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Background 
 

Credit cards have been widely used for over 20 years, because they are more 

convenient than checks and more secure than cash. However, credit cards have limited 

security measures and cannot display important information like account balance. With 

modern handheld technology like PDAs and cell phones, information rich and secure 

financial transactions can take place.  

Financial transactions have been moving in the direction of being more 

convenient and secure. Credit cars are more convenient than cash, but they have security 

issues. Credit cards require approval at the point of sale, but a stolen credit car can be 

used to make fraudulent purchases before the card is reported as stolen. A thief can also 

get your credit card number and security ID on the card just by looking at the card. Debit 

cards add better security by requiring a password before authorization, but they also have 

sensitive account information displayed on the card. 

Infrared data transfer is the popular choice for handheld financial transactions, 

because it is cheap to implement and includes a standard (IrFM) that incorporates 

existing technology.
1
 Infrared has a short transmit range, less than 3 feet, so the user will 

need to be close to the receiver. This short range can improve security, but may be a 

disadvantage in some applications like a drive-thru. Infrared does not have the 

interference problem that is present in RF systems, and consumes less power than the RF 

wireless communication. 

Infrared for financial transactions has been established in South Korea by SK 

Telecom. SKT calls its product Moneta which successfully replaced the traditional credit 

card payment system.
2
 Moneta turns your cell phones into a convenient and secure 

financial transaction system. Other telecommunication companies also started similar 

service, and all the companies are currently in process of deciding the standard that can 

                                                 
1
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be used by any mobile providers. Once the standard is established, it will be easier to 

make use of this new system. 

 

Project Overview 

  

 The goal of this project is to use two C67 EVMs to drive a wireless infrared link 

modeled for financial transactions. The project is broken into three main parts: 

 

1) Data reception and transmission with error correction coding 

2) Link/Protocol control  

3) Encryption and decryption 

 

 The first part takes care of transferring data between the two EVMs. The second 

part interprets what the received data means, and controls when the EVMs transmit. The 

third part adds a layer of security to the transmissions.  

  The inspiration for this project comes from the IrFM standard, but there are some 

key differences. First, a simpler link/protocol layer was implemented. Secondly, error 

correction was added, where it is not included in the standard. Third, a stronger 

encryption method is used here than with the standard.   

 

Data Reception and Transmission 

 
Hardware 

 The purpose of the hardware is to convert transmitted data from the EVM to 

infrared, and back again. The original hardware flow diagram is shown in Figure 1. The 

original design includs three main components: the amplifier with the voltage converter, 

the MCP2120 SIR encoder, and the TFDU4140 infrared transceiver. 

 

 
Figure 1. The original hardware flowgraph. 

The codec to the EVM produces polar non-return to zero (NRZ) square waves 

that represent the binary data. This signal is amplified with an op-amp and is converted to 

CMOS levels (0-5 V) with a MAX232 voltage level converter. This CMOS signal is used 

by the MCP2120 to encode the data to the SIR standard. In the latter stages of the project, 
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the encoder would not properly encode the signals from the EVM. The encoder does 

work properly with signals though the UART, but not with the amplified signals from the 

EVM. Therefore, the second hardware design used the signals from the UART of the PC 

to transmit the data. 

The SIR encoder converts the NRZ signal to a short return to zero pulse, Figure 2. 

The transceiver emits an infrared signal when the input is high and is off when the input 

is low. This form of modulation is called on-off keying (OOK). Short pulses are 

beneficial to an infrared system because it consumes minimal power. Most infrared 

transceivers work specifically with the SIR standard, so the encoder chip is necessary to 

convert the NRZ waveform to short pulses. 

 
 

Figure 2. An example of a UART frame and a corresponding SIR frame (Picture 

from ref. 3). 

 

The slowest bit rate that can be used by the transceiver is 9600 bits/s. The SIR 

standard calls for a pulse of 3/16 the original bit length
3
. Therefore, the maximum pulse 

duration used by the transceiver is (3/16/9600 = 19.5 µs). To produce this short of a pulse 

a frequency of 51.2 kHz is needed. The codec on the EVM has a maximum sampling 

frequency of 48 ksps, so the maximum frequency that the codec can construct is well 

below the 51.2 kHz required. Therefore, the codec cannot produce the pulses necessary to 

drive the transceiver without the encoder chip. 

The receive side used the same basic setup with some minor changes. The 

transceiver is very sensitive, and will pick up on noise when no signal is being 

transmitted. This noise will confuse the SIR encoder/decoder into thinking that there is an 

incoming signal at all times. This encoder will not encode the message properly because 

it is interrupted to try to decode the incoming noise. This problem is solved by adding a 

latch on the transmitted signal to turn off the input while transmitting. The latch is 

implemented with a 74LS139 demux chip. Basically, this chip sends out the inverse of 

the input signal when the control line is low, and a constant high signal is sent when the 
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control line is high. This chip is chosen because the received signal needs to be inverted 

anyway. 

 The control line should be high when transmitting and low at every other time. 

