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INTRODUCTION

Problem Description:

The restoration and modification of images in a way thatotsdetectable by an observer who has not seen the
original picture is a very old practice — dating back to theuaharestoration of medieval art by filling in any gaps
that may have distorted the artwork over the years. In mddees, the digitizing of analog images to ‘live forever’
and preventing their decay, often results in defects likechast etc. that have to be removed. This practice is
known as inpaintingThe aim of inpainting is to reconstruct the missingamdged portions of the picture, in order
to restore its unity. The obvious need to restore imagesn@xtfrom paintings to photographs and films. The
purpose, however, remains the same — to recondition amyiatation (e.g., cracks or scratches in paintings and
photographs), or to modify (e.g., add or remove eleniietsed eyes), the goal being to produce a modified image
in which the inpainted region is merged into the origimaade so well that an observer is not aware of the
modification. The filling-in of missing information &n important aspect of image processing, with applicatiats t
range from image restoration, to image coding and transmig¢sig., recovering lost packets), and special effects
(e.g., removal of objects).

Traditionally, artists performed image inpainting manuallyich was a very cumbersome and tedious process.
Motivated in part by the work of Nitzberg-Mumford and Mas+Morel, Bertalmio et al have developed algorithms
for digital inpainting of still images that produce vempressive result’]. However, the algorithm usually takes
several minutes for the inpainting of a relatively small are@npting our group to research other faster algorithms
that can produce similar results in lesser time, with addedréesat

Solution and Project Goal:

Our goal in this project was to find ways to remedy thmary defects that afflict digital and scanned photographs,
using a combination of algorithms which would make tipainting process faster, and would also require less user
input.

PRIOR WORK

Previous Project:

As discussed in class, and in the presentation, no pog@agbthas covered this topic

Other Work:

Image restoration and repair can be more efficiently tackled assystem that automatically fills in damaged areas.
This technique, better known as digital image inpainting, pi@seered by Marcelo Bertalmio and Guillermo Sapiro
[1] in which they used partial differential equations (PDEshtmel the way pigments of various shades of gray
might seep into a central pool from the shoreline. In oug,dhss would be the defective areas in the image. These
equations specify the directions and rates at which the sitad®es throughout the pool. After a number of
iterations, this procedure fills in the blank area. For ardolage, the technique is applied independently to each of
the three grayscale images, which can then be combined to geneskiterandering.

In Bertalmio’s papefl], the image smoothness information, estimated by a Laplactinoh(\wwan be approximated

by a convolution sum), is propagated along the isopltitestions (bands equal on the grey-scale), estimated by the
image gradient rotated 90 degrees so that the propagatiarsgerpendicular to the edge of the boundary, growing
the correction inwards into the corrupted region.
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The Total Variational model proposed by Chan and JBgruses an Euler-Lagrange equation together with
direction dependent diffusion to maintain the isophoteections. This method has the benefit of preserving edges
and lines better. A further improvement to the Total Vanmtiotechnique is made in the Curvature Driven
Diffusion technique, also pioneered by Chan and $8knn this method, diffusion is driven along the (bandfls
equi-intensity and color) isophotes, allowing inpaintifidarger areas. The premise behind variational approaches is
to postulate an energy, which is minimized by the extensidhe image to the corrupted region. Intensity of the
pixels and their positions are all weighted and incasat in the algorithm.

Most algorithms employ partial differential equations né ort or another to describe the flow of the inpainting
which ought to follow the strength and direction of sugrounding isophotes. However, probabilistic methddls
can also be employed, though to produce the best inpanesudjs, the probabilistic and variational approaches are
used in tandem. Probabilistic methods propose that a pligbdistribution can approximate the essential features
and interactions of different structures relevant in thetqdraph. Bayesian statistics and Markov models are
extensively employed in these methods.

There are a third group of solution methods that are fgslsimproduce similar results in most cases, and are far
faster. These methods are those such as normalized convdntibother convolution based techniques. The
premise behind normalized convolution is the interpolatiosigiial we do have, to reconstruct the lost segment.
The missing values of the signal are calculated by interpojaimrally done by convolution. The convolution can
be made more effective by a normalization operation that tateadécount the possibility of missing samples.

