
 1 

 
 
 
 
 

More Than Meets the Ears: The Voice 
Transformers 

 
 
 
 
 
 
 

18-551, Fall 2006 
Group – 1, Final Report 

 
 
 
 
 

 
 
 
 
 
 

Ramanpreet Singh Pahwa (rpahwa@andrew.cmu.edu) 
Teng Ji Lim (tlim@andrew.cmu.edu) 

Marcus Chen Caixing (caixingc@andrew.cmu.edu) 



 2 

Table Of Contents 
 
1. Background 

1.1. Introduction 
1.2. Applications 
1.3. Prior 18551 Projects 

1.3.1. Spring 2001 
1.3.2. Spring 2004 

 
2. Implementation 

2.1. Training Part 
2.1.1. Overview 
2.1.2. The TIMIT database 
2.1.3. Dynamic Time Warping (DTW) 
2.1.4. Extraction of LPCs/LSFs and excitation spectrum 
2.1.5. Summary 

2.2. Transformation Part 
2.2.1. Overview 
2.2.2. Pre-emphasis 
2.2.3. Windowing 
2.2.4. Input LPCs and LSF 
2.2.5. Estimation of Weights 
2.2.6. Target LSF and LPCs 
2.2.7. Target Vocal Tract Mapping 
2.2.8. Target Excitation 
2.2.9. Output Speech in Frequency Domain 
2.2.10. De-emphasis 
2.2.11. Summary 

2.3. Post processing Part 
2.3.1. Pitch Scale Modification 
2.3.2. PSOLA on the Output Speech 
2.3.3. Final Output speech 
2.3.4. Summary 

2.4. Attempted Improvements 
 

3. Data Flow 
 
4. Speed and Memory Issues 

4.1. Memory 
4.2. Speed 
 

5. Results 
 
6. Discussion and Further Work 
 
7. References 
 
8. Appendix: Schedule and Assigned Tasks 



 3 

1. Background 
 

1.1 Introduction 
 

Voice transformation is the process of modifying a speaker’s voice (referred to in 
voice conversion terms as the source) to make it sound as if it was spoken by a 
specific (target) speaker. This transformation involves modifications to any aspect of 
the signal like fundamental frequency of voicing, duration, energy, and formant 
positions that carries speaker identity. When we speak we emit a speech pattern 
containing at least two kinds of information: our meaning (message) and our 
identity. Voice transformation enables us to transform the speaker’s speech pattern 
into the target’s speech pattern while preserving the original content (message). 
Hence, it transforms how something is said without changing what is said. 

 
 
1.2 Applications 
 
Voice transformation has numerous applications, such as the areas of foreign 
language training and military.  A TTS (text to speech) system with voice 
transformation technology integrated can produce many different voices. In cases 
where the speaker identity plays a key role, such as dubbing movies and TV-shows, 
the availability of high quality voice transformation technology is very valuable as it 
allows the appropriate voice to be generated, in different languages, without the 
original actors being present. In karaoke, voice transformation can be used to make 
the singer’s voice sound more similar to the original singer’s voice. Furthermore, 
Voice transformation can be used to create “spy toys” that allows users to mask 
their voice to trick the person listening on the other side of the phone. 

 
1.3 Prior 18551 Projects 
 
When we started this project, we researched previous projects and found two 
projects, one in Spring 2001 and the other in Spring 2004, that were similar to ours. 
 
 
1.3.1 Spring 2001 
 
Group 1 in Spring 2001 did a project on “Speech Morphing for Space Marines”. The 
group’s algorithm was based on modification on LPC coefficients and the excitation 
pitch. First, they divided the input signal into smaller frames of about 20ms each and 
found the LPC coefficients in each frame. Then they determined if the current frame 
was a voiced or unvoiced sound. For voiced sounds, they used a pitch detection 
algorithm to determine the pitch of that part of the speech. The voice conversion 
was then performed based on Cumulative Density Function (CDF), which is 
described in [5]. The LPC coefficients were then replaced with the corresponding 
target coefficients. The final output speech is synthesized using the new coefficients 
and an impulse train with the target pitch for voiced sounds or white noise for 
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unvoiced sounds as excitation.   The following figure describes the final stage of 
their algorithm: 
 

 
 
 
The group reported that that quality of the re-synthesized speech was often poor 
and contained pops and cracks. They also mentioned that sometimes the output 
speech was unintelligible and often didn’t sound like the target speaker. Also, their 
algorithm was text dependent i.e. their algorithm expected the target and source 
speakers to speak the same text.  
 
