
 1

More Than Meets the Ears: The Voice
Transformers

18-551, Fall 2006
Group – 1, Final Report

Ramanpreet Singh Pahwa (rpahwa@andrew.cmu.edu)
Teng Ji Lim (tlim@andrew.cmu.edu)

Marcus Chen Caixing (caixingc@andrew.cmu.edu)

 2

Table Of Contents

1. Background

1.1. Introduction
1.2. Applications
1.3. Prior 18551 Projects

1.3.1. Spring 2001
1.3.2. Spring 2004

2. Implementation

2.1. Training Part
2.1.1. Overview
2.1.2. The TIMIT database
2.1.3. Dynamic Time Warping (DTW)
2.1.4. Extraction of LPCs/LSFs and excitation spectrum
2.1.5. Summary

2.2. Transformation Part
2.2.1. Overview
2.2.2. Pre-emphasis
2.2.3. Windowing
2.2.4. Input LPCs and LSF
2.2.5. Estimation of Weights
2.2.6. Target LSF and LPCs
2.2.7. Target Vocal Tract Mapping
2.2.8. Target Excitation
2.2.9. Output Speech in Frequency Domain
2.2.10. De-emphasis
2.2.11. Summary

2.3. Post processing Part
2.3.1. Pitch Scale Modification
2.3.2. PSOLA on the Output Speech
2.3.3. Final Output speech
2.3.4. Summary

2.4. Attempted Improvements

3. Data Flow

4. Speed and Memory Issues

4.1. Memory
4.2. Speed

5. Results

6. Discussion and Further Work

7. References

8. Appendix: Schedule and Assigned Tasks

 3

1. Background

1.1 Introduction

Voice transformation is the process of modifying a speaker’s voice (referred to in
voice conversion terms as the source) to make it sound as if it was spoken by a
specific (target) speaker. This transformation involves modifications to any aspect of
the signal like fundamental frequency of voicing, duration, energy, and formant
positions that carries speaker identity. When we speak we emit a speech pattern
containing at least two kinds of information: our meaning (message) and our
identity. Voice transformation enables us to transform the speaker’s speech pattern
into the target’s speech pattern while preserving the original content (message).
Hence, it transforms how something is said without changing what is said.

1.2 Applications

Voice transformation has numerous applications, such as the areas of foreign
language training and military. A TTS (text to speech) system with voice
transformation technology integrated can produce many different voices. In cases
where the speaker identity plays a key role, such as dubbing movies and TV-shows,
the availability of high quality voice transformation technology is very valuable as it
allows the appropriate voice to be generated, in different languages, without the
original actors being present. In karaoke, voice transformation can be used to make
the singer’s voice sound more similar to the original singer’s voice. Furthermore,
Voice transformation can be used to create “spy toys” that allows users to mask
their voice to trick the person listening on the other side of the phone.

1.3 Prior 18551 Projects

When we started this project, we researched previous projects and found two
projects, one in Spring 2001 and the other in Spring 2004, that were similar to ours.

1.3.1 Spring 2001

Group 1 in Spring 2001 did a project on “Speech Morphing for Space Marines”. The
group’s algorithm was based on modification on LPC coefficients and the excitation
pitch. First, they divided the input signal into smaller frames of about 20ms each and
found the LPC coefficients in each frame. Then they determined if the current frame
was a voiced or unvoiced sound. For voiced sounds, they used a pitch detection
algorithm to determine the pitch of that part of the speech. The voice conversion
was then performed based on Cumulative Density Function (CDF), which is
described in [5]. The LPC coefficients were then replaced with the corresponding
target coefficients. The final output speech is synthesized using the new coefficients
and an impulse train with the target pitch for voiced sounds or white noise for

 4

unvoiced sounds as excitation. The following figure describes the final stage of
their algorithm:

The group reported that that quality of the re-synthesized speech was often poor
and contained pops and cracks. They also mentioned that sometimes the output
speech was unintelligible and often didn’t sound like the target speaker. Also, their
algorithm was text dependent i.e. their algorithm expected the target and source
speakers to speak the same text.

One reason why their output was often unintelligible might be that they were using
LPC coefficients for the voice conversion. LPC coefficients are very sensitive and
often prone to distortion. Relatively small changes in the representation of the LPC
coefficients results in a large change in the pole locations of the vocal tract filter
model. Hence, this often leads to an unstable filter.