The original design uses a diode and an RC filter to convert the amplified input signal to 

a constant 5V signal. However, the second version of the hardware uses the UART to 

transmit. The UART includes a data-terminal-ready (DTR) line which is used to control 

the transmit latch. 

 Eventually the encoder/decoder chips all went bad, possibly because of leaks in 

the breadboard, or clock fluctuations. With only one encoder/decoder chip, the full 

infrared system cannot be implemented. Therefore, the infrared link is currently 

simulated by connecting the transmitted signals from the MAX232 directly to the codec. 

The noise is very low in the system so this simulated channel is an accurate 

representation of the actual infrared system.  

 

Receiver Program 

 The purpose of the receiver program is to decipher what bits have been sent to the 

codec. There are three main parts to the program, the filter the correlator and the 

decimator. The filter removes all of the unnecessary parts of the signal and prepares the 

signal for the correlator. The correlator uses the filter data to find when to start receiving 

data. Lastly the decimator resamples the data and converts the data into binary. 
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Figure 3. Filtered and un-filtered square waves. Notice the peak every five samples that 

can be found through correlation. 

 

 The sampling rate for the codec is set to 48ksps, so with at a data rate of 

9600bits/s, there are 5 samples per bit. The filter chosen is a three sample averaging filter. 

Only three samples are used so that samples that occur on the transition between bits will 

be ignored. The speed of this filter is important because it is recalculated for every 

sample (20.8 µs). Speed is optimized with this filter because multiplies are not needed. 

The input signal will look like square waves. By averaging each point with the last two 

samples, the edges of the squares will not be as sharp, Figure 3. The peaks in these values 

will help the correlator find the optimum point to start sampling the signal. Because the 
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transition samples are ignored, the peak values will be consistent, making the correlator 

threshold more dependable. 

 The next step is to correlate the signal with the start bytes. As mentioned in the 

hardware section, when no data is being transmitted the input signal appears to be noise. 

A correlation sequence of 16 bits is needed to detect the start sequence of transmitted 

data and ignore the noise. The noise usually manifests itself as a low bit and 7 high bits at 

9600 bits/s, because the encoder chip filters out all other frequencies outside of the baud 

rate. There is also some other random distortion coming from the clock and other cross-

talk in the board which is unpredictable noise. The bit start sequence is chosen to be 

‘10000110’ repeated. There are enough zeros to be different from the noise, and there is 

also a ‘1010’ section to produce peaks to help with timing. 

 The correlation is performed after every sample is read and filtered, so like the 

filter, speed must be optimized. The correlator only looks at every last fifth sample. 

These previous samples are either added or subtracted together depending on what the 

start sequence would be at that location. The current bit is correlated with a zero so it will 

be subtracted. The sample from five samples ago is added because it is correlated with a 

one. This sequence is repeated for 8 bits (8*5=40samples). If the correlation sum is above 

a threshold the process is repeated for the next 8 bits. If that correlation sum is above the 

threshold, than the program begins reading in the signal as transmitted data. This scheme 

of only reading 8 samples and using every fifth bit reduces the number of cycles used to 

calculate the correlation. 

 The decimation is done by a similar method to the correlation. After 40 samples 

are gathered into the input buffer, the program finds the best place to sample the data. A 

sum of the absolute value of every fifth sample is taken. This sum is compared with other 

sums for a delay of 0-4 samples. The delay with the highest sum is used to decimate the 

samples. The samples are converted to bits by interpreting a positive value as 1 and a 

negative value as 0. This delay synchronization is necessary because there is some drift 

between the clocks in the transmitter and receiver.  

The delay is also used to shift the index of the received data buffer to prevent data 

overlap. The optimal delay is 2 because a shift of two samples in either direction can be 

read correctly, without missing bits or reading bits twice. If the delay value is greater than 

two, then the index is help up for a sample or two. If the delay is too low then the index is 

moved up, and the missing spots are replaced by the previous samples. 

 There are a couple of minor problems with the codec that were solved before 

implementing the receiver program. The input signal swings between 0-5 V. The codec is 

able to filter out the DC component, but not right away. This bias causes the peak-to-peak 

amplitude to be low, because the signal will reach the upper limit of ADC. Therefore a 

bias parameter is added to the receiver to zero out the DC component. Also, 50 junk bytes 

are sent before the actual data is sent to help “warm up” the codec. 

 

Error Correction Coding 

 There are two main fields of error correction codes, block and convolutional 

codes. Both convolutional codes and block codes can give about the same performance
4
. 

Convolutional codes were chosen for this project because they appear to be faster, 
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because of the continuous nature of the code. The algorithms for coding and decoding are 

relatively simple for the lower order convolutional codes. 

 The strength of coding needed is dependant on the bit error rate in the system. The 

bit error rate was tested by sending a known sequence of ASCII characters through the 

infrared system. Each line of 70 characters was visually checked against the data sent. In 

close range, no errors were detected. When the transceivers were more than 40cm apart 

or 20 degrees off axis, the bit error rate grew to about once per line, or 0.0015. The bit 

error rate grew very quickly in until the signal was unnoticeable at 42cm. 