One reason why their output was often unintelligible might be that they were using 
LPC coefficients for the voice conversion. LPC coefficients are very sensitive and 
often prone to distortion. Relatively small changes in the representation of the LPC 
coefficients results in a large change in the pole locations of the vocal tract filter 
model. Hence, this often leads to an unstable filter. 
 
 
1.3.2 Spring 2004 
 
Group 9 in Spring 2004 did a project on voice transformation: “Hey! Stop sounding 
like me!!” They mentioned all these problems faced by Spring 2001 group and tried 
to implement an algorithm that used Linear Spectral Frequencies (LSF) instead of 
LPC coefficients to represent the formant frequencies. The reason they used LSF is 
because: 

1) LSF have a nice quantization property: they can be interpolated from one 
speech frame to the next one unlike LPC coefficients 
 
2) They are quite de-correlated and the values change slowly from one speech 
frame to another frame. Thus, this allows a more accurate inter-frame prediction 
 



 5 

3) They are "naturally ordered" (highest to lowest) and hence the synthesis filter 
is more stable. 

 
They process signals at 16 kHz and 16 bits per sample. They pre-emphasize the 
speech and decompose it into 256 samples of 16ms each. They divided the input 
signal into smaller frames of about 16ms each and found the LPC coefficients in each 
frame. They then convert the LPC coefficients to LSF. 
 
For the training part, they use Dynamic Time Warping (DTW) to time-align the 
speech signals. This makes phoneme extraction as accurate as possible. They then 
find the Average LSF and excitation spectrum for each phoneme. After this, they 
calculate the estimated weights that will be used to find the target LSF from source 
LSF. Then, they use these weights to calculate target LSF and hence, target LPC 
coefficients. They model the target speaker’s vocal tract by using these estimated 
LPC coefficients. After this, they calculate the filter using the weighted combination 
of codebook filters. The output speech is then de-emphasized. The following flow 
chart describes the training part of their algorithm: 
 

  
 
  
The group was successful in making the algorithm text independent (the speaker 
and target can speak entirely different lines now). However, the output sounded 
very robotic and noisy. They owed this to their implementation of excitation signal 
and lack of more detailed codebooks. They also mentioned that PSOLA (Pitch-
Synchronous Overlap-Add) and energy scaling would have been very helpful in 
improving the quality of the output. 
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2.           Implementation  
 
Our System consists of three parts: A training phase, a conversion phase and a post-
processing phase. All three parts process the speech signal at 16 kHz, 16 bits per 
sample. For the first two parts, the speech signal is decomposed into frames where 
each frame consists of 256 samples of 16ms each. In the conversion phase, each 
frame is processed separately and sequentially. On the other hand, a few frames are 
processed together in the post-processing phase.   

 
2.1 Training Part 
 
2.1.1 Overview 
 
The training part, in a nutshell, is where both the source and target speakers speak 
a series of sentences, which are then analyzed, in order to extract information about 
how each phoneme for each speaker sounds.  To do this, we need to somehow 
know what phonemes are being spoken, as well as which segments of that speech 
correspond to those phonemes (i.e. when the phonemes are spoken).  The process 
of identifying what phonemes occur at what time positions in a speech is known as 
phoneme segmentation.  Automated phoneme segmentation itself is a difficult 
research problem, and is beyond the scope of our project.  Instead, we use 
sentences from the TIMIT database with known phoneme transcriptions, make the 
source and target speakers speak those sentences and then time-align our data 
using a technique known as Dynamic Time Warping (DTW) to the TIMIT data so 
that we have data from the 2 speakers that follows the known transcriptions.  At this 
stage, we can then extract the phonemes, and use them to build codebooks 
representative of the characteristics of each speaker’s speech. 
 
In the training part, we use a 16th order LPC analysis to build codebooks containing 
16 LSF and glottal excitation spectrum for each phoneme. We used 60 phonemes. 
The entire training part was done in C on PC. 
 
 
2.1.2 The TIMIT database 
 
As stated earlier, phoneme segmentation is a complicated procedure.  In [2], Arslan 
used Sentence Hidden Markov Models (Sentence HMMs) to detect phonemes in 
order to build the codebooks.  For our project, we decided instead to use the TIMIT 
database as it is a very standardized speech database and it contains the phoneme 
transcriptions for every sentence. 
 
