, but

found that the scattering due to internal debris and bubbles from cheap manufacturing

processes was unacceptable for our application. We also experimented with specifically

designed laser pointer tips which transformed the beam into a vertical stripe. In our

experience, the inexpensive red lasers at our disposal were unable to drive a sufficiently

bright line through this inefficient laser pointer tip. We then borrowed a rather high quality

green laser pointer which we were able to (against the manufacturer’s intensions) modify by

adjusting an easily accessible variable resistor. The legal laser power without a special

license within the United States is 5mW, and all our red lasers complied with this

requirement. However after modification of our green laser, we were able to achieve laser

powers of 250+mW which is dangerous enough to be able to light a matchbook. We were

definitely able to produce a sufficiently bright light stripe through the laser pointer tip, but

because the green laser was not designed with that amount of power in mind, the diffraction

and diffusion patterns were large and completely unacceptable. For both safety and practical

reasons we have chosen a red laser of legal power in combination with a wine glass for our

final, cost-effective design.

The mathematics and physics of cylindrical lens support our choice of a wine glass

stem with a generic red laser pointer. There are two mathematical descriptions which explain

how the wine glass stem transforms the laser pointer’s beam into a vertical stripe: the Fourier

transform properties of the lens, and the generalized lens focal point physics formulas.

Because the cross section of the wine glass stem is constant in one direction and circular in

the other (and hence cylindrical in nature) it will make no changes to a signal in the constant

 7

dimension while taking the Fourier transform of a signal in the other dimension. Since the

laser pointer’s input to the wine glass stem is well approximated by a Dirac delta function, we

see that in the vertical direction, the Fourier transform of a Dirac pulse is a constant and in the

horizontal direction, the signal is left as a delta function. Because of this, a Dirac delta

function in the horizontal direction multiplied by a constant in the vertical direction

corresponds to vertical line. The other, less intuitive way of viewing the wine glass-laser

pointer system is through lens theory. Lens theory shows that the focal point of a cylindrical

lens is at the center point of the cylinder. Because the light passes through the focal point and

out the rest of the lens, the light will diverge from the focal point (and when one is infinitely

far away the light beam will be an infinitely tall vertical laser stripe). Use of a lens as

apposed to the vertical slit which the laser tip utilized provides the attractive property of no

horizontal interference patterns (though in the vertical direction we will see that since the

“delta function” produced by our laser pointer is actually more of a tight two-dimensional

rectangular box function whose Fourier transform will actually be a very wide sinc function

with nulls and side-lobes). Because the laser light is monochrome we note that passing the

beam through a slit (as was done in the laser pointer tip) produces unwanted scattering and

interference patterns as described in the wave theory of photons. We leave the interested

reader to research further wave theory to better describe the negative effects of passing our

beam through a vertical slit.

 8

While gathering datasets, our inexpensive and rather small scale system clearly

cannot bear the weight of a human subject whose face we wish to scan. We improvised our

system to gather data from a seated subject in a rotating desk chair. Human error is

intrinsically introduced into our system because the rotation of the chair is no longer

controlled by a motor, and is instead driven by a person at as constant of a rate as possible.

Empirically we have found this method does not lead to noticeable distortions as long as the

rotation is kept sufficiently slow, and constant through a known angle of rotation. Future

efforts may be devoted to driving the desk chair with a motor-belt gearing system, but we

view our project as a proof-of-concept for these larger scale scans. We even argue that larger

objects will yield more attractive results because the laser stripe halo will be proportionally

smaller to the distance from the axis of rotation of the object and will better approximate a

perfect, infinitely thin line.

 9

For the software processing side of this project, we need to consider the transition of

the image data from the camera to the computer and then from the computer to the DSK

board and finally from the DSK board back to the computer for visualization. As done in the

labs we will be paging over the image data for processing on the DSK. By using a red laser

pointer and only the red layer of the color image, we are hoping to minimize not only the

amount of data being transferred and processed, but also the need for noise removal after the

edge detection processing. We originally had planned on using edge detection to receive a

binary edge map, but found this technique to be horribly inefficient with unsatisfying results.

Canny edge detection was chosen because it has been shown to be the optimal edge detection

algorithm, but we found the computational intensity and quality of output from canny edge

detection did not justify its use. In the less computationally intensive case, we assembled a

trivial thresholding routine utilizing user determined thresholding parameters. After

thresholding is complete we performed some noise reduction techniques, and once again the

complexity of our algorithm was determined empirically by the presence of noise after our

edge detection algorithm. In the most complex case we employed morphological processing

to eliminate small noise segments and to fix breaks in our vertically projected stripe. In the

more trivial case we averaged the location of the “on” bits edge horizontally. Through

experimentation, we have found that the noise reduction and line continuity gained through

binary morphological closing is well worth the computational cost, and that median filtering

is more efficient and worthwhile than thinning for estimating the horizontal pixel location of

the laser stripe.

 10

Original Image After Thresholding

The morphological operation of closing has a two-fold effect on our binary

thresholded images. First it eliminates small stray noisy bits which are left behind after our

simple thresholding routine. Second it fills in sufficiently small breaks in our vertical stripe,

making the three dimensional reconstruction of our object more smooth with less data breaks.

Morphological operations are non-linear small scale operations performed across the image,

and closing involves the act of dilation followed by erosion.

 11

After the First Erode

Dilation, as the name implies, has the effect of expanding groupings of pixels to form

a larger group and the uniformity and directionality of the operation can be controlled by the

shape of the dilation mask. Likewise, erosion acts as the antithesis of dilation, shrinking

groups of pixels to form tighter packages or possibly removing groups which are too small

(noise and the like). Once again the exact effects of erosion will be determined by the choice

of pixel mask used during the operation. By first dilating our image we are able to connect

broken segments of our vertical laser stripe. Unfortunately this operation both increases the

effects of noise left over from thresholding and makes our vertical stripe thicker than it was

originally. Luckily eroding our image by slightly more than we dilated it (which is controlled

through our choices of dilation and erosion masks) will allow us to remove both the harmful

effects of the dilation while also removing noisy pixels all together and thinning our laser

stripe to a narrower line.

 12

After Dilate

At this point we reached another design choice: to use a topology preserving

thinning operation much like those used in fingerprint recognition systems, or to use mean or

median filtering to determine the center of our laser stripe. Mean filtering was highly

susceptible to stray noise points far from the laser stripe in the image, and produced rather

capricious results. Median filtering produced fairly accurate results, only failing when noise

was present in vertical locations where the laser stripe was not present, and proved to be

somewhat computationally efficient. Because of the success of median filtering, we

determined that topology preserving thinning operations would be too high in computational

cost to be worthwhile. Future works with this project may wish to explore thinning

operations more thoroughly.

 13

After Second Erode

A baseline image must also be considered each time the scanner (or any of its

components are moved) to allow for a distance calculation between the axis of rotation and

the laser stripe on the object. This distance calculation will be the basis for a coordinate

system transformation which will be discussed in more detail in the following paragraphs.

Our code can take two forms with regard to the baseline image: a more robust calculation

which saves the baseline data and calculates a specific distance for each laser strip pixel with

respect to the baseline, and a less robust form which assumes that the webcam is positioned

with the vertical axis as a column within the image. The latter implementation is the one we

use in practice because we have control of the webcam and feel that the added computational

inefficiency of making the code robust to tilts in the camera angle is not worth our clock

cycles.