1.3.2 Spring 2004

Group 9 in Spring 2004 did a project on voice transformation: “Hey! Stop sounding
like me!!” They mentioned all these problems faced by Spring 2001 group and tried
to implement an algorithm that used Linear Spectral Frequencies (LSF) instead of
LPC coefficients to represent the formant frequencies. The reason they used LSF is
because:

1) LSF have a nice quantization property: they can be interpolated from one
speech frame to the next one unlike LPC coefficients

2) They are quite de-correlated and the values change slowly from one speech
frame to another frame. Thus, this allows a more accurate inter-frame prediction

 5

3) They are "naturally ordered" (highest to lowest) and hence the synthesis filter
is more stable.

They process signals at 16 kHz and 16 bits per sample. They pre-emphasize the
speech and decompose it into 256 samples of 16ms each. They divided the input
signal into smaller frames of about 16ms each and found the LPC coefficients in each
frame. They then convert the LPC coefficients to LSF.

For the training part, they use Dynamic Time Warping (DTW) to time-align the
speech signals. This makes phoneme extraction as accurate as possible. They then
find the Average LSF and excitation spectrum for each phoneme. After this, they
calculate the estimated weights that will be used to find the target LSF from source
LSF. Then, they use these weights to calculate target LSF and hence, target LPC
coefficients. They model the target speaker’s vocal tract by using these estimated
LPC coefficients. After this, they calculate the filter using the weighted combination
of codebook filters. The output speech is then de-emphasized. The following flow
chart describes the training part of their algorithm:

The group was successful in making the algorithm text independent (the speaker
and target can speak entirely different lines now). However, the output sounded
very robotic and noisy. They owed this to their implementation of excitation signal
and lack of more detailed codebooks. They also mentioned that PSOLA (Pitch-
Synchronous Overlap-Add) and energy scaling would have been very helpful in
improving the quality of the output.

 6

2. Implementation

Our System consists of three parts: A training phase, a conversion phase and a post-
processing phase. All three parts process the speech signal at 16 kHz, 16 bits per
sample. For the first two parts, the speech signal is decomposed into frames where
each frame consists of 256 samples of 16ms each. In the conversion phase, each
frame is processed separately and sequentially. On the other hand, a few frames are
processed together in the post-processing phase.

2.1 Training Part

2.1.1 Overview

The training part, in a nutshell, is where both the source and target speakers speak
a series of sentences, which are then analyzed, in order to extract information about
how each phoneme for each speaker sounds. To do this, we need to somehow
know what phonemes are being spoken, as well as which segments of that speech
correspond to those phonemes (i.e. when the phonemes are spoken). The process
of identifying what phonemes occur at what time positions in a speech is known as
phoneme segmentation. Automated phoneme segmentation itself is a difficult
research problem, and is beyond the scope of our project. Instead, we use
sentences from the TIMIT database with known phoneme transcriptions, make the
source and target speakers speak those sentences and then time-align our data
using a technique known as Dynamic Time Warping (DTW) to the TIMIT data so
that we have data from the 2 speakers that follows the known transcriptions. At this
stage, we can then extract the phonemes, and use them to build codebooks
representative of the characteristics of each speaker’s speech.

In the training part, we use a 16th order LPC analysis to build codebooks containing
16 LSF and glottal excitation spectrum for each phoneme. We used 60 phonemes.
The entire training part was done in C on PC.

2.1.2 The TIMIT database

As stated earlier, phoneme segmentation is a complicated procedure. In [2], Arslan
used Sentence Hidden Markov Models (Sentence HMMs) to detect phonemes in
order to build the codebooks. For our project, we decided instead to use the TIMIT
database as it is a very standardized speech database and it contains the phoneme
transcriptions for every sentence.

The TIMIT database consists of speech from over 400 unique speakers and the
phonetic transcriptions for each speech file. For every speaker, there are ten
phonetically diverse sentences available, from which a representative codebook can
be constructed.

 7

Unfortunately, although the TIMIT speech files are labeled with a .WAV extension,
they are not in the standard WAV file format that MATLAB can read. We used a
program called Sound eXchange (SoX) to convert it to the normal WAV format. The
now-playable WAV files are used later for the source and target speaker’s reference
while recording their voices.

2.1.3 Dynamic Time Warping (DTW)

During the training part, the source and target speakers are asked to speak the
sentences at the same rate as the reference voice in TIMIT database. Even though
we play the reference recording simultaneously as the speech is recorded, it is not
possible for a person to speak the sentence at the same rate as the reference
speaker. To overcome this problem, we implemented Dynamic Time Warping (DTW)
to time align the person’s speech.