 Error correction will be able to extend the range of the device. If each transaction 

sends 500 bytes of data, then for 99% successful transactions at 42cm, a bit error rate of 

(.01/500) = 2e-5. Simulink simulations were performed by forcing random bit errors and 

the basic convolutional encoder was able to improve the bit error rate from 0.0015 to less 

than 1e-7.
 

 The convolutional encoder chosen is shown in Figure 4. The output of the 

convolutional encoder follows the state chart in Figure 5. This convolutional encoder has 

a constraint length of three, because three input values are used to calculate the output. 

The rate of this code is ½, because there are two coded values for every input value
5
.  

 

 
Figure 4. Graphical representation of the convolutional encoder. FF is a delay by one and 

the cross is an XOR. The output is in the form ABABAB...( picture from ref. 5) 

 

 
Figure 5: State diagram for convolutional encoder. Dashed lines represent a 0 input and 

solid is a 1 input. The coded values are marked along the lines. (diagram from ref. 6) 
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 The convolutional codes are decoded using the Viterbi decoder. The Viterbi 

decoder builds three matrices. The first matrix to be built is referred to as the state 

metric
6
. The state metric contains the number of errors needed to be at a particular state 

for each pair of input bits. For example, assume the coded data is ’10.’ The state metric 

for the previous input bits is given as state00=1 and state01=2. There are two ways to get 

to state 00, from state 01 and state 00. The data needed to take those paths is 00 and 11 

respectively. Each path would give one error, so the path with the minimum error is from 

state 00, which has the minimum starting error. The resulting error metric for state 00 

would be 1+1=2. This procedure is repeated for all states and all data pairs.  

The second matrix, referred to as the survival matrix, keeps track of the previous 

state which gave the current state the lowest number of bit errors. In the previous 

example, the survival matrix would contain 0 for state 00, because the path with the 

minimum error came from the 0
th
 state. The third matrix goes backwards through the 

state metric and the survival matrix to build the path that has the least number of bit 

errors. This matrix has just one row and is called the traceback matrix. Knowing the 

states for each pair of inputs, the original data can be built. 

 The Viterbi decoder was implemented with C code found on the internet. This 

code was only written for a specific code length, and is not practical for long strings of 

data. Therefore this code is adjusted and optimized for this project. To build an accurate 

decoder, a traceback length of 15 is required
7
. The survival path and state metric of the 

next 16 bit pairs are used to decode the first pair. Noting that the state metric and survival 

metric only depend on the current and previous inputs, these matrices do not change 

when more data is added to the end. Therefore, the state metric and survival matrix can 

be saved after decoding each bit pair and used for the next pair of bits. When the next 

pair of bits are decoded, the state metric and survival matrix are just shifted and the new 

values are added to the end of the matrices. The traceback array is recalculated for every 

pair of bits, but that is a minor part of the code in terms of number of cycles. 

 

Link/Protocol Layer 
Data Flow Graph 

 
 The figure below shows our flow graph that was modified from our project 

proposal. The main difference is that the transmitter does not send the data from EVM 

through IR sensors, but rather from PC to IR. The receiver side receives through IR and 

through EVM. Let us suppose a situation where a transaction occurs by a transfer that is 

initiated by PTD to a POS. PTD will be a transmitter in this case, hence POS will be a 

receiver. The user will input a command, through GUI in our demo implemented in Java. 

Then the Java GUI will call on the PC side Java code, which will then call a PC side C 

code through the use of Java Network Interface (JNI). Then the PC side C code and EVM 

C code will talk to each other using the HPI connection. The transfer of data will occur 

from PC side Java through UART communication which sends data through to IR sensor 

and transmits to the IR sensor in the receiver side.  Similarly, when POS needs to send 

                                                 
6
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data to PTD, the same procedure will just reverse, making POS a transmitter and the PTD 

a receiver.  

 

Link/Protocol Details 

Our model uses the IrFM
TM

 (Infrared Financial Messaging) protocol when the 

devices form a synchronized link. We considered the following two devices, POS (Point-

of-Sale) for market vendors and PTD (Personal Trusted Device)
8
 for customers’ handheld 

devices. The scenario we considered is that a customer walks up to the POS device when 

purchasing a product. The POS is linked to the existing financial database (i.e.: Visa).   

 

 
 

Figure 6 Old Proposal “Point and Pay” flow graph 

 

Our current model of implementing this IR transaction has been modified from 

our initial proposal in certain extent. The above figure is our initial flow graph used in the 

proposal stage of this project. For example, we did not follow too strictly on the IrDA 

standard’s connection modes. In the standards, the system first goes into a Normal 

Disconnect Mode (Refer to the diagram below). This mode requires the PTD to start 

polling for a response by the POS device.
9
 As soon as the POS acknowledges back to the 

PTD with a response, the system enters the Normal Disconnect Mode. In order to allow 

the PTD to recognize all the devices in its range, it sends out multiple packets numbered 

uniquely (usually around 6 – 8 packets). Depending on which packet the POS has 

responded to, the corresponding POS will be assigned the corresponding packet number, 

so that the PTD can uniquely identify each POS devices in its range. This will allow the 

customer to correctly identify his/her vendor and prevent any fraud. If the correct vendor 

POS did not reply back due to packet collisions/loss, the user will let the PTD send out 

                                                 
8
 “Point and Pay Profile” Infrared Data Association(IrDA®), Version 1.0, December 9, 2002 

9
 “Microchip MCP2155, IrDA® Standard Protocol Stack Controller Supporting DCE  

Applications”, © 2001 Microchip Technology Inc. 
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another 6-8 packets to see if the device can get the acknowledgement back from the POS 

the user wants to start the transaction with. Then the PTD will send out its XID without 

numbering this packet.  