 14

After the images have been transformed into a binary edge mapping and the median

horizontal line location is calculated, we can begin the coordinate system transformation

calculations on the DSK. There are two coordinate systems to consider: the three

dimensional coordinate system in which the object exists, and the two dimensional

coordinate system of the image. By rotating the object’s coordinate system through 360

degrees and knowing the angle of the laser pointer with respect to this rotating coordinate

system, we provide ourselves with enough information to reconstruct the object in its own

coordinate system. Below we have diagramed these two coordinate systems and the

relationship between them:

Object/Turntable

Zo = axis of rotation

Yo

X

Image Coordinates

Yi = axis of rotation

Xi

 15

From these diagrams we can determine the following relations:

Remember this is what we know:

θ, Xi(θ,α), Yi(θ, α); (α is indexing variable)

And this is what we want:

Zo(α), Yo(α), Xo(α)

And this is the coordinate system transformation which will take the known data and

compute what we want:

Zo(α) = Yi(θ, α)

Xo(α) = Xi(θ,α) cos(θ)

Yo(α) = Yi(θ, α) sin(θ)

Top-Down View of Total System

Yo Xo

Laser
θ

Camera

~<90°

 16

To detail the equations a little further, each Xi(θ,α), Yi(θ, α) corresponds to a single

point on the surface of the object, which is detailed by a binary edge point in our image.

Using the trigonometric equations above, we use the Xi(θ,α), Yi(θ, α), and the

corresponding θ to transform the point back to the desired three dimensional coordinate

system of the object. We also note that if a perfect profile is not achieved in our image (i.e.

the webcam and the laser pointer are not at 90 degrees) and there is no compensation we will

be effectively low-pass filtering our object in the horizontal direction. We derive the

mathematics below to properly scale our image such that the object will have the proper

proportions in our final output by the following trigonometric relation: the known distance

divided by sin(ψ) is equal to the desired distance.

To visualize the image coordinate system we provide an example image below from

a group who previously attempted a similar project who used a higher resolution webcam.

Laser

Camera

Object
(white
circle is
axis of
rotation)

 ψ
 Desired Distance

Known Distance

 17

The image coordinate system before any processing is performed

(note the axis of rotation is to the right of the projected line, thus the Xi axis is –Xi when the

coordinate system is defined as above)

After finishing our coordinate system transformation we receive a fully rotational

three dimensional plot, and a screen shot of an example output from our system is shown

below:

 18

Example of a Reconstructed Object

(Note the noisy points and segments of missing data, we will discuss why this shoe is one of

the more difficult cases in more detail later)

Once the data is on the computer it is possible to convert the data to a file type which

will allow 3 dimensional CAD programs to import the object for animation and rendering

purposes.

Practical Programming Concerns

 Real time concerns are not necessary in our project, but we still must consider the

data pathways and storage limitations of our system. The data path originates in the webcam-

 19

PC universal serial bus connection. This data path transfers 480 by 640 pixel images with 3

bytes per pixel every 1/15th of a second. This corresponds to a transfer rate of 13.8

Mbytes/sec. From this point the data is passed into our pre-processor stage where the data is

stripped of two of the three color channels since the only color that is useful to the

reconstruction is the laser color, in this case red. This is already a significant data reduction,

but in order to further reduce the transfer size from PC to DSK, the data is thresholded. This

threshold function reduces the data from a byte mapping to a binary mapping. Over all from

camera to DSK, the PC pre-processing reduces the data size from 3 bytes per pixel down to 1

bit per pixel. To reiterate, this reduction in numbers is from 13.8 Mbytes/sec (straight from

camera) to 4.6 Mbytes/sec (after channel stripping) to 4.6 Mbits/sec (after binary

thresholding).

 Once on the DSK, size requirements are a little more stringent, but the amount of data

is still well within the allowable limits. Of the 16 Mbytes of SDRAM, the data for an entire

scan fits compactly into 55.2 Mbits (for an average scan of 12 seconds) which corresponds to

6.9 Mbytes. This means that everything including the program easily fits onto the DSK.

However due to the way we are utilizing our network we are transmitting one frame at a time

from PC to DSK. The computation output size from the DSK back to PC is also not

approaching the limits of the board. Each frame has 480 values which will then be

transformed into 3 floats which are 4 bytes each. This comes out to 86.4 Kbytes/sec (480

pixels/frame * 15 frames/sec * 3 floats/pixel * 4 bytes/float) and since the average scan takes

12 seconds the entire output from the DSK will be 1036.8 Kbytes.

 20

Interfaces and GUI

 The graphical user interface we designed for this system is elegant and attractive,

while maintaining a full range of functionality. The user is able to change key parameters

within the algorithm to optimize the performance of the system for a variety of scanning

conditions. These variables which may be tuned for a particular lighting environment include

the thresholding value, and the color channel of the video to use (red, green, or blue

depending on ambient lighting conditions and choice of laser beam wavelength). The other

adjustable parameters which change the performance of the algorithm include a condition for

the time spent on a rotation of an object, and a specification of the amount of rotation (in

degrees) through which the object is scanned, allowing for robustness to a partial scan of an

object like a face which may not have been scanned via the rotating platform. Functionally

the graphical user interface includes a browser to specify the baseline image for the scanning

system, and the video file of the scan itself. Additionally, a handy preview button and pane

allow the user to see the selected baseline image with the amount of specified thresholding,

allowing the user to more easily adjust the thresholding parameter for the lighting conditions

present. When the program has completed and the data is transferred back from the DSK the

graphical user interface will then launch a Matlab figure window displaying the three

dimensional output of the scan. This Matlab figure has some key shading, lighting, and

aspect ratios predetermined for easy viewing. The shading is interpolated to smooth the

appearance of the object (which hides the usual mesh-like appearance), while the lighting is

chosen to be overhead which will maintain consistency throughout rotation, and the aspect

ratio is fixed such that the scale of the X, Y, and Z axis are one to one to one, thus preserving

the natural shape of the scanned object. The figure is also set to automatically begin rotating

 21

360 degrees to allow the user to preview the entire output of the scan, and once the 360

degree preview scan is completed, the user is able to freely zoom, rotate, illuminate, and

move the object. These features of our interface are all enabled through the use of Java to

create the graphical user interface. Because Matlab is a java built program, the interfacing

required to produce the three dimensional final figure is straightforward. However, linking

the interface with the C code and the DSK requires a java native interface (JNI). The java

native interface allows us to easily program a GUI which will port the tuning parameters to

the DSK C code while seamlessly connecting to Matlab with its native java programming

language.

Conclusions and Improvements

 We were successful in our efforts to build an extremely cheap laser scanner. The

project does not require any unique or hard to find parts and produces fairly reliable results.

While our output is in a Matlab friendly format, programs for porting Matlab figures to

almost any other extension type are readily available on the internet. Upon a quick search we

were able to import our models into both SolidWorks (a robust CAD structural simulator)

and into 3D StudioMax (a common animation and modeling environment). These proof-of-

concept imports show that once we have scanned and reconstructed the object, there are

endless options available to the user.

 As novice 3D StudioMax users we were able to develop a three dimensional scene

with a scanned object sitting on a rendered table. We then created an animation of our

scanned object sliding off the table and falling to the floor. As novice developers, there is no

 22

conceivable way we could model the object accurately in the CAD program. This example

shows how our scanner is an ideal teaching tool in CAD programs, since beginner users

could create more complicated and interesting scenery right away without any experience.

Also the veteran CAD developers’ would appreciate the speed at which a complicated object

could be rendered to scale within the system. With an entire scan and three dimensional

rendering taking less than two minutes, even the most experienced developer could not

duplicate objects in the computer in the same amount of time. Thus, instead of spending time

recreating objects in their systems, artists and animators can spend more time on developing

fluid animations and complex scenery.