DTW accommodates differences in timing between sample words. The basic
principle is to allow a range of 'steps' in the space of (time frames in sample) and to
find the path through that space that maximizes the local match between the
aligned time frames, subject to the constraints implicit in the allowable steps. The
total `similarity cost' found by this algorithm is a good indication of how well the
samples match. We implemented this in MATLAB and used the code available on
web [3].

2.1.4 Extraction of LSF and excitation spectrum

We divide the input speech signal into frames consisting of 256 floats each. We
then perform a 16th order LPC analysis to obtain the LPC coefficients for each frame.
We use these LPC coefficients to calculate the LSFs for each frame. We also
calculate the excitation spectrum by using the LPC coefficients. As we know the
transcription of each sentence we exactly know where the phonemes start and end.
We use this information and the ceiling function to find the start and end points of
each phoneme. For example, if the phoneme starts at the 500th sample, we ignore
the first 12 samples and record the LSF after 512th sample. If the phoneme ends at
the 1050th sample, we end it at the 1024th sample. We record the corresponding
LSF and store them in the codebook along with the excitation spectrum. The
average LSF for each phoneme is then calculated; this is our representation of a
phoneme for a speaker.

 8

2.1.5 Summary

The following flowchart shows our implementation of the training part:

Analyze next frame

Pre-emphasize, apply
Hamming Window on

current frame

Add small amount of
random noise to prevent

all 0s, then compute LPCs

Compute LSF, and use
transcription to figure out

which phoneme it
corresponds to

Accumulate LSF in LSF
codebooks

Processed
all frames?

No

yes

Update_codebook() to Take
average of LSF

Codebook is ready

Training Speech

Time-align with TIMIT
reference using DTW

Time-
aligned
speech

 9

2.2 Transformation Part

2.2.1 Overview

In the transformation part, the LSF of the input speech signal are computed frame
by frame and approximated by a weighted combination of LSF vectors from the
source LSF codebook. The output speech is obtained by utilizing the vocal tract
generated with the target LSF and the target speech signal.

2.2.2 Pre-emphasis

The input signal is pre-emphasized using the filter 195.01)(!
!= zzP . Pre-emphasis

increases the energy in parts of the signal by an amount inversely proportional to its
frequency. Thus, pre-emphasis helps in amplifying the higher frequencies. This
process therefore serves to flatten the signal so that the resulting spectrum consists
of formants of similar heights. (Formants are the highly visible resonances or peaks
in the spectrum of the speech signal, where most of the energy is concentrated).
The flatter spectrum allows the LPC analysis to more accurately model the speech
segment. Without pre-emphasis, the linear prediction would incorrectly focus on the
lower-frequency components of speech, losing important information about certain
sounds.

2.2.3 Windowing

The pre-emphasized output is then multiplied with a hamming window function
given by:

 256,2550
1

2
cos46.054.0)(=!!"

#

$
%
&

'

(

•
)(= ni

n

i
is

*

The beginning and end of the signals are tapered to zeros. This helps in removing
any discontinuities and hence, results in a smoother transition of the signal frame to
frame.

2.2.4 Input LPCs and LSF

After applying the hamming window, 16 LPC coefficients are calculated. The LPC
coefficients are obtained by minimizing the sum of the squared components of error
e(n) between the original speech signal and estimated speech signal. We used the
Levinson-Durbin algorithm to calculate the LPCs. The LPC coefficients are then
converted to line spectral frequencies (LSF).

We initially used SPTK (Speech Processing Tool Kit) to calculate the LPC coefficients
and LSF. However, sometimes the LPC coefficients we obtained were very
inaccurate. Also, the code for the SPTK was unwieldy and involved hidden function
calls that we suspected were not using memory efficiently and sometimes gave

 10

unexpected results in our implementation. Foreseeing having trouble in importing
the libraries used by SPTK to DSK, we decided not to use SPTK for our project.
Instead we used the code written by Spring’04 Group for calculating the LPC
coefficients and converting them to LSF.

2.2.5 Estimation of weights

The input LSF vector ‘w’ is then approximated by a linear combination of the LSF
vectors ‘Si’ of the source codebook. This also helps us in estimating the phonemes
that are not present in the codebooks. The method used for estimating the weights
‘vi’ is given in [2].

!

h
k

=
1

min w
k
" w

k"1 , w
k
" w

k+1()
k =1,2,...,16

The distance ‘di’ corresponding to each codebook is based on the idea that closely
spaced linear spectral frequencies which are likely to correspond to formant
frequencies are assigned higher weights.