In Knutsson and Westiip] the problem of the image analysis when performed on irreguanpled image data is
considered under the theory of signal and its certainty. i$his consider the separation of both data and operator
applied to the data in a signal part and a ‘certainty’ paidsiklg data in irregularly sampled series is handled by
setting the certainty of the data equal to zero. In the case atainagata, an estimate of certainty accompanies the
data, and this can be used in a probabilistic framework.tfidwry that they developed following these ideas is
called Normalized Convolution

Another convolution based technique by OlivgBh repeatedly convolves a filter over the missing regionfiap t
the information from the edges is diffused inwards ® d¢brrupted region. Both these convolution processes are
reasonable in reconstructing images but falter in terms ofuteso The corrupted segments get populated, but
everything tends to get blurred.

ALGORITHMS

The different types of algorithms, in the past, have brobdgn classified as: (ifjexture Synthesis algorithms that
generate image regions from sample textures, anthfiginting techniques that fill in small gaps and holes in the
pictures. Texture Synthesis algorithms work better wikttires’, two-dimensional patterns that repeat; Inpainting
techniques focus on linear structures such as lines anduesrihat can be thought of as one-dimensional patterns.
The most efficient algorithms included as part of the praeet— the Convolution Method, the Total Variational
(T.V.) method, and the Exemplar Method.

Why did we choose these?

The convolution method exhibited compelling reasons &ckél It was the fastest algorithm on thin defects (less
than 9 pixels across) producing results comparable taliee candidates.

Traditional texture synthesis models, as well as variatioodkts were considered. They both inpainted large sized
defections. However, the variational models respected geomenigarpes of the picture. This was done by
calculating a set of partial differential equations to detegrhiow to grow the isophotes (bands of equal color and
intensity). However, as diffusion was part of the precekirring would occur as the inpainting proceeded inwards.
Research has shown that it is very computationally expendilwehg inpainting time proportional to the area of the
defect.
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Traditional methods of texture synthesis would grow imifeom the boundary of the corrupted region. Resatutio
is maintained as there is no diffusion involved — teedisampled from the rest of the image are plugged into the
inpainted block.

However, both traditional texture synthesis and theatiarial models were discarded as most images are a
combination of textures and geometry. The chosen algorittevexemplar based algorithm, was chosen. It
maintains the resolution of a picture, using texture syrgmesthods. However, the synthesis is guided by
geometrical attributes in an image (the colors representifegetdit objects in a picture). It finds and linearly
extends the isophotes of the image through texture syntgesiging these sharp color gradients before attacking
the rest of the boundary, maintaining the lines and etig¢sléfine the geometrical attributes of an image. It thus
combines the advantages of the variational and textureesistimethods, leaving behind their shortcomings.
However, it is more computationally expensive than the alotien method. As traditional texture synthesis
methods don't find color gradients to grow on, thistinod is more expensive than traditional texture synthesis
algorithms.

Convolution Method:

The technique of blurring the colors out into the missaingas is called Convolution. Mathematically, repeated
blurring and diffusion are identical. Isotropic diffusics the idea behind these methods. When an image is blurred,
the colors of each pixel are averaged with a small podidhe color from neighboring pixels. That pixel, in turn
contributes a small part of its color to each of its neighbihat is, colors from the untainted areas are spread into
the corrupted zones in an even way. Directions and isosopa®t given a weighting and as the zones of corruption
are narrow, we don't have to diffuse very far and themehtions resulting from such diffusion are not vengag.

This method works well for deformations that are not Bigarge amount of surface area may be corrupted, but as
long as the corruptions themselves are ‘thin’ in naturealtparithm works well. This is good as most deformations
are pen marks and scratches which are thin in nature. $ioigabd at filling in the picture when we only have a few
components of the original signal. This happens if yteceiving an image over a noisy or faulty line.