The TIMIT database consists of speech from over 400 unique speakers and the 
phonetic transcriptions for each speech file.  For every speaker, there are ten 
phonetically diverse sentences available, from which a representative codebook can 
be constructed. 
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Unfortunately, although the TIMIT speech files are labeled with a .WAV extension, 
they are not in the standard WAV file format that MATLAB can read.  We used a 
program called Sound eXchange (SoX) to convert it to the normal WAV format.  The 
now-playable WAV files are used later for the source and target speaker’s reference 
while recording their voices. 
  
2.1.3 Dynamic Time Warping (DTW) 
 
During the training part, the source and target speakers are asked to speak the 
sentences at the same rate as the reference voice in TIMIT database. Even though 
we play the reference recording simultaneously as the speech is recorded, it is not 
possible for a person to speak the sentence at the same rate as the reference 
speaker. To overcome this problem, we implemented Dynamic Time Warping (DTW) 
to time align the person’s speech. 
 
DTW accommodates differences in timing between sample words. The basic 
principle is to allow a range of 'steps' in the space of (time frames in sample) and to 
find the path through that space that maximizes the local match between the 
aligned time frames, subject to the constraints implicit in the allowable steps. The 
total `similarity cost' found by this algorithm is a good indication of how well the 
samples match. We implemented this in MATLAB and used the code available on 
web [3]. 
 
 
2.1.4   Extraction of LSF and excitation spectrum 
 
We divide the input speech signal into frames consisting of 256 floats each.  We 
then perform a 16th order LPC analysis to obtain the LPC coefficients for each frame. 
We use these LPC coefficients to calculate the LSFs for each frame. We also 
calculate the excitation spectrum by using the LPC coefficients. As we know the 
transcription of each sentence we exactly know where the phonemes start and end. 
We use this information and the ceiling function to find the start and end points of 
each phoneme. For example, if the phoneme starts at the 500th  sample, we ignore 
the first 12 samples and record the LSF after 512th sample.  If the phoneme ends at 
the 1050th  sample, we end it at the 1024th sample. We record the corresponding 
LSF and store them in the codebook along with the excitation spectrum.  The 
average LSF for each phoneme is then calculated; this is our representation of a 
phoneme for a speaker. 
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2.1.5 Summary 
 
The following flowchart shows our implementation of the training part: 

 

Analyze next frame  

Pre-emphasize, apply 
Hamming Window on 

current frame 

Add small amount of 
random noise to prevent 

all 0s, then compute LPCs 

Compute LSF, and use 
transcription to figure out 

which phoneme it 
corresponds to 

Accumulate LSF in LSF 
codebooks 

Processed  
all frames? 

No 

yes 

Update_codebook() to Take 
average of LSF 

Codebook is ready 

Training Speech 

Time-align with TIMIT 
reference using DTW 

Time-
aligned 
speech 
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2.2   Transformation Part 
 
2.2.1    Overview 
  
In the transformation part, the LSF of the input speech signal are computed frame 
by frame and approximated by a weighted combination of LSF vectors from the 
source LSF codebook. The output speech is obtained by utilizing the vocal tract 
generated with the target LSF and the target speech signal. 
 
2.2.2   Pre-emphasis 
 

The input signal is pre-emphasized using the filter 195.01)( !
!= zzP .  Pre-emphasis 

increases the energy in parts of the signal by an amount inversely proportional to its 
frequency.  Thus, pre-emphasis helps in amplifying the higher frequencies.  This 
process therefore serves to flatten the signal so that the resulting spectrum consists 
of formants of similar heights.  (Formants are the highly visible resonances or peaks 
in the spectrum of the speech signal, where most of the energy is concentrated).  
The flatter spectrum allows the LPC analysis to more accurately model the speech 
segment.  Without pre-emphasis, the linear prediction would incorrectly focus on the 
lower-frequency components of speech, losing important information about certain 
sounds. 
 
2.2.3 Windowing 

 
The pre-emphasized output is then multiplied with a hamming window function 
given by: 
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The beginning and end of the signals are tapered to zeros. This helps in removing 
any discontinuities and hence, results in a smoother transition of the signal frame to 
frame. 
 
2.2.4 Input LPCs and LSF 
 
After applying the hamming window, 16 LPC coefficients are calculated. The LPC 
coefficients are obtained by minimizing the sum of the squared components of error 
e(n) between the original speech signal and estimated speech signal.  We used the 
Levinson-Durbin algorithm to calculate the LPCs.  The LPC coefficients are then 
converted to line spectral frequencies (LSF). 
 