3D Studio Max Import of a Helmet

 Artists and animators are not the only beneficiaries of our inexpensive and quick

three dimensional scanner. After loading the scanned object into SolidWorks (as we were

able to do) an engineer can easily perform mechanical analysis of the object. We were able

to assign material properties to a scanned helmet, which would allow the engineer to perform

preliminary analysis of the acceptable impact tolerances. This provides detailed analysis

based upon the geometry of the structure making the integrity of the scan very important.

 23

The limitations of our system are mostly the result of this desire for being

inexpensive and could drastically be improved upon with a few purchases (i.e. a better

camera or the use of two cameras). The level of detail that we can reconstruct is limited by

the frame size and rate of the camera, as well as by the dispersion of the laser light. While

the dispersion was not our limiting factor, a better camera would most certainly require a

thinner laser strike to take advantage of the higher pixel count. The system itself requires

adjustment through the GUI in every new lighting environment to reset the threshold levels

as the ambient light changes.

A major source of error in our system is the loss of laser line of sight. Highly

irregularly shaped objects cause the single camera to lose sight of the line. To obtain ideal

data which requires no scaling factor, the laser line should be at a ninety degree angle to the

camera. This situation provides the camera with a perfect profile of the scanning object, but

irregularities in the shape cause the camera to lose sight of the laser line more often. By

lowering the angle between the camera and the laser pointer, we effectively decreased the

frequency of data loss at the cost of accuracies in the scaling factor (which theoretically fixes

the problem perfectly, but because we are left estimating the actual angle between the camera

and laser pointer, there is error introduced). The authors propose the introduction of a second

camera into the system. By having the following system configuration, there will be no loss

of data due to oblong objects and system accuracy will increase substantially on these objects.

 24

Figure 3. By including a second video camera, and keeping the laser pointer at a ninety degree angle

to both, the system will lose no data due to line of sight of the laser line.

 This system will provide more accurate results, however there are multiple new

practical considerations. First, the cameras must have the exact same scale and tilt (which

would actually be mirrored across the cameras) as each other, and the relative height of the

object within the image must be considered. Secondly, the videos must be processed for the

exact same times. For the latter problem the authors propose that the object is started rotating

and the video is recording before the laser is turned on, and the proposed algorithm could

then begin processing the videos at the first frame where the laser is switched on.

 Another flaw in our system which could be addressed with future work is the inherent

inability to model objects which are not continuous in form. For example, a coffee mug

Turn-table

VideoCam 2 VideoCam 1

Laser Pointer

 25

which has a handle. When the handle is in front of the camera’s field of vision of the laser

line, errors will be introduced into the system, and the current system is unable to model the

gap between the mug and the outer portion of the handle (it would appear contiguous due to

interpolation across neighboring data points). One possible proposed solution to this problem

would be the use of lighting shadows or angular profiling. By placing a uniform backlight

behind the object, the camera will receive a full profile image of the object, including gaps.

Another advantage of this technique is the fact that a one-hundred and eighty degree rotation

will provide the same amount of edge information as a single laser pointer would during a

three-hundred and sixty degree rotation. The authors also note that combinations of the two

previous suggestions provide many iterations of various solutions which could solve many of

the problems in the system. For example, a system could use the configuration seen in the

above figure, while adding another laser opposite the first, taking advantage of the fact that

edge information from either side of the axis of rotation may be used, thus eliminating the

need for three-hundred and sixty degree rotations.

 Another inherent problem in our system is its inability to deal with objects with

reflective surfaces or transparent materials. Several attempts were made to scan a metallic

chalice with gems inlaid in its exterior. Though highly attractive to the eye, this object

provided our system with much noise in the form of deflected laser light. Through clever

image processing schemes it would be possible to consider noise reduction techniques which

might be able to handle such problematic objects. The authors also attempted scans of a glass

mug, whose video result was the most problematic. The glass surface disperses the laser

throughout the object, and the glowing object becomes very difficult to profile accurately

with our technique. The authors propose the use of filtering followed by edge detection

 26

techniques which might be able to extract the edge furthest from the axis of rotation for use in

the reconstruction algorithm.

 Due to the limitations of the camera’s resolution, larger objects provide more

accurate scans. Unfortunately our rotational platform can only handle a load of

approximately two kilograms. In order to scan a human face, we require manual rotation

techniques. Therefore the authors would expect vast improvements if a larger rotational

platform were developed which could handle human sized objects. The effect of the laser

line’s halo will be ameliorated by the larger object, and deformations in the line will be more

pronounced in a larger object, increasing the overall accuracy of the system. However, due to

the geometry of the coordinate system transformations, more images per rotation are

necessary to maintain the circumferential resolution of the system. There are two relatively

easy solutions to this stumbling point: the object can be rotated slower, or the camera’s frame

rate can be increased. Because the authors’ have been disappointed with the performance of

the webcam, increasing the frame rate with the current rig is not an option, and slower

rotation is the only answer. However, in future attempts with higher performance webcams,

the authors suggest an increase in frame rate so the speed of acquisition is maintained.

Hardware/Purchases

All of our purchases, besides the paint, introduced problems into our project and we

reverted to our previous setup. Firstly we bought the cylindrical acrylic dowel to replace our

wine glass beam splitter, and then resorted back to the wine glass because of the random

disconnects in the laser line due to the bubbles and internal debris. Then we bought the laser

attachment to split the beam, and then resorted back to the wine glass because of the uniform

 27

disconnects in the laser line due to the beam splitters geometry. After conceiving grandiose

rotating platform schemes with gearing and belts we resorted to a much simpler method of

attaching the platform directly to a motor found in a garage. The webcam was generously

provided by Professor Casasent. The red laser pointer was donated by a friend and the wine

glass and wood were also lying around the house. Total useful purchases for this project

came to be $3.00.

Purchases:

1. Laser Pointer Attachment Beam Splitter ~$12.00

2. Cylindrical Acrylic Dowel ~$2.00

3. Black Paint ~$3.00

Parts List:

1. DC Motor

2. Wine Glass

3. Red Laser Pointer

4. Web Cam

5. Random Pieces of Wood

Total price: ~$17.00

Total price of parts used: ~$3.00

 28

Novelty

 To our knowledge this project or closely related projects have never been attempted

within 18-551. We are using the theoretical foundation of online hobbyists who have

detailed their experiences with similar projects. (1 2 3) However, our project will be the first

that we know of to utilize a DSP specific platform. We also used non-novel image

processing techniques such as edge detection, but we derived the trigonometric linear algebra

equations which will be used in the coordinate system transformations.

Database

 There is neither a required database for this project nor any need to construct one.

The data that we will be utilizing is obtained from real world models. If we are not able to

construct our platform and obtain these required images, we have made contact with one of

the hobbyists who performed a similar project and we hope they will be able to supply us

with their raw pre-processed data.