The general idea is to create a kernel of some sort (an N x fik)rthat is repeatedly convolved over areas of
picture, which fills in a pixel based on surroundingebixalues. The values in the matrix determine the way it will
spread colors from the surrounding scene into the dedurone. This process is repeated over and over until the
image is restored. Such a method has the benefit of beingastrgs only multiplication is used. An example of
such a kernel is given below:

a=0.073235
a a c c

b =0.176765
Ll O b c|l 0] e

c=0.125
a a clele

Total Variation Method:

The Total Variation (TV) method minimizes the absolute vatfighe gradient of the image. The reason for
implementing the TV method is because it is much betteeatnd) with sharp edges than other methods are. For
TV there is a high degree of nonuniqueness which haldsdven when we minimize the TV over an appropriate
space. This lack of uniqueness is because of the high ddggmmetry or the fact that all monotone jumps are
treated equally. The numerical solution propagates the bouddta inwards at equal speeds, so a minimizer that is
symmetric at the mid point will be chosen.

Project Final Paper Page 5 of 20



18-551 Digital Communications and Signal ProcesSipstems Design, Group 6

l |
| |
_— ' | nonuniqueness |
1] arbitrary ! . |
i : : ' : arbitrary
1 1 1 H |
: ' 1 |
| 1 i |
0 l 1 H V
a a b’ b
inpainting
I€Z1011

In this method we solve the following ODE:

d

% (|_) =0 forz€[a,b] ufa)=1, u(b)=0

The following graph shows O as the inpainted region bedlirections as the computed neighbors. This method
uses the neighbors of the corrupted region to calculate thénpaimted region. Each direction (North, South, East,
and West) is equated using a circular shift and set abbw@igaluesu, uy, etc)

|

SW SE
After these are computed, the weights are computed. Timputation is shown in the following equation, A. This
equation is the gut of the numerical implementation:

1 -
| V| = Ir—-b.:"(u,r._- —up)? + [{ung +uny —ug —ugg)/4]
i

The key to this method is in this approximation and thgederacy of the PDE. After computing the weights, the
method calls for approximating the new inpainted regiore dduation becomes

1
= e P = A
V) B

1 I
] = Z —_— — ) hp = —/
= V| Y oeh, WG
Peho ¥ by using Yehc
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We can solve this using a Gauss-Jacobi iteration scherfiaefar systems, which gives the following update®f
Y to u™ by the following equation:

() (n—11_ (n=1)
vy o= E he Hup

Pcha

Due to h being a low-pass filter, the iterative algorithnstéble and satisfies the maximum principle. The final
process is multiple iterations. This is done to achiegéd#st result.

Exemplar Method:

The Exemplar method can essentially replicate both texture tamttuse. However, the success of the method
depends highly on the order in which the filling proceéldse procedure involves selecting a target region to be
filled. The size of the template window is specified as a 9x8l pvindow. After the target region and window size
have been decided on, we calculatedtrdidence term and thedata term.

Each pixel, in the algorithm, has a specific color value, armhfidence value that represents the confidence in the
color value. Furthermore, patches along the fill front hapeaity value which establishes the order in which the
patches are filled. The general structure of the algorittas fsllows —

o

Say we start with a patc ~ F, centered at point ‘p’. The priority of this patch isccgdted as:

Pip) =C(p)Dip).
Where C(p) is the confidence term and D(p) is the data tedoylated as:

a5 Ol Vit .n
Cip) = Eq._qpu.ﬂ ~QJ1 (p) = VI ng
(W

Here, Tl defined as the area of the patch, ™ds the normalization factor. We calculate the priorities for all
patches along the boundary of the fill region. The confidesice, tC(p), helps in filling those patches first which
have more of their pixels filled in already, either because Werg never part of the target region, or because they
were filled in earlier. The data term D(p), gives patches taat higher color gradients a higher priority. Thus the
priority with which we fill a patch depends on how mapiyels are already filled in within that region, and how
high a color gradient exists within that patch.

A representation of the process is explained as —

Source region

ﬂ'l’argl-l reglon
a

As the filling process goes on, the pixels towards theetdrgundary or contour will have higher confidence values,
and will be filled before the pixels at the center of the tamggion which have lower confidence values. The Data
term D(p) depends on the isophotes hitting the contowagh iteration.

A clearer way to understand this procedure is to look ataloeillations in the MATLAB code.
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The gradient, Ix ly is calculated for the image coordinatesagh of the colors — R G B (Red, blue and green). The
gradient measures the change in the color components, thugimgdse change in amount of Red, Blue or Green
in each pixel. This means that there would be a higher gradiunt at color boundaries. (For example, for the
pixels at the boundary of the sky and grass, the gradidunt is higher than the gradient values for pixels irsiye
region.)