 
 

Figure 7  - Microchip MCP2155 IrDA® Standard Protocol Stack Controller  

                  Supporting DCA Applications 
9 

 

However, in our current model of this project, we have ignored many of the 

unnecessary multiple POS problems because we assumed the customer is walking up to 

the vendor and pointing the PTD to the vendor POS. The user initiates a transaction by 

starting the GUI ran by the Java applications on the PTD. Then using the JNI (Java 

Network Interface), the PC side Java code calls on the PC side C code. This C code with 

the C code on the EVM enables the transfer of a byte long predefined RQPOS, the 

request POS Info from PC to EVM through HPI connection. Then this RQPOS request 

message gets encoded on the EVM. The encoded message then is sent back to the PC 

side C code through the HPI connection. After that the Java code calls on the C function 

to get the data received from the EVM to send it through the serial connection to the IR 

sensors to the EVM of the receiver. This has to be done in this manner because our serial 

transmit functionality has been implemented in Java.  
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Figure 8 Current Flow Graph 

 

 On the receive side as soon as it gets a message for the first time from some PTD, 

it checks for the RQPOS. If the incoming message is the same as its predefined RQPOS 

message, the POS sends out its POS information, such as the vendor name, address and 

number. It does this by encoding the POS info into a packet which is a buffer of length 

512 bytes. This buffer is made this long so that we can test transfers of long data at times. 

Then the packet is transferred over to the PC C code then to Java, through serial to IR 

sensor back to the EVM side of the PTD. However, I had to put some delays in between 

the receive and the send on the receiver side. This was mainly due to the fact that the 

system needed time to get into the proper states for the receiver. 

 

In the proposal, we stated that before the system moves onto the Normal Connect 

Mode, which is the state in which the two devices communicate sensitive information, 

the PTD will send out its public key to the POS. Then the POS will send its public key 

information to the PTD with the encryption (using the public key received from the PTD). 

Then the PTD will use its internal private key to decrypt the message, to get the POS’s 

public key. From this point onwards, the devices will keep encrypting their messages 

using other's public key, and decrypt the received messages using their own private keys. 

(Please read the report on the Application Layer for further encryption/decryption 

details.) 

Using the same procedure as sending out the RQPOS info and sending back the POS info, 

the public key exchanged worked the exact same was for both the PTD and the POS.  
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Fig 9 Current PTD flow graph) 

 

 In the proposal, we also stated that after exchanging the public keys, the system 

enters the Normal Connect Mode.
9
  In this state, the two devices will communicate freely, 

but encrypted, to transmit and receive sensitive information such as the user ID (i.e.: 

Name, SSN, phone number), credit card number, total price purchased. Also, the user 

will be prompted for confirmation on the purchase items. When all the transactions are 

completed, the user will acknowledge a close link command to terminate the 

communication and transaction.  

 Again following the proposal tightly, with the exchanged public keys, the devices 

encrypt/decrypt messages using both the public and private keys. From this point 

onwards, sensitive data transfer is encrypted before transmitting. The PTD encrypts the 

credit card information transferred form the PC side onto the EVM. Then the encrypted 

data is encoded before being transferred back to the PC side. Then the encrypted and 

encoded data gets sent over the IR channel to the POS side. The POS will firstly decode 

the data. Then it will decrypt the message and send the raw data to the PC side of the 

POS.  

 

 
Fig 10 Current Protocol Flow Graph 

 

 One of the main problems we faced in implementing this project in this layer was 

that there was a problem of deadlock because we changed the flow graph from 
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EVM�EVM IR transfers to PC�EVM. This is because in the old implementation, 

where we had the EVM to EVM transfer through IR, the PC always waited for the EVM. 

Therefore, this did not cause any problem. However, in our new model, where we have 

multiple transfers going back and forth between the PC and EVM, since the data has to 

be transferred to the serial to IR from PC, and not from EVM, this can cause race 

conditions. This is because if EVM requests transfer before the PC is ready, then the 

system goes into a deadlock.  

 There were two possible solutions to this problem. Firstly, if the windows event 

handler, the interrupt handler, is modified to put the semaphores appropriately, it could be 

solved. However this would require a lot of time and because we came across this 

problem rather late in schedule, we decided to solve this problem using the second way. 

The second possible solution to this problem was to use delays right before the request 

transfer function call in the EVM code. This enables the PC to have more time to be 

ready first.  