 29

Schedule

Oct 8-14
Acquire laser and camera (GJ & SN); Communications to

DSK (GG); Rigging questions to machine shop (SN)

Oct 15-21
Motor and rotating platform parts acquired (SN);

Beginning construction of rig (GJ&SN)

Oct 22-28 Get laser line and rotation working (GJ & SN)

Oct 29-Nov 4

Rig complete (GJ & SN); Coordinate system

transformation (GJ&GG); Simple 6”x6”x6” object scanned

(All);

Nov 5-11
Software communications (GG); Coordinate transforms

(GJ); Edge detection (GG);

Nov 12-18
Working out kinks in rig (GJ & SN); Porting Matlab into C

(GG)

Nov 19-25
Lots of coding & GUI (GG); Debugging code and rig (SN &

GJ); Porting to 3D Studio Max (SN & GJ)

Nov 26- Dec 2
Begin practicing demo / writing final paper/ removing kinks

(ALL)

 30

References

Code Contribution:

1. Argon. “3-D Scanner” available online:

http://www.instructables.com/id/ESQ41476M3EP285ZU2/?ALLSTEPS

2. TI source code available online:

http://focus.ti.com/docs/toolsw/folders/print/sprc121.html

http://focus.ti.com/docs/toolsw/folders/print/sprc094.html

System Implementation Details

3. Steple. “3-D Laser Scanner” available online:

http://n.ethz.ch/student/pleiness/en/index.php

4. Unkown. “3-D Scanning” available online:

 http://www.thomasandamy.com/projects/Scan/

 31

DSK Code
#include <csl.h> /* chip support library initialization */

//#include <csl_cache.h> /* cache library */

#include <csl_edma.h> /* edma library */

#include <dsk6713.h> /* dsk board library */

#include <stdio.h> /* printf etc. */

#include <stdlib.h> /* malloc etc. */

#include <dsknet.h> /* DSK sockets library */

#include <img_dilate_bin.h>

#include <img_erode_bin.h>

#include <mathf.h>

/*--------------------------- Global variables --------------------------*/

/* Base address of DSK network daughter card */

#define SMC91C111_BASE 0xA0000000

unsigned int *SMC91C111 = (unsigned int *) SMC91C111_BASE;

char *bufIn;

char *bufOut;

/* EDMA */

static EDMA_Handle hEdma;

static EDMA_Config edmaConfig;

static int chaNum;

static int tcc;

/* TCP client socket */

SOCKET *socket;

/*---*/

#define MIN(a,b) ((a < b) ? a:b) /* Used in recvData() */

#define ABS(a) ((a>0.0) ? a: (-1*a))

#define inBufSz 38400

#define outBufSz 3840

#define PI 3.1416

char locBufIn[inBufSz];

 32

char locBufIn2[inBufSz];

float locBufOut[outBufSz/4];

float locBufOut2[outBufSz/4];

int locMeds[480];

int base;

float adj;

int frames;

float angle;

/* Function prototypes */

void sendData(void *buf, int len);

void recvData(void *buf, int len);

void dmaCopyBlk(void *src, void *dst, Uint32 numBytes);

void printToFile(char* filename, unsigned char* ptr) {

}

void printToFile2(char* filename, unsigned char* ptr) {

 FILE* f;

 int i, j;

 unsigned char c;

 f = fopen(filename, "w");

 for(i=0; i<480; i++) {

 for(j=0; j<80; j++) {

 c = ptr[i*80+j];

 fprintf(f, "%d %d %d %d %d %d %d %d

", !!(c&0x01), !!(c&0x02), !!(c&0x04), !!(c&0x08), !!(c&0x10), !!(c&0x20), !!(c&0x40), !!(c&0x80));

 }

 fprintf(f, "\n");

 }

 fclose(f);

}

void moveL(char* ptr, int* eB, int*eb)

{

 int found = 0;

 while(!found)

 33

 {

 (*eb)--;

 if((*eb) == -1)

 {

 (*eb) = 7;

 (*eB)--;

 }

 if((*eB) < 0)

 return;

 if(!ptr[(*eB)])

 {

 (*eB)--;

 (*eb)=8;

 }

 else

 {

 if(ptr[(*eB)] & 1<<(*eb))

 found = 1;

 }

 }

}

void moveR(char* ptr, int* sB, int*sb)

{

 int found = 0;

 while(!found)

 {

 (*sb)++;

 if((*sb) == 8)

 {

 (*sb) = 0;

 (*sB)++;

 }

 if((*sB) > 80)

 break;

 if(!ptr[(*sB)])

 {

 (*sB)++;

 34

 (*sb)=-1;

 }

 else

 {

 if(ptr[(*sB)] & 1<<(*sb))

 found = 1;

 }

 }

}

// dilate mask which increases the pixel blobs in the vertical direction

// which will fill breaks in our laser line stripe

char dilateMsk1[] = {0, 1, 0, 0, 1, 0, 0, 1, 0};

// block erode mask which will remove noisy pixels left over from thresholding

char erodeMsk1[] = {1, 1, 1, 1, 1, 1, 1, 1, 1};

// vertical erode mask which will remove horizontally oriented pixels, effectively

// thinning our laser line

char erodeMsk2[] = {0, 1, 0, 0, 1, 0, 0, 1, 0};

void filter(void)

{

 int i, sB, sb, eB, eb, sCnt, eCnt;

 char* ptr;

 char* ptr2;

 ptr = locBufIn;

 ptr2 = locBufIn2+81;

 dmaCopyBlk(bufIn, locBufIn, inBufSz);

 while(!EDMA_intTest(tcc));

 printToFile("Zorig.dat", locBufIn);

 // erode away noisy pixels left over from thresholding

 for(i=1; i<480-1; i++) {

 35

 IMG_erode_bin(ptr, ptr2, erodeMsk1, 80);

 ptr+=80;

 ptr2+=80;

 }

 printToFile("Zerode1.dat", locBufIn2);

 ptr = locBufIn2;

 ptr2 = locBufIn+81;

 memset(locBufIn, 0, inBufSz);

 // dilate to fill gaps in laser line

 for(i=1; i<480-1; i++) {

 IMG_dilate_bin(ptr, ptr2, dilateMsk1, 80);

 ptr+=80;

 ptr2+=80;

 }

 printToFile("Zdilate.dat", locBufIn);

 ptr = locBufIn;

 ptr2 = locBufIn2+81;

 // erode away horizontal pixels to thin laser line

 for(i=1; i<480-1; i++) {

 IMG_erode_bin(ptr, ptr2, erodeMsk2, 80);

 ptr+=80;

 ptr2+=80;

 }

 printToFile("Zerode2.dat", locBufIn2);

 ptr = locBufIn2;

 for(i=0; i<480; i++) {

 sB = 0;

 36

 sb = -1;

 eB = 79;

 eb = 8;

 sCnt=eCnt=0;

 while(eB > 0 && !(eB<=sB && eb<=sb)) {

 if(eCnt <= sCnt) {

 moveL(ptr,&eB,&eb);

 eCnt++;

 }

 else {

 moveR(ptr, &sB, &sb);

 sCnt++;

 }

 }

 if(eB != sB || eb != sb) {

 locMeds[i] = 0;

 }

 else {

 locMeds[i] = sb+8*sB;

 }

 ptr+=80;

 }

}

float fil[] = {0.0625, 0.125, 0.1875, 0.25, 0.1875, 0.125, 0.0625};

// translate

void translate(int i)

{

 int j,k;

 float* ptr;

 float c, s, t;

 ptr = locBufOut;

 t = ((float)i);

 t = angle*t / ((float)frames);

 c = adj*cosf(t);

 s = adj*sinf(t);

 //printf("c: %f, s: %f, t: %f\n", c, s, t);

 37

 for(j=0; j<480; j++) {

 if(locMeds[j] == 0) {

 ptr[j] = 0;

 ptr[j+480] = 0;

 }

 else {

 k = base-locMeds[j];

// printf(" K: %d", k);

// printf(" ABS(K): %d\n", k);

 if(k > 0) {

 t = (float)k;

 ptr[j] = c*t;

 ptr[j+480] = s*t;

 }

 }

 }

 locBufOut2[0] =

(fil[0]+fil[1]+fil[2]+fil[3])*locBufOut[0]+fil[4]*locBufOut[1]+fil[5]*locBufOut[2]+fil[6]*locBufOut[3];

 locBufOut2[1] = (fil[0]+fil[1]+fil[2])*locBufOut[0] +

fil[3]*locBufOut[1]+fil[4]*locBufOut[2]+fil[5]*locBufOut[3]+fil[6]*locBufOut[4];

 locBufOut2[2] =

(fil[0]+fil[1])*locBufOut[0]+fil[2]*locBufOut[1]+fil[3]*locBufOut[2]+fil[4]*locBufOut[3]+fil[5]*locBuf