We initially used SPTK (Speech Processing Tool Kit) to calculate the LPC coefficients 
and LSF. However, sometimes the LPC coefficients we obtained were very 
inaccurate.  Also, the code for the SPTK was unwieldy and involved hidden function 
calls that we suspected were not using memory efficiently and sometimes gave 
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unexpected results in our implementation.  Foreseeing having trouble in importing 
the libraries used by SPTK to DSK, we decided not to use SPTK for our project. 
Instead we used the code written by Spring’04 Group for calculating the LPC 
coefficients and converting them to LSF. 
 
2.2.5 Estimation of weights 
 
The input LSF vector ‘w’ is then approximated by a linear combination of the LSF 
vectors ‘Si’ of the source codebook. This also helps us in estimating the phonemes 
that are not present in the codebooks. The method used for estimating the weights 
‘vi’ is given in [2]. 
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The distance ‘di’ corresponding to each codebook is based on the idea that closely 
spaced linear spectral frequencies which are likely to correspond to formant 
frequencies are assigned higher weights. 
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Based on the distances from each codebook entry, an approximate linear spectral 
frequency vector can be expressed as a weighted sum of source codebook linear 
spectral frequencies.  
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In [2], L. Arslan reported that the value of � varies from 0.2 to 2. However to 
simplify the algorithm, we used a constant value for �.  After several tests, we 
concluded that �  = 2 gives the best approximation of the input LSF vector. 
 
2.2.6  Target LSF and LPCs 
 
As the codebooks are created with the same sentences for every speaker, the ith 
phoneme in the source codebook should correspond exactly to the ith phoneme in 
the target codebook for the conversion (one to one mapping). Therefore, these 
weights are applied to the LSF vectors Ti of the target codebook to obtain the 
corresponding target LSF vector wt of the current speech-frame. 
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These target LSF are then converted back to target LPC coefficients using the code 
written by Spring’04 group. 
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2.2.7  Target Vocal Tract Mapping 
 
The estimated target LPC coefficients are used to model the vocal tract of the target 
speaker. In [xxx], the vocal tract filter is expressed as  
 

!

"
=

##

=
16

1

1

1

k

jkw

k ea

V  where 
k
a are the LPC coefficients.  

 
The Spring’04 group mentioned that value of � is not important as the human ear is 
insensitive to phase of the vocal tract. Hence, we decided to assign � as 1 to 
reduce the complexity of the formula and save memory (saving real values 
compared to complex floats). 
  
 
2.2.8 Glottal Excitation Mapping 
 
In [1], for transformation of glottal excitation, the weights that we obtained earlier 
are used to construct a glottal excitation filter which is a weighted combination of 
excitation codebook filters. 
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Following the method described above, we obtained an speech which was more like 
a source speaker. The group in Spring’04 also mentioned this problem and came up 
with a solution to rectify this problem. They decided to modify the way in which they 
had transformed the source to the target excitation. They did this by representing 
the target excitation as a linear combination of the excitation spectra in the target 
speaker’s codebook: 
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They mentioned that the quality of the output speech was very bad but it sounded 
more like the target speaker compared to the source speaker. However, the output 
was robotic. 
 
We tried another method to overcome this problem. We used the excitation spectra 
of the source: 
 

sg EH = ,  
s
E  are FFT of the source excitation 

 

The output speech using this glottal excitation mapping had a much better quality. 
The speech was very easy to understand unlike the output speech from Spring’04 
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group. Also, this helped us in saving a lot of space in internal memory on DSK. Now, 
we could move our codebooks to internal memory as we aren’t using the target 
excitation spectra. Thus, this not only helped in improving the quality of the output 
speech but it also helped us in improving the efficiency and speed of our voice 
transformation algorithm. 
 
2.2.9 Output Speech in Frequency Domain 
 
The output speech is obtained by applying the vocal tract and glottal excitation 
filters to the magnitude spectrum of the input speech signal. This gives us an 
estimate of the DFT correspondence to the target speech signal. 
 )()()( wHwHwY vg •=  

  
The Spring’04 group implemented the transformation in time domain. They obtained 
the time domain signals for glottal excitation and vocal tract mapping by applying 
inverse FFT of these two filters and then used a difference equation to get the 
output in time domain: 
             16 

 y(n) = gt(n) + ∑akt y(n-k) 
                             k=1 

They chose to combine the vocal tract and the excitation in time domain because it 
required less operations and the implementation was very fast.  However, as we 
already had the glottal excitation and vocal tract filters we decided to find the 
magnitude spectrum of the input speech signal and obtain the out in frequency 
domain first. 
We then obtain the output speech in time domain by applying inverse DFT on Y(w) 
 y(n) = real{IDFT{Y(w)}} 
 