60,...,2,1
16

1

,
=!"=#

=

iswhD

k

kikki

Based on the distances from each codebook entry, an approximate linear spectral
frequency vector can be expressed as a weighted sum of source codebook linear
spectral frequencies.

60,...,2,1

1

==

!
=

"

"

i

e

e
v

L

t

d

d

i

t

i

#

#

In [2], L. Arslan reported that the value of � varies from 0.2 to 2. However to
simplify the algorithm, we used a constant value for �. After several tests, we
concluded that � = 2 gives the best approximation of the input LSF vector.

2.2.6 Target LSF and LPCs

As the codebooks are created with the same sentences for every speaker, the ith
phoneme in the source codebook should correspond exactly to the ith phoneme in
the target codebook for the conversion (one to one mapping). Therefore, these
weights are applied to the LSF vectors Ti of the target codebook to obtain the
corresponding target LSF vector wt of the current speech-frame.

60,...,2,1
60

1

=!="
=

iTvw

t

iit

These target LSF are then converted back to target LPC coefficients using the code
written by Spring’04 group.

 11

2.2.7 Target Vocal Tract Mapping

The estimated target LPC coefficients are used to model the vocal tract of the target
speaker. In [xxx], the vocal tract filter is expressed as

!

"
=

##

=
16

1

1

1

k

jkw

k ea

V where
k
a are the LPC coefficients.

The Spring’04 group mentioned that value of � is not important as the human ear is
insensitive to phase of the vocal tract. Hence, we decided to assign � as 1 to
reduce the complexity of the formula and save memory (saving real values
compared to complex floats).

2.2.8 Glottal Excitation Mapping

In [1], for transformation of glottal excitation, the weights that we obtained earlier
are used to construct a glottal excitation filter which is a weighted combination of
excitation codebook filters.

!
=

=
60

1)(

)(

i
s

i

t

i

ig
wU

wU
vH

Following the method described above, we obtained an speech which was more like
a source speaker. The group in Spring’04 also mentioned this problem and came up
with a solution to rectify this problem. They decided to modify the way in which they
had transformed the source to the target excitation. They did this by representing
the target excitation as a linear combination of the excitation spectra in the target
speaker’s codebook:

!
=

"=
60

1

,)()(
i

tiit
wUvwG

They mentioned that the quality of the output speech was very bad but it sounded
more like the target speaker compared to the source speaker. However, the output
was robotic.

We tried another method to overcome this problem. We used the excitation spectra
of the source:

sg EH = ,
s
E are FFT of the source excitation

The output speech using this glottal excitation mapping had a much better quality.
The speech was very easy to understand unlike the output speech from Spring’04

 12

group. Also, this helped us in saving a lot of space in internal memory on DSK. Now,
we could move our codebooks to internal memory as we aren’t using the target
excitation spectra. Thus, this not only helped in improving the quality of the output
speech but it also helped us in improving the efficiency and speed of our voice
transformation algorithm.

2.2.9 Output Speech in Frequency Domain

The output speech is obtained by applying the vocal tract and glottal excitation
filters to the magnitude spectrum of the input speech signal. This gives us an
estimate of the DFT correspondence to the target speech signal.
)()()(wHwHwY vg •=

The Spring’04 group implemented the transformation in time domain. They obtained
the time domain signals for glottal excitation and vocal tract mapping by applying
inverse FFT of these two filters and then used a difference equation to get the
output in time domain:
 16

 y(n) = gt(n) + ∑akt y(n-k)
 k=1

They chose to combine the vocal tract and the excitation in time domain because it
required less operations and the implementation was very fast. However, as we
already had the glottal excitation and vocal tract filters we decided to find the
magnitude spectrum of the input speech signal and obtain the out in frequency
domain first.
We then obtain the output speech in time domain by applying inverse DFT on Y(w)
 y(n) = real{IDFT{Y(w)}}

2.2.10 De-emphasis

Finally, the pre-emphasis we applied earlier to aid in calculating LPCs is removed
from the output speech signal by applying the inverse pre-emphasis filter:

195.01

1
)(

!
!

=
z

zP

Before the output is played or sent for post-processing, we scaled the output
according to the energy ratio of input frame to the output frame.