Out[4]+fil[6]*locBufOut[5];

 locBufOut2[480] =

(fil[0]+fil[1]+fil[2]+fil[3])*locBufOut[480]+fil[4]*locBufOut[481]+fil[5]*locBufOut[482]+fil[6]*locBuf

Out[483];

 locBufOut2[481] = (fil[0]+fil[1]+fil[2])*locBufOut[480] +

fil[3]*locBufOut[481]+fil[4]*locBufOut[482]+fil[5]*locBufOut[483]+fil[6]*locBufOut[484];

 locBufOut2[482] =

(fil[0]+fil[1])*locBufOut[480]+fil[2]*locBufOut[481]+fil[3]*locBufOut[482]+fil[4]*locBufOut[483]+fil[

5]*locBufOut[484]+fil[6]*locBufOut[485];

 for(j=3; j<477; j++) {

 locBufOut2[j] = fil[0]*locBufOut[j-3]+fil[1]*locBufOut[j-2]+fil[2]*locBufOut[j-

1]+fil[3]*locBufOut[j]+fil[4]*locBufOut[j+1]+fil[5]*locBufOut[j+2]+fil[6]*locBufOut[j+3];

 38

 locBufOut2[480+j] =

fil[0]*locBufOut[477+j]+fil[1]*locBufOut[478+j]+fil[2]*locBufOut[479+j]+fil[3]*locBufOut[480+j]+fil

[4]*locBufOut[481+j]+fil[5]*locBufOut[482+j]+fil[6]*locBufOut[483+j];

 }

 locBufOut2[477] =

fil[0]*locBufOut[474]+fil[1]*locBufOut[475]+fil[2]*locBufOut[476]+fil[3]*locBufOut[477]+fil[4]*locB

ufOut[478]+(fil[5]+fil[6])*locBufOut[479];

 locBufOut2[478] =

fil[0]*locBufOut[475]+fil[1]*locBufOut[476]+fil[2]*locBufOut[477]+fil[3]*locBufOut[478]+(fil[4]+fil[5

]+fil[6])*locBufOut[479];

 locBufOut2[479] =

fil[0]*locBufOut[476]+fil[1]*locBufOut[477]+fil[2]*locBufOut[478]+(fil[3]+fil[4]+fil[5]+fil[6])*locBuf

Out[479];

 locBufOut2[957] =

fil[0]*locBufOut[954]+fil[1]*locBufOut[955]+fil[2]*locBufOut[956]+fil[3]*locBufOut[957]+fil[4]*locB

ufOut[958]+(fil[5]+fil[6])*locBufOut[959];

 locBufOut2[958] =

fil[0]*locBufOut[955]+fil[1]*locBufOut[956]+fil[2]*locBufOut[957]+fil[3]*locBufOut[958]+(fil[4]+fil[5

]+fil[6])*locBufOut[959];

 locBufOut2[959] =

fil[0]*locBufOut[956]+fil[1]*locBufOut[957]+fil[2]*locBufOut[958]+(fil[3]+fil[4]+fil[5]+fil[6])*locBuf

Out[959];

 dmaCopyBlk(locBufOut2, bufOut, outBufSz);

 while(!EDMA_intTest(tcc));

}

/**

 * Name: main

 ***/

int main(void)

{

 int i, tot, cnt, b, a;

 /* Initialize the DSK network daughter card and its network library */

 if (!dsk91c111_init(AUTO_NEG))

 {

 printf("Error in dsk91c111_init(). Exiting...\n");

 printf("Reload the program or restart CCS.\n");

 39

 exit(1);

 }

 if (!net_init("DSK", DHCP_ENABLE, NULL, NULL))

 {

 printf("Error in net_init(). Exiting...\n");

 printf("Not enough free heap memory.\n");

 exit(2);

 }

 while(1) {

 socket = socket_open(ANY_ADDRESS, ANY_PORT, 5031, DATATYPE_CHAR,

TCP_INIT_FUNC);

 if(socket == NULL) {

 printf("Error in socket_open(). Exiting...\n");

 printf("Not enough free heap memory.\n");

 exit(3);

 }

 /* Initialize the chip support library, must when using CSL */

 CSL_init();

 /* Open an EDMA channel */

 hEdma = EDMA_open(EDMA_CHA_ANY, EDMA_OPEN_RESET);

 chaNum = (hEdma & 0x00FF0000) >> 16;

 /* Allocate an EDMA transfer-complete code (TCC) */

 tcc = EDMA_intAlloc(-1);

 /* Enable caching of SDRAM memory */

// CACHE_enableCaching(CACHE_CE00);

 /* Use 32kB of L2 cache */

// CACHE_setL2Mode(CACHE_32KCACHE);

 /* Initialize the board support library, must be called first */

 DSK6713_init();

 bufIn = malloc(inBufSz);

 if(bufIn == NULL) {

 printf("bufIn failed to malloc....exiting\n");

 return 3;

 40

 }

 bufOut = malloc(outBufSz);

 if(bufOut == NULL) {

 printf("bufOut failed to malloc....exiting\n");

 return 3;

 }

 if(!accept(socket)) {

 printf("Rdy\n");

 while(!accept(socket)) {

 net_recv(socket, bufIn, 0);

 net_isq();

 }

 }

 memset(locMeds, 0, 480*sizeof(int));

 memset(locBufIn, 0, inBufSz);

 memset(locBufIn2, 0, inBufSz);

 memset(locBufOut, 0, outBufSz);

 printf("Running\n");

 recvData(bufIn, 16);

 frames = ((int*)bufIn)[0];

 angle = ((float*)bufIn)[1];

 b = ((int*)bufIn)[2];

 a = ((float*)bufIn)[3];

 adj = 1.0/sinf(PI/4.0);

 sendData(bufOut, 4);

 recvData(bufIn, inBufSz);

 filter();

 tot = 0;

 cnt = 0;

 for(i=0; i<480; i++) {

 if(locMeds[i]!=0) {

 tot+=locMeds[i];

 41

 cnt++;

 }

 }

 base = tot/cnt;

 if(b>0)

 base = b;

// printf("%d, %d\n",cnt, tot);

 sendData(bufOut, 1*sizeof(int));

 for(i = 0; i < frames; i++) {

 memset(locMeds, 0, 480*sizeof(int));

 memset(locBufIn, 0, inBufSz);

 memset(locBufIn2, 0, inBufSz);

 memset(locBufOut, 0, outBufSz);

 recvData(bufIn, inBufSz);

 filter();

 translate(i);

 sendData(bufOut, outBufSz);

 }

 printf("Finished\n");

 free(bufIn);

 free(bufOut);

 /* Free the EDMA transfer-complete code (TCC) */

 EDMA_intFree(tcc);

 /* Close the EDMA channel */

 EDMA_close(hEdma);

 /* Shut down and close the socket */

 while (!shutdown(socket, 10000))

 {

 printf("Error in shutdown(): %s",

 error_tab[socket->error_code]);

 }

 if (!socket_close(socket))

 {

 printf("Socket has already been closed.\n");

 42

 }

 printf("Exiting program...\n");

 }

 return 0;

}

/*------------------------- FUNCTION DEFINITIONS ------------------------*/

/**

 * Name: sendData

 * Purpose: Sends data to the PC. 'buf' is the pointer to the location of

 * of the data on the DSK, 'len' is the length of the data.