 
2.2.10 De-emphasis 
 
Finally, the pre-emphasis we applied earlier to aid in calculating LPCs is removed 
from the output speech signal by applying the inverse pre-emphasis filter: 
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Before the output is played or sent for post-processing, we scaled the output 
according to the energy ratio of input frame to the output frame.
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2.2.11 Summary 
 
The following flowchart shows our implementation of the transformation part: 
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2.3 Post Processing Part – Prosodic Transformation 
 

We implemented Pitch-Synchronous Overlap Add (PSOLA) to improve the quality of 
the output speech. PSOLA is a method used to manipulate the pitch of a speech signal 
to match it to that of the target speaker. In addition to the spectral transformation 
done in the transformation part, pitch of the output speech is also modified to mimic 
target speaker’s prosodic characteristics. 
 
2.3.1 Pitch Scale Modification 
 
The pitch modification algorithm involves matching the average pitch and range of the 
target speaker. We can represent instantaneous target speaker’s fundamental 
frequency linearly in terms of source speaker’s fundamental frequency. 
  btaftf st += )()(  

where, 

 a = 
2

2

s

t

!

!
 ratio of target and source speaker’s pitch variance   

b = 
st

aµµ +    where � s and � t represent the source and target mean pitch 

values. 
 

The instantaneous pitch scaling modification factor �( t) can be set as  
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� affects the gender identity of the transformed voice.  In general, a � lower than 1 
makes the voice sound deeper, even though the fundamental frequency is the same.  
We found that a good estimate for �,  which affects the way the formant frequencies 
are modified, is the midpoint between 1 (no change) and �,  as the output is very 
sensitive to changes in �.   Values of � over 1.5 invariably make the output speech 
sound like a chipmunk from a children’s cartoon, and values below 0.8 make it sound 
like it was not human. 
 
 
2.3.2 PSOLA on the Output Speech 
 
We obtained the publicly available MATLAB code from [6]. Our group tested the 
PSOLA algorithm in MATLAB first. We tried various values for �  and �.  We observed 
a significant change in the pitch of post processed speech. By just setting some fixed 
values for � and �,  we were able to directly change the original male speech signal 
to female speech signal and vice-versa. After being confident, that PSOLA was robust 
enough to work well on most of the speech signals, we implemented the algorithm in 
C.  
We tested the C code and it gave us approximately the same output as the MATLAB 
code. 
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PSOLA calculates the pitch marks in the speech signal by finding the local maxima in 
an analysis block. The difference between two pitch marks basically represents one 
pitch period. To improve on the algorithm, we tried to break down the speech signal 
into smaller chunks and apply PSOLA on each of them before combining the output 
speech signal into a .wav file. We observed a significant improvement in the output. 
We further tried to break down the signals to as small as possible to get the minimum 
number of pitch marks required for PSOLA to work properly. We noticed that PSOLA 
worked well as long as we had more than 15 pitch marks in the input speech signal. 
So, while doing the transformation part, we kept track of the pitch marks and as soon 
as we obtained 16 pitch marks, we estimate the values of � and � and apply PSOLA 
to that part of the output signal. 
 
2.3.3 Final Output speech 
 
The obtained post processed speech signal is then converted to the playable .wav 
format by using the SoX program.  
 
2.3.4 Summary 

   The following flowchart shows our implementation of the post-processing part: 
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2.4 Attempted Improvements 
 

Over the course of this project we tried many ways to improve both the sound quality of 
the output speech, and the similarity of the output speech to the target speaker’s 
speech. 
 
- We tried varying the order of LPC/LSF analysis, but it turned out that 16 was the sweet 
spot in terms of getting good representative LPCs.  Using too many LPCs will result in 
spurious peaks, while too few will cause formants to be lost.  As a rule of thumb, 16 
LPCs is a good number for our sampling rate of 16kHz. 
 
- We also tried incorporating glottal excitation transformation filters into our project 
design as suggested in [1], but the quality became a lot worse, with no apparent 
benefits. 
 
- Finally, on the day of the demo, we tried a completely new method suggested by 
Professor Casasent.  The details of that method are documented below in the Results 
section of this report. 
 

3. Data Flow 
 
To reduce the complexity of the project, the PC was responsible for the training phase 
of our voice conversion system.  We did this as the quality of the voice conversion was 
our top priority, given the difficulty previous 18-551 project groups had with such 
projects, instead of more mundane things like user interfaces.  Using the PC for the 
training phase meant that we could utilize existing MATLAB routines to expedite the 
development of the user I/O for the training phase.  This in turn allowed us to 
concentrate more on the voice conversion itself.  Using the PC also made for easier 
debugging, which was something we had to do a lot over the course of the project. 
 