This is for Red. The same line is repeated for img(:an2)img(:,:,3) (blue and green)
[Ix(:,:,2) ly(:,:,1)] = gradient(img(:,:,1));

% add Red blue green components, divide by the s ize
Ix = sum(Ix,3)/(3*255); ly = sum(ly,3)/(3*255);

Convole the flll region with the patch and for all valuesstbre them in dR
dR = find(conv2(fillRegion,[1,1,1;1,-8,1 ;1,1,1], 'same' )>0);
N stores the gradient of the not fill region. We get theesponding location in dR from this gradient, and
normalize it.
[Nx,Ny] = gradient(~fillRegion);
N = [Nx(dR(:)) Ny(dR())];
N = normr(N);

The calculated dR is used to get the patch with the highesttyrisay best patch and fill it with data extracted
from the source region.

The priorities and confidence values are calculated as —
g = best_patch(~(fillRegion(best_patch)));
C(k) = sum(C(q))/numel(best_patch);
4 Number of elements in best_patch

(This code follows the definition for confidence termsted earlier)
Patch priorities = confidence term * data term
D(dR) = abs(Ix(dR).*N(:,1)+ly(dR).*N(:,2)) + O .001,;
priorities = C(dR).* D(dR);
After this, we find the best exemplar patch, such that it hasmenum difference with respect to the patch being

filled in. The data from the best exemplar patch is copiede@étch being filled in, and the confidence values are
updated. This procedure is repeated till all the pixels bee fi
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IMPLEMENTATION

Diffusion Inpainting Flow Diagram

Allow user to load corrupted image.

Allow user to draw a mask over the corrupted region
Saves mask.

Calls the main core program that communicates with EVM.

e On return from the EVM, allows user to retrieve corrected image and display in window.

PC Slde e Read corrupted image and place in

memory as a 1-dimensional array of RGB
color components.

. Read mask, and store in memory as an
array of 32-bit integer values where each
bit is mapped to a pixel. The array index
and the index within the 32-bit integer
determine the position of the corresponding
pixel. e« Write out to file

. Retrieve image from EVM

. Take corrected pixel data and overwrite old
pixel data in PC memory.

. Create contiguous memory blocks to be
transferred to the EVM

¢  Transfer these blocks to the EVM.

EVM Side

. Receive memory blocks (one at a time).

. Disassemble the memory block and extract necessary components. (width, height, pointer to pixel data,
pointer to mask data etc)

. Perform diffusion by convolution with a 3x3 kernel.

. Send corrected block back to PC

Project Data Flow

At the onset, the user is presented with a friendly gcaphiser interface, which allows the user to load the
corrupted image into the GUI. The user can then draw oas& of variable user-selected width over the corrupted
regions. The user is then allowed to select the algoritegnlish to use to fix the corrupted region, the numlber o
iterations they wish the algorithm to run for, as well ahbip or external memory on the EVM.
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If exemplar is chosen, the latter 2 choices are ignoredhanthiask and the corrupted image are saved. The user is
then directed to MATLAB, where they can use the exemplar igthgotto correct the image. After the exemplar
algorithm is complete, the user can compare the originaldnsade by side, with the corrected image.

If diffusion is selected, a separate program (for which tlieceocode is provided at the end of this report) is called
with the appropriate arguments. Within this program, theupted image is read in as an unsigned char 1-
dimensional contiguous array of RGB components for eaxbl i the image. The mask is also read in and
converted to an integer array of Boolean values where each B2elgier represents 32 pixels. Thus for example, an
image of size 200x160, would have a pixel array contai@dO§L160L 3 = 96000 elements, and a mask array

200C160
of T =1000 elements. These arrays along with other pertinent andilusébrmation such as the

dimensions of the image, and the number of iterations tabe dn the image, are then collectively arranged into
one massive chunk of contiguous memory, and then s¢heé tBVM. If it is the case that this chunk of memory is
too large to fit in a single bank of EVM SDRAM, the chuslsplit up inton components, wheneis determined by
dividing the total size of the memory chunk by the siza single bank of SDRAM memory (4 megabytes).