 

Encryption and Decryption 
 

Security – Introduction and Previous work 

 Our wireless communication requires an absolutely secure channel, because the 

transaction contains the important financial information and sensitive personal 

information.  The IrFM standard 1.0 provides the set of rules for the encryption 

requirements, but they do not specify the algorithms for the encryption.
10
 However, they 

do provide the ability to choose different algorithms for each session to ensure the 

compatibility of the devices. The IrFM devices are commercially in service in Korea, 

called Moneta. Although the technical details behind their devices are not documented 

anywhere, we were able to figure out that most of the commercial IrFM devices in Korea 

use SEED
10
algorithm which uses 128-bit symmetric key and operates on 128-bit data 

blocks. The algorithm is developed by KISA (Korea Information Security Agency) and it 

is the encryption standard widely used in Korea. The key advantage of using a symmetric 

key is that it only requires small number of computations. However, this comes at a cost 

of trading some security. The symmetric key systems are safe based on the assumption 

that the key can be transmitted safely, but we cannot always assure such transmit path, 

thus we want to consider using asymmetric key system. We considered few possible 

encryption algorithms. 

 

 

 

 

 

 

 

 

 

 

                                                 
10
 SEED Algorithm Specification, http://www.kisa.or.kr/seed/ 
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Asymmetric Key Encryption / Decryption 

 

 
Figure 11: Asymmetric Key Cryptography System 

http://www.neomailbox.com/ssl_session_encryption.html 

 

RSA (Rivest-Shamir-Adleman) Data Security has been dominating the public key 

cryptography for decades. The proven security of RSA algorithm attracted many 

applications that require secure connection. For example, SSH, one of the most widely 

used remote computer access client and server, uses RSA public key encryption to ensure 

that user’s passwords cannot be sniffed by the hackers. However, RSA is very expensive 

in terms of computation, because of the nature of the algorithm. In order to implement the 

RSA, we need prime factoring and many mod operations, which tend to be one of the 

most expensive operations in common the processors. Our computation power is 

restricted to small hand held devices with low power DSP processor or embedded 

processor. In addition, RSA algorithm requires a lot of memory to work efficiently, 

which we do not have in our small platforms. For these reasons, we find the RSA 

encryption to be too expensive to implement for our project. 

Realizing the computation limits, we looked for a fast and small algorithms 

designed for embedded platforms. A group from previous year used Tiny Encryption 

Algorithm (TEA) for their project, because it is very cheap in terms of computation and 

memory usage. However, as the group pointed out, TEA has some redundancy so called, 

“equivalent key” that reduces the effective encryption bits. This was not a big problem 

for the previous group, but since we are dealing with financial transactions, the weakness 

of the encryption can be a significant threat to the creditability of the system.   

In order to achieve both goals, cheap computation cost and strong encryption, we 

looked into elliptic curve cryptography algorithm
11

. Elliptic curve cryptography is 

relatively new compared to RSA. This algorithm uses the mathematical properties of 

elliptic curve to provide secure and powerful cryptography system. The algorithm 

requires the understanding of abstract algebra, group theory and linear algebra. For this 

reason, not many people can fully understand this algorithm. The encryption and 

decryption algorithm solves the Elliptic Curve Discrete Logarithmic Problem (ECDLP) 

to process the data.  

Elliptic Curve Cryptography devices require less storage, less power, less memory, 

and less bandwidth than other systems. This allows you to implement cryptography in 

platforms that are constrained, such as wireless devices, handheld computers, smart cards, 

and thin-clients. It also provides a big win in situations where efficiency is important. For 

example, the current key-size recommendation for legacy public schemes is 2048 bits. A 
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vastly smaller 224-bit ECC key offers the same level of security. This advantage only 

increases with security level—for example, a 3072 bit legacy key and a 256 bit ECC key 

are equivalent—something that will be important as stronger security systems become 

mandated and devices get smaller. [from the certicom website] 

Regardless of all of the advantages, the difficulty of the algorithm implementation 

forces many developers to choose RSA, however, when the elliptic curve is implemented 

correctly, it offers a factor of about ten in speed, which is very attractive in embedded 

application. In order to overcome the excess computation requirement of RSA, many 

companies, such as Microsoft, Sun Microsystems and Motorola, began to invest in 

elliptic curve cryptography in recent years. Our group decided to implement the Elliptic 

Curve Cryptography at the end.  

 

Algorithm – Elliptic Curve Cryptography [from the certicom website] 

 

The basic idea of the algorithm is to solve an Elliptic Curve Discrete Logarithm 

Problem to embed a message into an elliptic curve and decrypt message from the curve. 

Here is a brief description of the general algorithm. (Figures and examples are from the 

certicom website) 

 

 
Figure 12: Example from Certicom Website 

An elliptic curve over real numbers are 

defined as the set of points (x,y) which 

satisfy an elliptic curve equation of the 

form:  

y
2
 = x

3
 + ax + b 

where x, y, a and b are real numbers.  

 Each choice of the numbers a and b 

yields a different elliptic curve. For 

example [certicom], a = -4 and b = 0.67 

gives the elliptic curve with equation y
2
 = 

x
3
 - 4x + 0.67; the graph of this curve is 

shown on left.  