 ***/

void sendData(void *buf, int len)

{

 if (net_send_ready(socket, buf, len/sizeof(char), 1000000) == 0)

 {

 printf("Error in sendData().\n");

 printf("Error in net_send_ready(): %s\n",

 error_tab[socket->error_code]);

 }

}

/**

 * Name: recvData

 * Purpose: Receives data from the PC. 'buf' is the pointer to the buffer

 * on the DSK in which to write the incoming data, 'len' is the length of

 * the incoming data.

 ***/

void recvData(void *buf, int len)

{

 char *ptr;

 int32_t amtToXfer;

 int32_t amtXferred;

 len = len / sizeof(char);

 43

 ptr = buf;

 amtXferred = 0;

 amtToXfer = len - amtXferred;

 amtToXfer = MIN(1400, amtToXfer);

 while (amtXferred < len)

 {

 if (net_recv_ready(socket, ptr, &amtToXfer, 1000000) < 0)

 {

 printf("Error in recvData().\n");

 printf("Error in net_recv_ready(): %s\n",

 error_tab[socket->error_code]);

 }

 else

 {

 ptr += amtToXfer;

 amtXferred += amtToXfer;

 amtToXfer = len - amtXferred;

 amtToXfer = MIN(1400, amtToXfer);

 }

 }

 /* Send acknowledgment message to the PC */

 net_send_ready(socket, &amtXferred, 4/sizeof(char), 1000000);

}

/**

 * Name: dmaCopyBlk

 * Purpose: Copies 'numBytes' from 'src' to 'dst'. This function is

 * ASYNCHRONOUS! You must poll EDMA_intTest(tcc) to see when the

 * transfer is complete.

 * 'numBytes' must be a multiple of 4 and must be <= 4 * 0xFFFF.

 ***/

void dmaCopyBlk(void *src, void *dst, Uint32 numBytes)

{

 /* Frame synchronized 1D-to-1D transfers

 * src and dst addresses are incremented as needed

 * transfer completion interrupt is enabled using

 44

 * tcc as the transfer-complete code */

 edmaConfig.opt = 0x21300001 | (tcc << 16);

 edmaConfig.src = (Uint32) src;

 edmaConfig.cnt = numBytes/4; /* One frame and 4-byte elements */

 edmaConfig.dst = (Uint32) dst;

 edmaConfig.idx = 0; /* Don't care */

 edmaConfig.rld = 0; /* Don't care */

 /* Set up the EDMA channel using the above configuration structure */

 EDMA_config(hEdma, &edmaConfig);

 /* Clear the EDMA transfer-complete flag */

 EDMA_intClear(tcc);

 /* Submit the EDMA transfer request */

 EDMA_setChannel(hEdma);

}

 45

PC Code
#include "DSKObject.h"
#define PI 3.1416

int preview(int channel, const char* vidFile, int threshold, int base)
{
 AVIObject* video = new AVIObject(vidFile);
 unsigned char* buf = (unsigned char*)video-
>getThresholdedFrame(base, threshold, channel);
 FILE* f = fopen("prev.dat", "w");
 for(int i=0; i<38400; i++) {
 fprintf(f, "%d\n", (int)buf[i]);
 }
 fclose(f);
 return 0;
}

int run(int channel, int threshold, const char* vidFile, int angle, int
startFrame, float duration, int base, int b, int a) {
 DSKObject* com = new DSKObject();
 return com->run2(channel, threshold, vidFile, angle, startFrame,
duration, base, b, a);
}

DSKObject::DSKObject()
{
 WSADATA wsaData;
 WORD wVersionRequested;
 int err;
 SOCKADDR_IN serverInfo;

 /* Initialize Winsock library */
 wVersionRequested = MAKEWORD(2,2);
 err = WSAStartup(wVersionRequested, &wsaData);
 if(err) return;

 /* Create a TCP socket to listen for an incoming connection from
the
 * DSK client */
 connectSocket = socket(AF_INET, /* Use IPv4 */
 SOCK_STREAM, /* Connection-oriented socket
*/
 IPPROTO_TCP); /* Use TCP */

 if (connectSocket == INVALID_SOCKET)
 {
 WSACleanup();
 return;
 }

 /* Specify the the address family, IP address, and port number of
the
 * DSK server to which the PC client should connect */
 serverInfo.sin_family = AF_INET; /* Use IPv4 */
 /* DSK IP address */
 serverInfo.sin_addr.s_addr = inet_addr("192.168.0.101");
 /* DSK server port number (it is set up in the DSK-side code) */
 serverInfo.sin_port = htons(5031);

 46

 /* Connect to the DSK server */

 if (connect(connectSocket, (SOCKADDR *) &serverInfo,
 sizeof(serverInfo)) == SOCKET_ERROR)
 {
 closesocket(connectSocket);
 WSACleanup();
 }
}
DSKObject::~DSKObject() {
 closesocket(connectSocket);
 WSACleanup();
}

int DSKObject::run2(int channel, int threshold, const char* vidFile,
int angle, int startFrame, float duration, int base, int b, int a)
{
 float* res = (float*)malloc(3840);

 unsigned char* buf;
 AVIObject* video = new AVIObject(vidFile);
 buf = (unsigned char*)malloc(16);

 int frames = (int)(15.0*duration);

 ((int*)buf)[0] = frames;
 ((int*)buf)[2] = b;
 ((float*)buf)[1] = (float)(angle*PI/180.0);
 ((float*)buf)[3] = (float)(a*PI/180.0);
 sendData(buf, 16);
 recvData(buf, 4);
 free(buf);

 buf = (unsigned char*)video->getThresholdedFrame(base, threshold,
channel);

 sendData(buf, 38400);
 recvData(res, 4);

 FILE* X = fopen("X.txt", "w");
 FILE* Y = fopen("Y.txt", "w");
 int j;
 int k = startFrame+frames;
 for(int i=startFrame; i<k; i++)
 {
 // Threshold video data on PC side
 buf = (unsigned char*)video->getThresholdedFrame(i,
threshold, channel);

 // send thresholded image to the DSK
 sendData(buf, 38400);

 // recieve 3D data
 recvData(res, 3840);

 // create a X and Y matrix with the rows corresponding to
the frame of the video sequence

 47

 // and the columns corresponding to the Z axis location of
the point
 for(j=0; j<480; j++) {
 fprintf(X, "%f ", res[j]);
 }
 fprintf(X, "\n");
 for(; j<960; j++) {
 fprintf(Y, "%f ", res[j]);
 }
 fprintf(Y, "\n");

 }

 fclose(X);
 fclose(Y);

 /* Cleanup code */
 free(res);
 printf("Closing socket and exiting...\n");
 return 0;
}

/*------------------------- FUNCTION DEFINITIONS ----------------------
--*/

/**

 * Name: sendData
 * Purpose: Sends data to the DSK. 'buf' is the pointer to the
location of
 * of the data on the PC, 'len' is the length of the data.

**/
void DSKObject::sendData(void *buf, int len)
{
 char *ptr;
 int ret;
 int amtXferred;

 ptr = (char*)buf;
 amtXferred = 0;

 while (amtXferred < len)
 {
 ret = send(connectSocket, ptr, len-amtXferred, 0);

 if (ret == SOCKET_ERROR)
 {
 printf("Error in sendData().\n");
 printf("Error in send(): %d. Exiting...\n",
 WSAGetLastError());

 closesocket(connectSocket);
 WSACleanup();
 exit(1);
 }
 else
 {

 48

 amtXferred += ret;
 ptr += ret;
 }
 }

 /* Receive acknowledgment message from the DSK */
 recv(connectSocket, (char *) &amtXferred, 4, 0);
}

/**

 * Name: recvData
 * Purpose: Receives data from the DSK. 'buf' is the pointer to the
buffer
 * on the PC in which to write the incoming data, 'len' is the length
of
 * the incoming data.