Int
/ \
4 Bytes 4 Bytes 4 Bytes 4 Bytes 4 Bytes Diffusion Kernel (9 Elements Float )

g i Gl G

]Width I|IHeight ]Channell|llteratinnsl| Prev Remainderlll | | | | | | | | |
1 Pixel SETUP

e

1 Byte Each
N S — IMAGE

|G |B

Int (32 Boolean)

PP PR
MASK

Once a chunk is received by the EVM, the EVM disassembleshtivk. Variables such as width, height, number of
iterations, pointers to the pixel and mask arrays are storgldbal variables for use throughout the program. Once
all these values have been obtained, the process of diffsdi@yiin.

% 78}

0 % that averages the value of the

¥ %K

surrounding pixels into the middle pixel. Dependinglmuser's memory selection in the GUI (on-chip or
external), one of the 2 types of memory schemes is used.

The diffusion effect is obtained by a convolution of & 8ernel
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If off-chip was selected, pixels that were being used for calonktivere retrieved from external memory every
time they were needed. The calculated pixel, was stored in aléable in on-chip memory until the entire kernel
had been traversed. This newly calculated pixel was then tisghbsick into external memory.

If on-chip was selected, a 57,600 bytes of the image was dopaeoh-chip memory, with an additional 600 bytes
copied in for the Boolean mask data. Calculations were thdéarmed on the data in on-chip memory and the
results were all stored on-chip uril calculations on the pixels in on-chip memory were compl@tee

completed, the results were transferred back to externabrgeemd new data was once again transferred in. This
process of course was repeated for as many iterations afsesplegithe user.

Once diffusion is complete for that chunk, it is sent ltadke PC. On the PC side, the corrected pixels are
extracted from the returned memory chunk and are used teriteethe old pixel data in the PC memory. If there
existed more than one chunk, the exact process would be repeatitthe chunks until all the chunks have been
processed. At this point, the new corrected pixels are sawetlle on the PC.

The user can then retrieve the corrected image and displayé GUI.

Memory Performance and Analysis:

As mentioned, 2 types of memory usage schemes were usespddtkof the overall algorithm differed based on
the type of memory use, but also on the percentage of mastagevof the image.

It was found that corrupted images with small mask coverage astually inpainted quicker using external
memory over on-chip memory than images with larger neaskrage. This stems from the fact that in the external
memory scheme, no unnecessary paging from external memiotgroal memory is done. Thus the additional
overhead that comes with paging in data that does NOTtoexgxbrated on, is not present. However, with this
method each pixel must be accessed in external memory 9 timnegtsey are not cached in on-chip memory at all.
This is true even if those pixels were used in an immelgigtevious calculation. Thus for larger mask coverage,
more pixels have to be accessed 9 times without caching.

Conversely, for images with a large percentage of mask covenaigen-chip scheme with DMA paging performs
better than the external memory scheme. This is due to thtadadarger mask coverage implies more calculations.
However, unlike with the external memory scheme where each npe@éds accessed from external memory each
time it is needed, our on-chip scheme guarantees that piaeisafprior calculation are already in fast on-chip
memory, thus the time needed to access these pixels is 19aswdkan if they were off-chip. Unfortunately, since
our implementation sends the entire image to the EVMuydhiaty the non-corrupted regions, the additional overhead
of paging in the non-corrupted regions significantlyré@ases the time needed to process the image.

The idea that the additional time used by our DMA schemepiicily due to the additional unnecessary memory

transfers that must be done on uncorrupted portiotieedfnage is supported by the test case where the ever so
popular Lincoln image is reduced to only the corruptetigro

EX i -

Full Lincoln Image (372x200) Corrupted Region of Lintc@872x160)

| Image |  Mask | External Memory | On-chip (memcpy)| On-chip DMA) |
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Coverage
(%)
Lincoln (Full Image) 1.19 12.67 seconds 30.34 seconds 9k&donds
Lincoln 3.476 8.775 seconds 7.812 seconds 6.25 seconds
(Only Corrupted region)

Time (seconds)

35

30

25 4

20 4

15 A

10

Implementation Times

@ Lincoln (Full)
@ Lincoln (Only Corrupted)

-

External
Memory

18

On-chip On-chip (DMA)
(memcpy)

Implementation

Notice that when the image was reduced to only the corrupggah, DMA outperformed external memory by
almost 3 seconds - an almost 30% increase.