 If x
3
 + ax + b contains no repeated 

factors, or equivalently if 4a
3
 + 27b

2
 is not 

0, then the elliptic curve y
2
 = x

3
 + ax + b 

can be used to form a group. An elliptic 

curve group over real numbers consists of 

the points on the corresponding elliptic 

curve, together with a special point O 

called the point at infinity
12
. 

 Calculations over the real numbers are slow because most of the hardware does 

not have support for the specific bit lengths used in the cryptography systems. It is also 

inaccurate due to round-off error. Our application requires fast and precise arithmetic 

operations; thus elliptic curve groups over the finite fields F2m is used as computation 

basis for the project. Elements of the field F2m are m-bit binary strings which are 

represented as bitmaps of unsigned integers. The rules for arithmetic in F2m can be 

                                                 
12
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defined by either polynomial representation or by optimal normal basis representation. 

[Certicom]  We defined F2m by optimal normal basis representation in our final version. 

At first we tried to implement using polynomial representation, but we had some trouble 

with the EVM. Look at the implementation issues section for the details. The 

computations can be done efficiently since we are using bitmap representation of the 

fields. 

 In order to use binary representation, we need to pick the elements a and b within 

F2m field with the condition that b is not 0. Due to the characteristics of the elliptic 

curve, the equation needs to be modified to work with binary representation as follows.  

 

y
2
 + xy = x

3
 + ax

2
 + b 

  

 All points (x,y) which satisfy the equation over the field F2m can be found on the 

elliptic curve that can be represented with the above equation. There are finitely many 

points  that satisfy the conditions on the corresponding elliptic curve. 

 To help understand the algorithm, here is a small example from the Certicom 

website
13
. Consider the field F24, defined by using polynomial representation with the 

irreducible polynomial f(x) = x
4
 + x + 1.  

 

The element g = (0010) is a generator for the field . The powers of g are:  

 

g
0
 = (0001) g

1
 = (0010) g

2
 = (0100) g

3
 = (1000) g

4
 = (0011) g

5
 = (0110)  

g
6
 = (1100) g

7
 = (1011) g

8
 = (0101) g

9
 = (1010) g

10
 = (0111) g

11
 = (1110) 

g
12
 = (1111) g

13
 = (1101) g

14
 = (1001) g

15
 = (0001) 

  

 In a true cryptographic application, the parameter m must be large enough to 

preclude the efficient generation of such a table otherwise the cryptosystem can be 

broken. In today's practice, m = 160 is a suitable choice. The table allows the use of 

generator notation (g
e
) rather than bit string notation, as used in the following example. 

Also, using generator notation allows multiplication without reference to the irreducible 

polynomial  

 

f(x) = x
4
 + x + 1. 

  

Consider the elliptic curve y
2
 + xy = x

3
 + g

4
x
2
 + 1. Here a = g

4
 and b = g

0
 =1. The point 

(g
5
, g

3
) satisfies this equation over F2m :  

 

y
2
 + xy = x

3
 + g

4
x
2
 + 1  

 

(g
3
)
2
 + g

5
g
3
 = (g

5
)
3
 + g

4
g
10
 + 1  

g
6
 + g

8
 = g

15
 + g

14
 + 1  

 

(1100) + (0101) = (0001) + (1001) + (0001)  

(1001) = (1001)  

 

                                                 
13
 http://www.certicom.com/index.php?action=ecc,ecc_tutorial 

http://www.certicom.com/index.php?action=ecc_tutorial,math8
http://www.certicom.com/index.php?action=ecc_tutorial,math9
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The fifteen points which satisfy this equation are:  

 

(1, g
13
) (g

3
, g

13
) (g

5
, g

11
) (g

6
, g

14
) (g

9
, g

13
) (g

10
, g

8
) (g

12
, g

12
)(1, g

6
) (g

3
, g

8
) (g

5
, g

3
) (g

6
, g

8
) 

(g
9
, g

10
) (g

10
, g) (g

12
, 0) (0, 1)  

 

These points are graphed below: 

 

 
      Figure 13: Example from www.certicom.com 

 Now we understand how the mathematical operations can be performed on the 

elliptic curve, we can finally define our problem. The discrete logarithm problem in the 

multiplicative group Zp
*
 can be defined as finding a number k such that r = qk mod p, 

given elements r and q of the group, and a prime p. Then the elliptic curve discrete 

logarithm problem on the elliptic curve groups is defined as find a number that Pk = Q. 

We will use this property of discrete logarithm problem to achieve a strong encryption 

algorithm as described in the next section. 

 

Algorithm – Elliptic Curve ElGamal Protocol 

 

The actual public key protocol we implemented is based on the ElGamal. “The 

ElGamal algorithm is an asymmetric key encryption algorithm for public key 

cryptography which is based on Diffie-Hellman key agreement. It was described by 

Taher Elgamal in 1984. The ElGamal algorithm is used in the free GNU Privacy Guard 

software, recent versions of PGP, and other cryptosystems. ElGamal can be defined over 

any cyclic group G. Its security depends upon the difficulty of a certain problem in G 
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related to computing discrete logarithms”
14

. Given the fact that the Elliptic Curve 

Discrete Logarithm Problems are very hard to solve, we are assured that ECElGamal 

provides a strong encryption scheme. 