**/
void DSKObject::recvData(void *buf, int len)
{
 char *ptr;
 int ret;
 int amtXferred;

 ptr = (char*)buf;
 amtXferred = 0;

 while (amtXferred < len)
 {
 ret = recv(connectSocket, ptr, len-amtXferred, 0);

 if (ret == SOCKET_ERROR)
 {
 printf("Error in recvData().\n");
 printf("Error in recv(): %d. Exiting...\n",
 WSAGetLastError());

 closesocket(connectSocket);
 WSACleanup();
 exit(1);
 }
 else
 {
 amtXferred += ret;
 ptr += ret;
 }
 }
}

 49

#include ".\aviobject.h"

AVIObject::AVIObject(LPCTSTR szFile)

{

 HRESULT result;

 AVIFileInit();

 result = AVIFileOpen(&pfile, szFile, OF_READ, NULL);

 if(result != 0) {

 printf("Error:\n");

 printf("AVIObject::AVIOjbec(LPCTSTR szFile)\n");

 printf("result = AVIFileOpen(&pfile, szFile, OF_READ, NULLL);\n");

 printf("errorno = %d\n", result);

 }

 result = AVIFileInfo(pfile, &fi, sizeof(fi));

 if(result != 0) {

 printf("Error:\n");

 printf("AVIObject::AVIOjbec(LPCTSTR szFile)\n");

 printf("result = AVIFileInfo(pfile, &fi, sizeof(fi));\n");

 printf("errorno = %d\n", result);

 }

 result = AVIFileGetStream(pfile, &pavi, streamtypeVIDEO, 0);

 if(result != 0) {

 printf("Error:\n");

 printf("AVIObject::AVIOjbec(LPCTSTR szFile)\n");

 printf("result = AVIFileGetStream(pfile, &pavi, streamtypeVIDEO, 0);\n");

 printf("errorno = %d\n", result);

 }

 result = AVIStreamInfo(pavi, &psi, sizeof(psi));

 if(result != 0) {

 printf("Error:\n");

 printf("AVIObject::AVIOjbec(LPCTSTR szFile)\n");

 printf("result = AVIStreamInfo(pavi, &psi, sizeof(psi));\n");

 printf("errorno = %d\n", result);

 }

 pgf = AVIStreamGetFrameOpen(pavi, NULL);

 if(pgf == NULL) {

 printf("Error:\n");

 printf("AVIObject::AVIOjbec(LPCTSTR szFile)\n");

 50

 printf("pgf = AVIStreamGetFrameOpen(pavi, NULL);\n");

 printf("pgf = NULL - this means we were unable to find a codec\n");

 }

 thOutput = (unsigned char*)malloc(480*80);

 memset(thOutput, 0, 480*80);

}

AVIObject::~AVIObject(void)

{

 free(thOutput);

 AVIStreamGetFrameClose(pgf);

 AVIStreamRelease(pavi);

 AVIFileRelease(pfile);

 AVIFileExit();

}

void* AVIObject::getFrame(int i)

{

 LPBITMAPINFOHEADER lpbi;

 lpbi = (LPBITMAPINFOHEADER)AVIStreamGetFrame(pgf, i);

 return (lpbi->biSize)+(char*)lpbi;

}

void* AVIObject::getThresholdedFrame(int i, int th, int off)

{

 int len = 640*480*3;

 unsigned short fil = 1<<15;

 unsigned char* buf = (unsigned char*)getFrame(i);

 unsigned char temp;

 int j,k;

 for(i=0, j=0; i<len; i+=24, j++)

 {

 temp = 0;

 if(buf[off+i+21] > th) temp |= 0x80;

 if(buf[off+i+18] > th) temp |= 0x40;

 if(buf[off+i+15] > th) temp |= 0x20;

 if(buf[off+i+12] > th) temp |= 0x10;

 if(buf[off+i+9] > th) temp |= 0x08;

 51

 if(buf[off+i+6] > th) temp |= 0x04;

 if(buf[off+i+3] > th) temp |= 0x02;

 if(buf[off+i] > th) temp |= 0x01;

 thOutput[j] = temp;

 }

 return thOutput;

}

 52

GUI CODE

import java.awt.Container;

import java.awt.Dimension;

import java.awt.Font;

import java.awt.GraphicsEnvironment;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import java.awt.Color;

import java.awt.Graphics;

import java.io.BufferedReader;

import java.io.FileReader;

import java.net.URL;

import java.io.File;

import javax.media.*;

import javax.swing.Box;

import javax.swing.BoxLayout;

import javax.swing.JButton;

import javax.swing.JFileChooser;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.WindowConstants;

public class SAP extends JFrame implements ActionListener {

 private static final long serialVersionUID = 1L;

 private ImagePanel previewImg;

 static {

 System.loadLibrary("SAP");

 }

 53

 native int run(int channel, int threshold, String vidFile, int angle, int startFrame, float duration,

int base, int b, int a);

 native int preview(int channel, String vidFile, int threshold, int base);

 private JButton preview, go;

 private JFileChooser test;

 private JLabel channelL, thresholdL, videoFileL, baseFileL, angleL, startFrameL, durationL,

b2L, aL;

 private JTextField channelTF, thresholdTF, videoFileTF, baseFileTF, angleTF, startFrameTF,

durationTF, b2TF, aTF;

 private String defaultText = "defaultText";

 public static void main(String[] argv) {

 javax.swing.SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 new SAP();

 }

 });

 }

 public void actionPerformed(ActionEvent arg0) {

 Object source = arg0.getSource();

 if (source == go)

 {

 try

 {

// PlayMP3Thread player = new PlayMP3Thread(new

File("mp3.mp3"));

 int channel = Integer.parseInt(channelTF.getText());

 int threshold = Integer.parseInt(thresholdTF.getText());

 String vidFile = videoFileTF.getText();

 int base = 15*(int)Double.parseDouble(baseFileTF.getText());

 int angle = Integer.parseInt(angleTF.getText());

 int startFrame =

15*(int)Double.parseDouble(startFrameTF.getText());

 float duration = (float)Double.parseDouble(durationTF.getText());

 int b = Integer.parseInt(b2TF.getText());

 54

 int a = Integer.parseInt(aTF.getText());

 int result = run(channel, threshold, vidFile, angle, startFrame,

duration, base, b, a);

// player.stopPlay();

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 System.exit(0);

 }

 else if(source == preview)

 {

 try

 {

 int channel = Integer.parseInt(channelTF.getText());

 int threshold = Integer.parseInt(thresholdTF.getText());

 String vidFile = videoFileTF.getText();

 int base = 15*(int)Double.parseDouble(baseFileTF.getText());

 int result = preview(channel, vidFile, threshold, base);

 previewImg.read();

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

 }

 public SAP() {

 super("Strike A Pose");

 go = new JButton("GO");

 go.setFont(new Font("Stencil", Font.PLAIN, 250));

 preview = new JButton("Preview");

 preview.addActionListener(this);

 go.addActionListener(this);

 55

 channelTF = new JTextField("0");

 thresholdTF = new JTextField("80");

 videoFileTF = new JTextField("c:/data/Video1.avi");

 baseFileTF = new JTextField("1.0");

 angleTF = new JTextField("360");

 startFrameTF = new JTextField("5.0");

 durationTF = new JTextField("10.8");

 b2TF = new JTextField("0");

 aTF = new JTextField("45");