Training phase 
The training speech is recorded at a sampling rate of 16kHz at 16 bits/sample, time-
aligned using DTW to reference sentences and then converted using Sound eXchange 
(SoX) to single-precision floating point numbers.  Alternatively, the user can supply his 
or her own existing phoneme-transcribed WAV files for training purposes, and then use 
SoX to convert it to a binary file of 16-bit, 16kHz floats.  The PC-side program will then 
build codebooks based on the known location of the phonemes (using the default 
reference transcriptions in the first case, and user-specified transcriptions in the second 
case), and then transfer the codebooks over to the DSK for processing.  The DSK then 
receives the codebooks and stores it in the on-chip memory. 
 
Transformation phase 
The user starts the transformation phase by specifying a WAV file from the source 
speaker to be the input speech to be transformed.  The WAV file is converted by SoX to 
a binary file of 16-bit floats at a sampling rate of 16kHz, which is then sent over to the 
DSK for voice conversion processing.  After the DSK has processed the speech and done 
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the voice conversion, it sends the transformed speech back to the PC in the same binary 
float format that it received the input speech in.  The PC writes the transformed speech 
without conversion to disk.  Therefore, to listen to the output, conversion back to the 
usual WAV file format needs to be done using the SoX program. 
 
 
 

 
Data Flow Between PC and DSK 

 
 
 

PC DSK 

1) Record training speech 
for source & target in WAV 
format  
2) Time-align with known 
speech with DTW 
3) Convert aligned speech 
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4) Build codebooks with 
floats and known phonemes 

Store codebooks 

Training: 

Record input speech or use 
existing WAV file, convert to 
floats 

Store input floats 
Transformation: 

Store output floats, convert 
to WAV Voice Conversion 
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4. Speed and Memory Issues 
 

4.1 Memory 
 

Memory Summary: 
Item Size in bytes 

ONCHIP_RAM 
Program Code 0x13a60 = 80,480 bytes 
Source Codebook 17 coefficients * 4 bytes/float = 68 bytes 
Target Codebook 68 bytes 
EDMA paging buffer 20 frames * 256 samples/frame * 4 bytes/sample =  

20,480 bytes 
SDRAM 

4s of Input speech 16kHz*4s*4 bytes/sample = 256,000 bytes 
4s of Output speech 256,000 bytes 
 
Data Size: 
 
Compared to the Spring 2004 group’s project, our project takes up much less memory.  
This was because of two design decisions we made.  Firstly, we stored floating-point 
numbers in a raw format and saved them in binary files.  The previous group, however, 
saved their floating-point numbers in a text format.  While our format only requires 4 
bytes to represent one single-precision floating-point number, theirs required up to 12 
bytes for one number, since each digit was represented by an ASCII character, which 
takes up one byte.  Secondly, we did away with the excitation codebooks, electing 
instead to use the input excitation.  This saved us 60 phonemes * 256 floats * 4 
bytes/floats = 61,440 bytes per speaker.  A consequence of this was that the codebooks 
could now be stored on the on-chip memory. 
 
a) Codebooks 
This is a comparison of codebook sizes for 1 speaker for our system: 
 
- i) Storing excitation information and LSFs (initial approach): 
(17 LSFs + 256 excitation values) * 4 bytes/ LSF * 60 phonemes = 65 kB 
 
- ii) Storing just LSFs (final implementation): 
(17 LSFs) * 4 bytes/LSF * 60 phonemes = 4 kB 
 
b) Input Data 
1 frame of 256 samples of audio takes up 256 samples * 4 bytes/sample = 1kB/frame. 
In this project, we deal with speech files of approximately 4s in length at a 16kHz 
sampling rate, i.e. 16kHz*4s = 64k samples.  The average speech data thus takes up 
about 64k samples * 4 bytes/sample = 256kB of memory, and will fit on the onboard 
RAM without any problems. 
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4.2 Speed 
 
After profiling individual functions, we discovered that the main bottleneck was the 
findFFT_mag() function, which is called 3 times inside process_a_frame(), and not the 
prosodic transformation as we had previously suspected.  With that in mind, we set 
about doing the following optimizations: 
 
1) Using the optimized TI FFT routine introduced in Lab 2, instead of the FFT code that 
the previous group used.  This resulted in a savings of 40,000 cycles, or 25% of the 
cycle count of the original findFFT_mag() code at –o3 optimization.  
 