 13

2.2.11 Summary

The following flowchart shows our implementation of the transformation part:

LSF codebooks

Input Speech to be converted as a list
of floats obtained with SoX, 20 frames

per iteration

Pre-emphasize speech,
apply Hamming Window

on current frame

Compute LPCs &
excitation, convert LPCs

to LSFs

Determine Weights

Use weights to create target
LSFs, convert back to LPCs

to obtain the target Vocal
Tract

Use original input excitation
spectrum

Synthesize estimated
speech

Prosodic Transformation:
Applying PSOLA pitch

scaling
Transformed
Speech

Training

Pitch information (a,b)

 14

2.3 Post Processing Part – Prosodic Transformation

We implemented Pitch-Synchronous Overlap Add (PSOLA) to improve the quality of
the output speech. PSOLA is a method used to manipulate the pitch of a speech signal
to match it to that of the target speaker. In addition to the spectral transformation
done in the transformation part, pitch of the output speech is also modified to mimic
target speaker’s prosodic characteristics.

2.3.1 Pitch Scale Modification

The pitch modification algorithm involves matching the average pitch and range of the
target speaker. We can represent instantaneous target speaker’s fundamental
frequency linearly in terms of source speaker’s fundamental frequency.
 btaftf st +=)()(

where,

 a =
2

2

s

t

!

!
 ratio of target and source speaker’s pitch variance

b =
st

aµµ + where � s and � t represent the source and target mean pitch

values.

The instantaneous pitch scaling modification factor �(t) can be set as

)(

)(
)(

0

0

tf

btaf
t

s

s
+

=!

� affects the gender identity of the transformed voice. In general, a � lower than 1
makes the voice sound deeper, even though the fundamental frequency is the same.
We found that a good estimate for �, which affects the way the formant frequencies
are modified, is the midpoint between 1 (no change) and �, as the output is very
sensitive to changes in �. Values of � over 1.5 invariably make the output speech
sound like a chipmunk from a children’s cartoon, and values below 0.8 make it sound
like it was not human.

2.3.2 PSOLA on the Output Speech

We obtained the publicly available MATLAB code from [6]. Our group tested the
PSOLA algorithm in MATLAB first. We tried various values for � and �. We observed
a significant change in the pitch of post processed speech. By just setting some fixed
values for � and �, we were able to directly change the original male speech signal
to female speech signal and vice-versa. After being confident, that PSOLA was robust
enough to work well on most of the speech signals, we implemented the algorithm in
C.
We tested the C code and it gave us approximately the same output as the MATLAB
code.

 15

PSOLA calculates the pitch marks in the speech signal by finding the local maxima in
an analysis block. The difference between two pitch marks basically represents one
pitch period. To improve on the algorithm, we tried to break down the speech signal
into smaller chunks and apply PSOLA on each of them before combining the output
speech signal into a .wav file. We observed a significant improvement in the output.
We further tried to break down the signals to as small as possible to get the minimum
number of pitch marks required for PSOLA to work properly. We noticed that PSOLA
worked well as long as we had more than 15 pitch marks in the input speech signal.
So, while doing the transformation part, we kept track of the pitch marks and as soon
as we obtained 16 pitch marks, we estimate the values of � and � and apply PSOLA
to that part of the output signal.

2.3.3 Final Output speech

The obtained post processed speech signal is then converted to the playable .wav
format by using the SoX program.

2.3.4 Summary

 The following flowchart shows our implementation of the post-processing part:

 16

2.4 Attempted Improvements

Over the course of this project we tried many ways to improve both the sound quality of
the output speech, and the similarity of the output speech to the target speaker’s
speech.

- We tried varying the order of LPC/LSF analysis, but it turned out that 16 was the sweet
spot in terms of getting good representative LPCs. Using too many LPCs will result in
spurious peaks, while too few will cause formants to be lost. As a rule of thumb, 16
LPCs is a good number for our sampling rate of 16kHz.

- We also tried incorporating glottal excitation transformation filters into our project
design as suggested in [1], but the quality became a lot worse, with no apparent
benefits.

- Finally, on the day of the demo, we tried a completely new method suggested by
Professor Casasent. The details of that method are documented below in the Results
section of this report.

3. Data Flow

To reduce the complexity of the project, the PC was responsible for the training phase
of our voice conversion system. We did this as the quality of the voice conversion was
our top priority, given the difficulty previous 18-551 project groups had with such
projects, instead of more mundane things like user interfaces. Using the PC for the
training phase meant that we could utilize existing MATLAB routines to expedite the
development of the user I/O for the training phase. This in turn allowed us to
concentrate more on the voice conversion itself. Using the PC also made for easier
debugging, which was something we had to do a lot over the course of the project.