The ElGamal protocol can be break down into three major parts, the key 

generation, encryption and decryption. Here is a description of each step.  

 

 Key Generation 

PTD generates an efficient description of a cyclic group G of order q with generator g.  

PTD chooses a random x from  {0, … , q-1} 

PTD computes h = gx  

PTD publishes h, along with the description of G,q,g, as its public key.  

PTD retains x as its secret key. 

 Encryption 

In order to encrypt a message m for PTD under its public key (G,q,g,h), 

POS converts m into an element of G.  

POS chooses a random y from {0, … , q-1} , then calculates c1 = g
y 
 and c2 = m· h

y 
 

POS sends the ciphertext (c1,c2) to PTD.  

 Decryption 

In order to decrypt a ciphertext (c1,c2) with POS secret key x, 

POS computes as the plaintext message.  

The decryption algorithm produces the intended message, since 

 

 

Elliptic Curve Cryptography - Implementation Issues and Results 

 

We used “Implementing Elliptic Curve Cryptography” by Michael Rosing for the 

reference. In this book, he provided basic codelets that can be used for the encryption and 

the decryption using C. However, his C codes were written in old style that was not ANSI 

C compatible. In addition, he did not consider porting the code for DSP hardware such as 

TI EVM we used in our project. Therefore, his code did not run on the EVM at the 

beginning due to various precision problems caused by casting between data types. We 

were never able to figure out how to make the polynomial based representation of F2m 

work on the EVM. There was a strange behavior when we used long type variables on the 

EVM and then converted into unsigned int. After almost five days of struggle, we finally 

made the code to compile and run without errors, but we had to use the optimal normal 

basis to represent the field. When we first planned our project, we were aiming for 131-

bit encryption; however, after we implemented our first prototype on the EVM, we 

realized that 131-bit encryption would require too much computation and memory. After 

few tries, we had to lower the number of bits used for the encryption to 69-bits. However, 

69-bits of encryption would be still strong compared to most of the current algorithms 

used in the products. Since the elliptic curve cryptography provides the encryption 

                                                 
14
 http://en.wikipedia.org/wiki/Elgamal 
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strength of factor of 6 compared to RSA, our 69-bit implementation would be 

approximately equal to 414-bits of RSA.  

 

 
Table: http://www.certicom.com/index.php?action=ecc,ecc_faq 

This table from the Certicom website 

provides the corresponding 

encryption strength at different bits 

used for different algorithms. Using 

this fact, we can justify our decision 

on reducing the number of bits used 

for the encryption. After reducing the 

number of bits, we were able to run 

the actual encryption and decryption 

on the EVM board.  

 However, the initial performance turned out to be too slow to be used for an 

actual system. The details of profile data can be found in the performance evaluation 

section. Our initial encryption took about 150 million cycles for just a single 69-bits of 

data. After realizing our code was not put on the on-chip memory, we made 

modifications so that all the computationally expensive portions of the codes get 

allocated in the fast on-chip memory. Then the cycle time went down to approximately 

40 million cycles. This was a big improvement but it was still not very satisfactory. We 

were expecting about a factor of 15 improvements. Thus, we turned on the optimizing 

level to O3, then did the profiling again. This time, the cycle count was reduced to 

approximately 8.5 million.  

The actual data that is being transferred between the POS and PTD is usually 

about 256 bytes. (512 bytes after encoding) Since we can break up the message into 8 

bytes (64bits) of basic blocks and encrypt them, we need to run the encryption routines 

32 times. This means that each message will take 272 million cycles. Since the EVM 

CPU runs at 133Mhz, this means the encryption takes about 2.05 seconds. This number is 

reasonable, although this does not meet our goal from the beginning.  

 

Limitations and Reality 

 

Our project did not consider a problem of exchanging the public key with 

malicious POS. We did not have enough time to solve this. Therefore, even with a strong 

encryption, our system still can be vulnerable to fraud transaction if there is a fake POS 

that pretends to be an authorized merchant. However, the current credit card system also 

has the same problem inherently. We rely on the central authority such as VISA to ensure 

us that there will be no POS that cheats on our system. In addition, the infrared device 

must be close to POS and directed at the sensor of POS, so the user should be able to see 

the actual target transaction system, which reduces the threat of fraud. This location 

verification is a natural advantage of infrared system over other financial system. Also, 

most of the cell phones and PDAs nowadays can access the internet. Since each POS 

device will have a unique ID embedded into the system when manufactured, the hand 

held device could request verification of the POS through the web to ensure the 

authenticity. The ID can be encrypted in such a way that only the central authority can 

decrypt the ID to prevent duplication of POS. 
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Speed and Profiling 
 

 The final program size is too large to place everything on chip. Only the most 

time critical and computationally intensive sections of the program are on chip. These 

include the start bit correlator, and the decimator from the receiver, the Viterbi decoder 

from error correction, and encryption, decryption from the security section. The speed 

was also recoded with a higher level of compiler optimization, but the higher levels were 

not able to work with the receiver. All of our data section of the memory could fit on chip. 