2) Using EDMA paging to page in 20 frames of input speech at a time. 
 
3) Storing the codebooks on internal on-chip memory instead of external memory for 
faster access. 
 
Other optimizations that could have been done, but were not implemented due to time 
constraints, include: 
 
i) Precomputing the Hamming window, and storing it in a lookup table on on-chip 
memory. 
 
ii) Ping-pong buffering to do data transfers while doing the computations for the voice 
transformation before prosodic transformation. 
 
Our optimizations resulted in a reduction in cycles needed by approximately 37%. 
 

Profiling Summary: 
 Without 

optimization 
Full optimizations (-o3, 
EDMA paging, TI 
code,etc.) 

process_a_frame(): 
Does voice transformation without 
prosodic transformation on a single 
frame 

1,750,518 1,101,423 

prosodic_transformation(): 
Does prosodic transformation on 
the whole array that is the result of 
calling process_a_frame() on all 
input data 

Total: 81,398,713 
Amortized cost 
per frame: 
442,384 

Total: 76,526,030 
Amortized cost per frame: 
415,902 

process_a _frame() subroutines 
findFFT_mag() 216,000 110,000 
emphasis() 10,204 10.084 
de_emphasis() 10,881 10,890 
signal2Lpc() 104,566 101,151 
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5. Results 
 
Demo 1 
In the lab demo, we first demonstrated using our system to convert speech from one 
female speaker in the TIMIT database, to a male speaker in the TIMIT database, and 
vice versa (i.e. the source could either be the female or the male, and the target would 
be the other speaker), and we showed the results with and without prosodic 
transformation  The training set was a set of sentences from each speaker from the 
TIMIT database, and the test set was a sentence from the source speaker that was not 
in the training set. 
 
The result of this first demonstration did not have the clarity and similarity to the target 
speaker as we had hoped for, but at least it sounded like speech, albeit from some 
unknown speaker.  Compared to our implementation of the previous group’s (Spring 
2004) algorithm, the sound quality of the output was definitely better because the 
excitation signal came from actual speech instead of being a weighted sum of 
excitations.  With prosodic transformation turned on, the pitch of the output speech 
sounded more like the pitch of the target speaker, but one still could not say that the 
output speech sounded like it came from the target speaker. 
 
Demo 2 
After listening to the above results, Professor Casasent then suggested 2 things to 
improve our project: 1) checking the phoneme segmentation accuracy of our system, 
and 2) a new approach which involved storing signals of whole phonemes of the target 
speaker for a better quality output.  We then worked overnight on a MATLAB 
implementation of this concept that would strive to give insights on these 2 issues.   
 
Basically, our new implementation only stored target phonemes.  Instead of doing 
phoneme segmentation, we went one step further: use input speech which we know the 
phoneme transcription of (courtesy of the TIMIT database), and replace, phoneme by 
phoneme, input speaker phonemes with target speaker phoneme signals stored in the 
training phase.  This killed two birds with one stone: we would see the result of the 
system with perfect phoneme transcription, using the new approach Professor Casasent 
had suggested.  If even with perfect phoneme transcription, the new approach failed, 
then incorporating it into our system with less-than-perfect phoneme transcription would 
be futile. 
 
As it turned out, the result of the above implementation was a choppy output speech.  
The words were almost impossible to recognize due to the sudden changes in pitch and 
phoneme duration.  Sentences usually follow a predictable pitch contour and cadence, 
with the pitch and speed of each phoneme partially dependent on the tone of the 
sentence, but in this case the pitch and speed of each phoneme was arbitrary since they 
were taken from different training sentences.  We postulated that detailed pitch and 
duration analysis could have been applied to these phonemes within the PSOLA 
framework to try to synthesize natural-sounding speech, but did not implement that as 
that would have been enough for a whole new 18-551 project! 
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6. Discussion and Future Work 
 
Although we reused the input speaker’s excitation signal in the synthesis of speech, the 
output speech quality was still vastly different from the quality of the input speech.  The 
words were intelligible but the voice speaking it was gravelly and of indeterminate 
identity.  One reason for the poor synthesis of speech was that the representation of a 
speaker’s phoneme by taking the average LSFs per frame was not good enough.  
Analysis of the whole phoneme, instead of breaking up the phoneme into frames is 
required to capture a good quality representation of every phoneme.  This may require 
the algorithm to adapt to different lengths of representative codebook entries, and can 
increase the complexity. 
 