Training phase
The training speech is recorded at a sampling rate of 16kHz at 16 bits/sample, time-
aligned using DTW to reference sentences and then converted using Sound eXchange
(SoX) to single-precision floating point numbers. Alternatively, the user can supply his
or her own existing phoneme-transcribed WAV files for training purposes, and then use
SoX to convert it to a binary file of 16-bit, 16kHz floats. The PC-side program will then
build codebooks based on the known location of the phonemes (using the default
reference transcriptions in the first case, and user-specified transcriptions in the second
case), and then transfer the codebooks over to the DSK for processing. The DSK then
receives the codebooks and stores it in the on-chip memory.

Transformation phase
The user starts the transformation phase by specifying a WAV file from the source
speaker to be the input speech to be transformed. The WAV file is converted by SoX to
a binary file of 16-bit floats at a sampling rate of 16kHz, which is then sent over to the
DSK for voice conversion processing. After the DSK has processed the speech and done

 17

the voice conversion, it sends the transformed speech back to the PC in the same binary
float format that it received the input speech in. The PC writes the transformed speech
without conversion to disk. Therefore, to listen to the output, conversion back to the
usual WAV file format needs to be done using the SoX program.

Data Flow Between PC and DSK

PC DSK

1) Record training speech
for source & target in WAV
format
2) Time-align with known
speech with DTW
3) Convert aligned speech
to floats
4) Build codebooks with
floats and known phonemes

Store codebooks

Training:

Record input speech or use
existing WAV file, convert to
floats

Store input floats
Transformation:

Store output floats, convert
to WAV Voice Conversion

 18

4. Speed and Memory Issues

4.1 Memory

Memory Summary:
Item Size in bytes

ONCHIP_RAM
Program Code 0x13a60 = 80,480 bytes
Source Codebook 17 coefficients * 4 bytes/float = 68 bytes
Target Codebook 68 bytes
EDMA paging buffer 20 frames * 256 samples/frame * 4 bytes/sample =

20,480 bytes
SDRAM

4s of Input speech 16kHz*4s*4 bytes/sample = 256,000 bytes
4s of Output speech 256,000 bytes

Data Size:

Compared to the Spring 2004 group’s project, our project takes up much less memory.
This was because of two design decisions we made. Firstly, we stored floating-point
numbers in a raw format and saved them in binary files. The previous group, however,
saved their floating-point numbers in a text format. While our format only requires 4
bytes to represent one single-precision floating-point number, theirs required up to 12
bytes for one number, since each digit was represented by an ASCII character, which
takes up one byte. Secondly, we did away with the excitation codebooks, electing
instead to use the input excitation. This saved us 60 phonemes * 256 floats * 4
bytes/floats = 61,440 bytes per speaker. A consequence of this was that the codebooks
could now be stored on the on-chip memory.

a) Codebooks
This is a comparison of codebook sizes for 1 speaker for our system:

- i) Storing excitation information and LSFs (initial approach):
(17 LSFs + 256 excitation values) * 4 bytes/ LSF * 60 phonemes = 65 kB

- ii) Storing just LSFs (final implementation):
(17 LSFs) * 4 bytes/LSF * 60 phonemes = 4 kB

b) Input Data
1 frame of 256 samples of audio takes up 256 samples * 4 bytes/sample = 1kB/frame.
In this project, we deal with speech files of approximately 4s in length at a 16kHz
sampling rate, i.e. 16kHz*4s = 64k samples. The average speech data thus takes up
about 64k samples * 4 bytes/sample = 256kB of memory, and will fit on the onboard
RAM without any problems.

 19

4.2 Speed

After profiling individual functions, we discovered that the main bottleneck was the
findFFT_mag() function, which is called 3 times inside process_a_frame(), and not the
prosodic transformation as we had previously suspected. With that in mind, we set
about doing the following optimizations:

1) Using the optimized TI FFT routine introduced in Lab 2, instead of the FFT code that
the previous group used. This resulted in a savings of 40,000 cycles, or 25% of the
cycle count of the original findFFT_mag() code at –o3 optimization.

2) Using EDMA paging to page in 20 frames of input speech at a time.

3) Storing the codebooks on internal on-chip memory instead of external memory for
faster access.

Other optimizations that could have been done, but were not implemented due to time
constraints, include:

i) Precomputing the Hamming window, and storing it in a lookup table on on-chip
memory.

ii) Ping-pong buffering to do data transfers while doing the computations for the voice
transformation before prosodic transformation.