Function Name and Total Cycles for 100

iterations
diffusion mem_transfer
External Memory 812816000 Not used
On-chip (memcpy) 758508451 220506049
On-chip (DMA) 538277980 274000

In cycles, even though the external memory implementaties dot use the function mem_transfer at all, it still

takes more cycles to perform the diffusion 100 times. Wetsannote that the additional time spent by the on-chip
implementation that uses memcpy as opposed to the orrgblimentation that uses DMA, is solely a result of the
additional cycles needed by the memcpy function. This isginly due to the fact that unlike the C library function
memcpy, the DMA functionality on the EVM is a separatelivaire entity and can execute efficiently without using
the EVM CPU. Notice that if in both the case of the menmaipy the DMA method, if we subtract the total number
of cycles needed for the memory transfer, we end up witogpnately the same number. Thus indicating that the

actual time needed to perform calculations once the memorpiséhip memory, is practically equal.

On-chip (memcpy)758508451 — 220506049 = 538002402 cycles

On-chip (DMA): 538277980 — 274000 = 538003980 cycles
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LAB DEMO

Graphical User Interface (GUI):

The final version of the Graphical User Interface allows far tiser to choose the algorithm, the number of
iterations, whether or not to do the algorithm on ortlo&f EVM. This GUI allows the user to implement everyghi
within the same window.

M OOOH! Is that your face? H=1E3

File Brush Shapes Cute and Sexy Stuff
Algorithms
O Corvalve
(@] E xemplar

Iterations

C 50
C 75
@ 100
150

Memony Usage

) On Chip
& 0 Chip

Edit Layer

(@] Image [
@) Mazk

Browse ]

[ 6o ]

[ Get Conected Image ]

Our graphical user interface allows the user to load theedeisitage into the program. The user can then select the
corrupted regions manually using a brush. The user defieesrtish size as well as the color and selects an area
using it. The user may also corrupt the image further lmpsihg to edit the image layer. When the user has
completed loading the corrupt image into the GUI, the osar edit the mask for the program to correct the image.
The user also may chooses a desired number of iteratidiegleene needs to complete this restoration. The user
may also select whether the program is to be implementedafhaf the EVM. If the user doesn’t know what any

of the options mean, he can choose the algorithm onlfeas are default presets in the GUI. The user selects an
algorithm which will be the algorithm that performs theeg task.

Once the region, number of iterations, and algorithm lectsd, the selected region is sent from our GUI to the
EVM.

If the corrupted region is too large, we will page posiaf the image into the EVM, where the inpainting will
similarly be performed. If paging occurs, then we willdaeeful to recognize that the inpainting done on each page
must be consistent with the inpainting done on anothge.feor that reason, we will page overlapping segments of
the image when we cannot bring the whole region onto the EVM inpainting process is iterated the number of
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user selected times, but the user must remember that tooimpadgfiting may be worse than just enough. Thus our
inpainting process will proceed in steps, guided by tee.us

After the program has finished correcting the image, the pressses the button labeled “Get Corrupted Image” to
view the restored image in the same GUI window. If the isseot satisfied with the restored image, the user can
use that image as the input to the program, select the corarptedand complete the algorithm using a user defined
number of iterations. The user will need to decide whethee mpainting needs be done or whether the restoration
is to their liking.

For the lab demo the GUI shown above was used for timwdlution method as well as beginning the Exemplar
method. Due to drawbacks in time the GUI shown abovendidinclude the implementation of the Exemplar
method. The GUI for the Exemplar method, done in MATLiABhown below.