Also, the TIMIT database, despite providing ten phonetically-diverse sentences for each 
speaker, does not have enough data to enable us to capture phonemes pronounced in 
different contexts.  For example the word “really” can be pronounced very differently, 
depending on whether the speaker is using a normal tone, or a sarcastic tone.  The 
signal properties of the word and its phonemes would differ greatly depending on which 
context it was spoken in. 
 
We also found that enabling the prosodic transformation helped in terms of scaling the 
fundamental frequencies and formants to be more similar to that of the target speaker’s.  
Female to male conversions generally sounded more natural, while male to female 
conversions sounded more like male to child conversions.  Synthesizing female voices is 
difficult as empirical evidence has shown that they are harder to model. 
 
Arguably, our group was among the ones which spent the most number of hours in the 
18-551 lab, due to the wide scope of the project.  Getting a working implementation of 
the algorithm not even including prosodic transformation itself was a whole 18-551 
project in Spring 2004, and we not only had to do that, but to also incorporate pitch 
detection of speech and pitch shifting into our system, which in itself is a difficult 
research problem.  In retrospect, we could have focused on certain areas of the project, 
each a possible project in their own right, and traded away breadth for depth.  Areas we 
identified that could be the basis of further work include: 
  
1) Robust automated pitch marking for speech: 
The quality of the pitch marking of the estimated speech left much to be desired.  This 
was because of the simple algorithm we used, as well as the signal quality of the 
estimated speech.  Pitch marking of speech is an active research topic, and a good pitch 
marking system will improve the estimates of the source and target speaker 
fundamental frequencies. 
   
2) Voice transformation of good quality speech by using pitch analysis: 
One of the ideas we had was to find the average pitch of each phoneme a speaker 
pronounces and use that in our analysis, but unfortunately we did not have enough time 
to come up with an algorithm robust enough for our purposes to detect pitches in 
speech.  Transformation of an input speech based on detecting the difference in 
phoneme pitches between source and target, while preserving the original pitch contour 
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of the input pitch, or even somehow estimating the pitch contour for the target speaker 
(estimating how a target speaker’s accent could affect the way he spoke the sentence!) 
could be the basis of future work. 
 
3) Phoneme Segmentation:  In the 2nd demo that we did, we established that phoneme 
segmentation was not the main problem in this project.  Nevertheless, incorporating a 
phoneme segmentation algorithm will remove the dependency on DTW, and allow for 
more flexibility in the training part. 
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8. Schedule and Assigned Tasks 
 
 
Week Date Work done 
1 Oct 15th – 21st  All of us read the papers by Kain and Arslan and tried to 

understand exactly what needs to be done for voice 
transformation. 

2 Oct 22nd – 28th  Teng Ji worked on understanding the SoX program, Marcus 
started writing the code for training part, and Raman worked on 
SPTK and tried to understand their implementation for calculating 
LPC coefficients and LSF . 

3 Oct 29th – Nov 4th   Teng Ji tested our output for training phase to the one obtained 
with MATLAB and read the DTW algorithm, Marcus finished writing 
the training part and edited parts of the code related to codebook 
mapping, Raman tested the SPTK code with MATLAB and ported 
the code into our algorithm.  

4 Nov 5th – 11th  We all prepared the presentation slides. Teng Ji adapted the DTW 
code into out algorithm, Marcus finished building the codebooks 
and started coding for the transformation part, and Raman wrote 
the functions for hamming, windowing, glottal excitation and vocal 
tract mapping. 

5 Nov 12th – 18th  After looking at the output, we met Professor Casasent and he 
suggested to us various ways to improve our output speech 
quality. Marcus took out the code for target excitation and 
tweaked his code to follow this new algorithm, Teng Ji researched 
on other ways we could improve the output quality and Raman 
looked into the PSOLA references to find some code for PSOLA 
implementation. 

6 Nov 19th – 25th  Marcus imported the online available code for LPC and FFT into 
our project after we decided not to use SPTK anymore, Teng Ji 
and Raman tested the PSOLA code in MATLAB and started writing 
the DSK code for transfer functions.  

7 Nov 26th – Dec 
2nd 

Raman finished writing the PSOLA code in C and tested it with 
MATLAB output. Marcus redesigned the code into PC and DSK-side 
code. Teng Ji worked on profiling our implemented functions. 

8 Dec 3rd -9th  We all worked together to prepare the slides for our oral 
presentation and wrote the final report. Marcus and Teng Ji 
tweaked the PC-side code, and wrote a GUI in MATLAB so that it 
could take in a speaker’s voice from a microphone connected to 
the computer for the training part. 

 