Our optimizations resulted in a reduction in cycles needed by approximately 37%.

Profiling Summary:
 Without

optimization
Full optimizations (-o3,
EDMA paging, TI
code,etc.)

process_a_frame():
Does voice transformation without
prosodic transformation on a single
frame

1,750,518 1,101,423

prosodic_transformation():
Does prosodic transformation on
the whole array that is the result of
calling process_a_frame() on all
input data

Total: 81,398,713
Amortized cost
per frame:
442,384

Total: 76,526,030
Amortized cost per frame:
415,902

process_a _frame() subroutines
findFFT_mag() 216,000 110,000
emphasis() 10,204 10.084
de_emphasis() 10,881 10,890
signal2Lpc() 104,566 101,151

 20

5. Results

Demo 1
In the lab demo, we first demonstrated using our system to convert speech from one
female speaker in the TIMIT database, to a male speaker in the TIMIT database, and
vice versa (i.e. the source could either be the female or the male, and the target would
be the other speaker), and we showed the results with and without prosodic
transformation The training set was a set of sentences from each speaker from the
TIMIT database, and the test set was a sentence from the source speaker that was not
in the training set.

The result of this first demonstration did not have the clarity and similarity to the target
speaker as we had hoped for, but at least it sounded like speech, albeit from some
unknown speaker. Compared to our implementation of the previous group’s (Spring
2004) algorithm, the sound quality of the output was definitely better because the
excitation signal came from actual speech instead of being a weighted sum of
excitations. With prosodic transformation turned on, the pitch of the output speech
sounded more like the pitch of the target speaker, but one still could not say that the
output speech sounded like it came from the target speaker.

Demo 2
After listening to the above results, Professor Casasent then suggested 2 things to
improve our project: 1) checking the phoneme segmentation accuracy of our system,
and 2) a new approach which involved storing signals of whole phonemes of the target
speaker for a better quality output. We then worked overnight on a MATLAB
implementation of this concept that would strive to give insights on these 2 issues.

Basically, our new implementation only stored target phonemes. Instead of doing
phoneme segmentation, we went one step further: use input speech which we know the
phoneme transcription of (courtesy of the TIMIT database), and replace, phoneme by
phoneme, input speaker phonemes with target speaker phoneme signals stored in the
training phase. This killed two birds with one stone: we would see the result of the
system with perfect phoneme transcription, using the new approach Professor Casasent
had suggested. If even with perfect phoneme transcription, the new approach failed,
then incorporating it into our system with less-than-perfect phoneme transcription would
be futile.

As it turned out, the result of the above implementation was a choppy output speech.
The words were almost impossible to recognize due to the sudden changes in pitch and
phoneme duration. Sentences usually follow a predictable pitch contour and cadence,
with the pitch and speed of each phoneme partially dependent on the tone of the
sentence, but in this case the pitch and speed of each phoneme was arbitrary since they
were taken from different training sentences. We postulated that detailed pitch and
duration analysis could have been applied to these phonemes within the PSOLA
framework to try to synthesize natural-sounding speech, but did not implement that as
that would have been enough for a whole new 18-551 project!

 21

6. Discussion and Future Work

Although we reused the input speaker’s excitation signal in the synthesis of speech, the
output speech quality was still vastly different from the quality of the input speech. The
words were intelligible but the voice speaking it was gravelly and of indeterminate
identity. One reason for the poor synthesis of speech was that the representation of a
speaker’s phoneme by taking the average LSFs per frame was not good enough.
Analysis of the whole phoneme, instead of breaking up the phoneme into frames is
required to capture a good quality representation of every phoneme. This may require
the algorithm to adapt to different lengths of representative codebook entries, and can
increase the complexity.

Also, the TIMIT database, despite providing ten phonetically-diverse sentences for each
speaker, does not have enough data to enable us to capture phonemes pronounced in
different contexts. For example the word “really” can be pronounced very differently,
depending on whether the speaker is using a normal tone, or a sarcastic tone. The
signal properties of the word and its phonemes would differ greatly depending on which
context it was spoken in.

We also found that enabling the prosodic transformation helped in terms of scaling the
fundamental frequencies and formants to be more similar to that of the target speaker’s.
Female to male conversions generally sounded more natural, while male to female
conversions sounded more like male to child conversions. Synthesizing female voices is
difficult as empirical evidence has shown that they are harder to model.