-} Finally
Exemplar Method
— Mask Color —— = -
i Green ;Enter the Filename of Corrupted Image
i) Black " —

E-Er'lter .thg File.n.ame_ n:nf?he r:.ﬂask_

The user will select the files that he wishes to input théoprogram. From the original GUI, the Exemplar method
saves the image and the mask into specific files that are autoryatipaitted into the MATLAB GUI. If there is a
change to be made, there is an option for the user to infiffieent file name in both the corrupted image and mask
fields. After making sure the input files are correct, thex usll select the color of the mask (either green or black).
Finally, when the user presses the “GO” button, the exemplaothé&himplemented. After finishing this method,
the user will have the chance of redoing the new inpaintade, by inputting it as the corrupted image and pressing
“GQ” again.

Actual Demo:

The demo showcased the capabilities and limitations of theolidion and exemplar-based method of inpainting.
Performance was based on plausibility of correction, and miogesme. Two algorithms were implemented to

repair all nature of defects. Thin defects were repaired priymssihg the convolution method while larger defects
were repaired using the exemplar-based algorithm. Thislemenstrated in the demo. The GUI was made using
QT, a multiplatform GUI developer. The GUI linked d&ktcomponents of the system together and allowed the user
to manipulate that system. It allowed the user to load imadgse masks over the corrupted regions, and run the
repair process using either algorithm. Our GUI allowedier to select not only the image and mask, but specify
the algorithms, and the conditions the algorithms woaldun under. This included the number of iterations en th
convolution method, and whether the code was to be fuhethip or on the chip (though on-chip performance in
most cases was faster).

When the corruption had a thickness of less than 9 pikelssonvolution method was faster, and performedgsist
well to the exemplar method. The convolution method ety effectively bleeding the good region over the bad.
As it is a diffusion of the non-corrupted region othes corrupted region, blurring would occur. This was no
noticeable when the width of the corruption was less $hpimels. It became obvious with a 10-pixel mask. The
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process took longer when we increased the number of diffitgrations, increased the size of the image, and
increased the size of the mask.

The exemplar method was showcased in MATLAB. It was ahpetimrm just as well as the convolution method
for thin (less than 9 pixels in width). Furthermorestitpassed the convolution method, being able to deal with
defects covering a wider area. What's more, it did notdiire blurring of any sort, and managed to linearly
maintain geometrical properties of the image. However, itgyatsi generate plausible recoveries had limits.

With the exemplar method, performance was determined byaytete factors. With regards to speed, the size of
the image was the most important factor, and the area of thkehasshe second greatest impact. Plausibility of
repair was affected by the nature of the image surroundingdrrupted region. Like the convolution method, the
inpainting starts somewhere on the border of the caomjpind migrates inward. To inpaint block ‘A’, we select a
block in the uncorrupted region that is surrounde@ikgls most closely matching that of the surrounding piggls
block ‘A’. We do this assuming a Markov Random Fieldrdbsttion in the image.

The texture surrounding the corrupted region is perpetuateards. If the sample space (the non-corrupted region)
in the image was small, then a reasonable match might nottagistpainted block may not be a plausible match.
This would also occur if the texture to be inpainted (tkute bounding the corrupted region) did not exist itimu
of the rest of the picture; in general, the larger the sasipé of a texture similar to that being inpainted, the better
the result. Additionally, if there are different texturesdifferent sides of the boundary, they will all be gnow to
some degree. Defect removal happens best when the defedtmmied by a uniform texture. Then it will be
covered by in a uniform manner. Otherwise, differertures may be grown in, though they will be inpaintea in
plausible manner.

Thus when the corruption was bounded by a more or léfssmrtexture, the inpainting was excellent. The
inpainting fit plausibly. However, when we had the bdany cut across more than one texture, the inpaintingdvoul
grow all of the various textures in to some degree.

Demo Comment:

“How is this different from lab 3?”

Though very similar to the 18-551 Lab 3, the EVM pmrtof the diffusion algorithm differs slightly. Firstf, the
diffusion algorithm uses convolution not correlatiorcteate the diffusion effect, thus requiring a reversal®f th
diffusion kernel. In addition, because the quality ofrésultant image is dependent on the number of iterations
done successively on an image, it is important that theeentage be processed during each iteration, as opposed to
only a portion of the image being processed 100 times aheter portion. This is to ensure uniform results, as
well as ensure that portions that depend on other pouiaihe image are diffused uniformly across the chunk
boundaries being paged into on-chip memory. Memorgwéb 3 used a fixed image size, and thus there was no
additional overhead needed in each cycle to calculate how manyfitiesimage the on-chip memory could hold.
In our project, we take into account that image size is variabld thus before new information is transferred from
external to internal memory, calculations must be done trrdéete how many lines of the image can be brought in
based on the image’s width.