Unlike other groups working with images, our project does not use any memory intensive 

algorithms.  

The receiver functions are required to finish within 0.0208 ms before the receive 

interrupt is called. The encryption and decryption routines take most of our computation 

cycles. This is due to algorithmic expense inherent in a public key cryptography system. 

Even though the Elliptic Curve Cryptography claims to be fast and efficient compared to 

other public key systems, it is still expensive. After optimizations, the speed of 

encryption and decryption was brought down to a reasonable range. Since our encoded 

packet size is about 512 bytes, our encryption worked on a 8 byte block over 256 byte per 

packet. This takes about 2.04 seconds. 

 

Table 1: Profiling key functions with O1 

Function Speed (cycles) Speed (ms) 

Correlate with start bytes 485 0.00365 

Receive data byte 1,574 0.01183 

Viterbi decoder (per byte) 16,200 0.1218 

Encrypt Initialize 8,000,000 60.15 

Encrypt Message (69 bits) 40,000,000 300.75 

Decrypt Message (69 bits) 18,000,000 135.3 

 
Table 2: Profiling key functions with O2 

Function Speed (cycles) Speed (ms) 

Correlate with start bytes 329 0.00247 

Receive data byte ----- ------ 

Viterbi decoder (per byte) 9,400 0.07070 

Encrypt Initialize 7,200,000 54.14 

Encrypt Message (69 bits) 8,000,000 60.15 

Decrypt Message (69 bits) 3,500,000 26.32 

 
Table 3: Memory Usage 

 On-Chip Off-Chip (SBSRAM) 

Program Code ~48KB ~28KB 

Data  ALL NONE 
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Demo / GUI 
 Our project demo was done to show that the combination of all the parts was 

working correctly. In order to show this, we implemented a graphical user interface. Our 

initial proposal for this was to have a user-level implementation for the PTD and POS. 

However in our final demonstration, we just had a GUI for the PTD and printed out 

results on the POS EVM and PC side.  

 The Demo was done like the way it was described in the Link/Protocol layer. The 

user initiated the transaction by starting the PTD GUI program. This initiated the transfer 

of POS Info Request form PTD to POS. When POS received this message, the POS sent 

back its information including its vendor name and address. Then the PTD displayed the 

info in the prints. After that the PTD sent its public key to the POS, and upon receiving 

the public key, POS sent its own public key back to the PTD. Once the keys were 

exchanged, the PTD encrypted its credit card information and sent it to the POS. The 

POS was able to print out the PTD’s credit card number.  

 Although we did not show full demo of a purchase of an item due to the lack of 

time at the end of the project (because we spent a lot of time debugging numerous 

unexpected bugs), the current demo was sufficient to show key implementations in a 

transaction procedures such as encoding/decoding, encryption/decryption and 

link/protocol layers. The demonstration of item purchases would be same procedure as 

was showed in the demo but with different packets sent back and forth. We also showed 

some tests of error cases and how the system accounts for them. For example, when we 

were sending encoded data across from POS to PTD, we purposely made error in the 

packet to demonstrate that the error correction works. As expected, the PTD side still 

printed “Giant Eagle” and its address correctly. Also, we showed that the POS does not 

send out its information if the predefined Request POS Info message does not match the 

first incoming message, as we defined the Request POS Info to be 100 in both PTD and 

POS.  

 

 

Difference from other Projects in 18-551 
 This project is very similar to The Wireless Intercom System project from last 

year. The two projects both use wireless communications and solve problems with 

synchronization, encryption, and encoding. This project is different because the BER is 

lower so that large encoding and spreading processes are not needed. 

 This project is also similar to Software Defined GSM Receiver. The main 

difference is that they focused on a receiver for a complicated standard, while we built a 

communications system on our own defined standard. 

 This project is unique because it implements wireless communications in the real 

world rather than simulations. Secondly, this project include a stronger encryption 

method than has been done before in 551. 
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Conclusion 
 

  

 The final project results included most of the important features of the system 

proposed. We successfully created the physical hardware (shown above), sending and 

receiving packets, convolutional encoder, Viterbi decoder and the Elliptic Curve 

Cryptography. However, due to the time constraints caused by various problems, 

including physical hardware blowing up five minutes before the demo, we did not have 

satisfactory demo and the protocols as we proposed at the beginning. We also have to 

admit that our system is still vulnerable to fraud transactions. This issue could have been 

handled through some protocols, but we did not have time to think carefully about this. 

 Regardless of all the troubles we had, we believe our project was successful. Our 

project involved many difficult, but realistic, problems such as dealing with noises, drifts 

in the signals, encryption and decryption. We had so many unexpected problems towards 

the end of our project and we learned how to schedule the work with considerations for 

such situations. After all, it was a very distinct experience to sleep under the desk in the 

lab. We all enjoyed working on the project and we all wish good luck for up-coming 551 

students.  

 