Arguably, our group was among the ones which spent the most number of hours in the
18-551 lab, due to the wide scope of the project. Getting a working implementation of
the algorithm not even including prosodic transformation itself was a whole 18-551
project in Spring 2004, and we not only had to do that, but to also incorporate pitch
detection of speech and pitch shifting into our system, which in itself is a difficult
research problem. In retrospect, we could have focused on certain areas of the project,
each a possible project in their own right, and traded away breadth for depth. Areas we
identified that could be the basis of further work include:

1) Robust automated pitch marking for speech:
The quality of the pitch marking of the estimated speech left much to be desired. This
was because of the simple algorithm we used, as well as the signal quality of the
estimated speech. Pitch marking of speech is an active research topic, and a good pitch
marking system will improve the estimates of the source and target speaker
fundamental frequencies.

2) Voice transformation of good quality speech by using pitch analysis:
One of the ideas we had was to find the average pitch of each phoneme a speaker
pronounces and use that in our analysis, but unfortunately we did not have enough time
to come up with an algorithm robust enough for our purposes to detect pitches in
speech. Transformation of an input speech based on detecting the difference in
phoneme pitches between source and target, while preserving the original pitch contour

 22

of the input pitch, or even somehow estimating the pitch contour for the target speaker
(estimating how a target speaker’s accent could affect the way he spoke the sentence!)
could be the basis of future work.

3) Phoneme Segmentation: In the 2nd demo that we did, we established that phoneme
segmentation was not the main problem in this project. Nevertheless, incorporating a
phoneme segmentation algorithm will remove the dependency on DTW, and allow for
more flexibility in the training part.

 23

7. References

1) “Voice Conversion by Codebook Mapping of Linear Frequencies and Excitation
Spectrum”, L. Arslan & D. Talkin, in Proc. EuroSpeech’97, pp 1347 -1450.

2) “Speaker Transformation Algorithm using Segmental Codebooks (STASC)”, L.

Arslan, Technical Report, Washington D.C., 1998

3) “Dynamic Time Warp (DTW) on MATLAB”, Dan Ellis, Columbia University.

4) SPTK Speech Processing Toolkit., Nagoya Institute of Technology, Japan :

http://kt-lab.ics.nitech.ac.jp/~tokuda/SPTK/

5) “Text Independent Voice Transformation”, 18-551 Group 18, Spring’99

6) Implemented PSOLA code in MATLAB

http://sheldon.hygred.com/elec484/project/index.htm

 24

8. Schedule and Assigned Tasks

Week Date Work done
1 Oct 15th – 21st All of us read the papers by Kain and Arslan and tried to

understand exactly what needs to be done for voice
transformation.

2 Oct 22nd – 28th Teng Ji worked on understanding the SoX program, Marcus
started writing the code for training part, and Raman worked on
SPTK and tried to understand their implementation for calculating
LPC coefficients and LSF .

3 Oct 29th – Nov 4th Teng Ji tested our output for training phase to the one obtained
with MATLAB and read the DTW algorithm, Marcus finished writing
the training part and edited parts of the code related to codebook
mapping, Raman tested the SPTK code with MATLAB and ported
the code into our algorithm.

4 Nov 5th – 11th We all prepared the presentation slides. Teng Ji adapted the DTW
code into out algorithm, Marcus finished building the codebooks
and started coding for the transformation part, and Raman wrote
the functions for hamming, windowing, glottal excitation and vocal
tract mapping.

5 Nov 12th – 18th After looking at the output, we met Professor Casasent and he
suggested to us various ways to improve our output speech
quality. Marcus took out the code for target excitation and
tweaked his code to follow this new algorithm, Teng Ji researched
on other ways we could improve the output quality and Raman
looked into the PSOLA references to find some code for PSOLA
implementation.

6 Nov 19th – 25th Marcus imported the online available code for LPC and FFT into
our project after we decided not to use SPTK anymore, Teng Ji
and Raman tested the PSOLA code in MATLAB and started writing
the DSK code for transfer functions.

7 Nov 26th – Dec
2nd

Raman finished writing the PSOLA code in C and tested it with
MATLAB output. Marcus redesigned the code into PC and DSK-side
code. Teng Ji worked on profiling our implemented functions.

8 Dec 3rd -9th We all worked together to prepare the slides for our oral
presentation and wrote the final report. Marcus and Teng Ji
tweaked the PC-side code, and wrote a GUI in MATLAB so that it
could take in a speaker’s voice from a microphone connected to
the computer for the training part.