Our first implementation of the diffusion algorithm waot like lab 3 part 1 in which pixels that were beingdis

for calculations are fetched from external memory every timewlseg needed. The resultant pixel, was stored in a
local variable in on-chip memory until the entire kernel badn traversed. The resultant pixel was then deposited
back into external memory.

The implementations of our project where on-chip memoryugasd, were most similar to parts 3 and 4 of Lab 3. In
lab 3 parts 3 and 4, a pre-calculated number of lines &€ired size image was brought on chip using either a for-
loop or a DMA transfer. Similarly, in the our implemertat that used on-chip memory, a portion of the image was
copied into on-chip memory using the standard C Kbfanctionmemcpy or the EVM'’s direct memory access

(DMA) functions. Calculations were then performed on tha éh on-chip memory and the results were all stored
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on-chip untilall calculations on the pixels in on-chip memory were compl@tee completed, the results were
transferred back to external memory, and new data was oaiteteansferred in.

Each inward and outward transfer was approximately B&g€s, where 57,600 bytes (56.25 KB) is for the actual
pixel data and 600 bytes is for the Boolean mask.

Finally, on the PC side, the EVM communication method wadified slightly to load multiple program files on
the EVM depending on user input.

ANALYSIS AND CONCLUSION

The project showed much promise, though it was regrettedblgxplored to its full potential. The convolution

method worked within reasonable time bounds for defectibagton nature. However, the exemplar-based method
was never implemented on the EVM. Its results in Matlabevguite impressive though. The results were dependent
on the textures bordering the corruption and the natuteeacample space around the corrupted region. But in many
cases, it was able to plausibly inpaint a large regiomwtiption.

The project would have been more successful if the exemplaithigavas implemented on the EVM. For pictures
of 1200x 1600 dimensions, the lab computers actually uaofovirtual memory. For pictures of size 480 x 64@ t
algorithm ran for a few minutes. This speed would méstylibe reduced if the exemplar-based algorithm was
based in C. This is a topic for further work.

Hence, we managed to find ways to effectively inpaint thahtaitk regions in various photographs. The finished
products repaired the corrupted image so that the inpaiwtisgiot noticeable. The primary task was accomplished.
However, although we explored the convolution methocherElVM, these tests have yet to be fully implemented
on the EVM. This remains for further study.

1 iteration | 1 iteration
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50 itetions

75 itertions 75 iterations
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100 iterations ' 100 iterations

Further Work:

There are a few possibilities for further work; impletireg the exemplar method on the EVM, optimizing the
algorithm for better speed performance, and implementingkéra@ar method so that it can inpaint isotopes not
just linearly, but in a curvature driven fashion.

The exemplar method is quite powerful. However, it shbeléddapted to allow more flexible masks; the system
should allow specification of what textures grow in wharstead of having all textures grow inward. Thus the
algorithm should be adapted so that we have more coneolchat kinds of textures are grown. The current
implementation also looks for textures using a samplimglow size of 9x9 (allowing capture of most sized
patterns). However, some patterns are larger than 9 pixelssadite algorithm should allow the size of the
sampling window to be adjusted, in order to capture thegerlpatterns. The results generated using the current
implementation is quite reasonable.

Time is a big issue. The implementation on Matlab took anf@wutes to process a 480x640 picture with a mask of
approximately 30% of the image. Optimizations should béoesg both in the implementation of the algorithms
both on the pc and the EVM side. The EVM should be maxinuiliged so that as many of the adders, multipliers
and registers are occupied at any running time.

The exemplar method has the advantage of finding edgesriftiffoands of color) and growing these areas first,
preserving the edges linearly, respecting the geometry objbets in the picture. However, it only grows the edges
linearly. There are variational approaches that are curvature dmigaming the diffusion process looks at the way
edges are curving and inpainting appropriately. Such a ehstauld be explored for the exemplar case so that it
grows much more accurately.
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