 Font fontLabels = new Font("Script MT Bold", Font.PLAIN, 45);

 channelL = new JLabel("Channel");

 channelL.setFont(fontLabels);

 thresholdL = new JLabel("Threshold");

 thresholdL.setFont(fontLabels);

 videoFileL = new JLabel("Video File");

 videoFileL.setFont(fontLabels);

 baseFileL = new JLabel("Base Image (s)");

 baseFileL.setFont(fontLabels);

 angleL = new JLabel("Angle");

 angleL.setFont(fontLabels);

 startFrameL = new JLabel("Start Frame (s)");

 startFrameL.setFont(fontLabels);

 durationL = new JLabel("Duration (s)");

 durationL.setFont(fontLabels);

 b2L = new JLabel("Base Image Default");

 b2L.setFont(fontLabels);

 aL = new JLabel("Laser/Cam Angle");

 aL.setFont(fontLabels);

 Container main = getContentPane();

 main.setLayout(new BoxLayout(main, BoxLayout.Y_AXIS));

 //MAIN BOX

 Box mainBox = Box.createHorizontalBox();

 main.add(mainBox);

 //LABEL BOX

 Box labelBox = Box.createVerticalBox();

 labelBox.add(channelL);

 56

 labelBox.add(Box.createVerticalStrut(10));

 labelBox.add(thresholdL);

 labelBox.add(Box.createVerticalStrut(10));

 labelBox.add(videoFileL);

 labelBox.add(Box.createVerticalStrut(10));

 labelBox.add(baseFileL);

 labelBox.add(Box.createVerticalStrut(10));

 labelBox.add(angleL);

 labelBox.add(Box.createVerticalStrut(10));

 labelBox.add(startFrameL);

 labelBox.add(Box.createVerticalStrut(10));

 labelBox.add(durationL);

 labelBox.add(Box.createVerticalStrut(10));

 labelBox.add(b2L);

 labelBox.add(Box.createVerticalStrut(10));

 labelBox.add(aL);

 labelBox.add(Box.createVerticalStrut(10));

 mainBox.add(labelBox);

 channelTF = new JTextField("0");

 thresholdTF = new JTextField("80");

 videoFileTF = new JTextField("c:/Video1.avi");

 baseFileTF = new JTextField("1.0");

 angleTF = new JTextField("360");

 startFrameTF = new JTextField("5.0");

 durationTF = new JTextField("10.8");

 //TEXTFIELD BOX

 Box textFieldBox = Box.createVerticalBox();

 textFieldBox.add(channelTF);

 textFieldBox.add(thresholdTF);

 textFieldBox.add(videoFileTF);

 textFieldBox.add(baseFileTF);

 textFieldBox.add(angleTF);

 textFieldBox.add(startFrameTF);

 textFieldBox.add(durationTF);

 textFieldBox.add(b2TF);

 textFieldBox.add(aTF);

 mainBox.add(textFieldBox);

 57

 //PREVIEW BOX

 Box previewBox = Box.createVerticalBox();

 previewImg = new ImagePanel();

 previewBox.add(previewImg);

 previewBox.add(preview);

 mainBox.add(previewBox);

 //GO

 main.add(go);

/* leftBox.add(comp)

 box = Box.createHorizontalBox();

 box.add(Box.createHorizontalBox());

 main.add(box);

 box.add(Box.createHorizontalStrut(90));

 box.add(connectButton);

 box.add(Box.createHorizontalStrut(30));

 box.add(disconnectButton);

 box.add(Box.createHorizontalStrut(90));

 main.add(Box.createVerticalStrut(30));

 box = Box.createHorizontalBox();

 main.add(box);

 box.add(Box.createHorizontalStrut(30));

 box.add(certaintyPlanButton);

 box.add(Box.createHorizontalStrut(30));

 box.add(uncertaintyPlanButton);

 box.add(Box.createHorizontalStrut(30));

 box = Box.createHorizontalBox();

 main.add(box);

 main.add(Box.createVerticalStrut(30));

 box.add(textField1);

 box = Box.createHorizontalBox();

 main.add(box);

 58

 main.add(Box.createVerticalStrut(30));

 box.add(textField2);

 main.add(Box.createVerticalStrut(30));

 box = Box.createHorizontalBox();

 main.add(box);

 box.add(stopButton);

 box.add(Box.createHorizontalStrut(30));

 box.add(quitButton);

 main.add(Box.createVerticalStrut(30));

*/

 repaint();

 this.setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE);

 this.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 // quit();

 }

 });

 this.setLocationByPlatform(true);

 this.pack();

 this.setVisible(true);

 }

 class ImagePanel extends JPanel {

 public ImagePanel() {

 setPreferredSize(new Dimension(640, 480));

 setBackground(Color.black);

 read = false;

 }

 59

 boolean read;

 @Override public void paintComponent(Graphics g) {

 super.paintComponent(g);

 g.drawLine(200,200, 1, 1);

 if(read) {

 try {

 g.setColor(Color.white);

 BufferedReader br = new BufferedReader(new

FileReader("prev.dat"));

 for(int j=480; j>=0; j--) {

 for(int i=0; i<640; i+=8) {

 int tot = Integer.parseInt(br.readLine());

 if(tot >= 128) {

 g.drawLine(i+7,j, i+7, j);

 tot -= 128;

 }

 else {

 g.setColor(Color.black);

 g.drawLine(i+7, j, i+7, j);

 g.setColor(Color.white);

 }

 if(tot >= 64) {

 g.drawLine(i+6,j, i+6, j);

 tot -= 64;

 }

 else {

 g.setColor(Color.black);

 g.drawLine(i+6, j, i+6, j);

 g.setColor(Color.white);

 }

 if(tot >= 32) {

 g.drawLine(i+5,j, i+5, j);

 tot -= 32;

 }

 else {

 g.setColor(Color.black);

 60

 g.drawLine(i+5, j, i+5, j);

 g.setColor(Color.white);

 }

 if(tot >= 16) {

 g.drawLine(i+4,j, i+4, j);

 tot -= 16;

 }

 else {

 g.setColor(Color.black);

 g.drawLine(i+4, j, i+4, j);

 g.setColor(Color.white);

 }

 if(tot >= 8) {

 g.drawLine(i+3,j, i+3, j);

 tot -= 8;

 }

 else {

 g.setColor(Color.black);

 g.drawLine(i+3, j, i+3, j);

 g.setColor(Color.white);

 }

 if(tot >= 4) {

 g.drawLine(i+2,j, i+2, j);

 tot -= 4;

 }

 else {

 g.setColor(Color.black);

 g.drawLine(i+2, j, i+2, j);

 g.setColor(Color.white);

 }

 if(tot >= 2) {

 g.drawLine(i+1,j, i+1, j);

 tot -= 2;

 }

 else {

 g.setColor(Color.black);

 g.drawLine(i+1, j, i+1, j);

 g.setColor(Color.white);

 61

 }

 if(tot >= 1) {

 g.drawLine(i,j, i, j);

 tot -= 1;

 }

 else {

 g.setColor(Color.black);

 g.drawLine(i, j, i, j);

 g.setColor(Color.white);

 }

 }

 }

 br.close();

 }catch(Exception e){}

 }

 }

 public void read() {

 read = true;

 repaint();

 }

 }

 class PlayMP3Thread extends Thread {

 private URL url;

 public PlayMP3Thread(File mp3) {

 try {

 this.url = mp3.toURL();

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

 Player player;

 public void run() {

 try {

 MediaLocator ml = new MediaLocator(url);

 player = Manager.createPlayer(ml);

 62

 player.addControllerListener(

 new ControllerListener()

 {

 public void controllerUpdate(ControllerEvent event)

{

 if(event instanceof EndOfMediaEvent) {

 player.stop();

 player.close();

 }

 }

 }

);

 player.realize();

 player.start();

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

 public void stopPlay() {

 player.stop();

 }

 }

}

