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Motivation 
As computers become more and more involved in all aspects of our lives, there is  

an increasing number of computer-related disorders such as RSIs (repetitive stress 

injuries) and RMIs (repetitive motion injuries). The main causes of these injuries are 

often repetitive, forceful and awkward hand movements due to bad designs of computer 

accessories. Mouse as an input device is convenient and intuitive, however the physical 

implementation of traditional mouse constraints user’s hand movements and postures. As 

a result prolonged mouse usage, unhealthy postures and bad mouse design will increase 

the risks of such types of injury. 

 

 

Solution 
Our goal is to design a user-friendly mouse that helps to prevent hazards such as 

RSIs and RMIs. The solution that we come up with is to utilize the user’s own hand to act 

as the mouse. The advantage of such a design is that the hand of the user will be placed 

naturally on a flat surface, and hence the pressure on the hand will be spread uniformly 

on the palm instead of concentrating most of the pressure on the wrist. This alleviates 

stress on the hand and helps to prevent the user from suffering muscle fatigue as a result 

of prolonged usage. We named our design Handimouse. Besides the fact that 

Handimouse can help to prevent RSIs and RMIs, it is also easy and simple to use. It 

requires no significant adjustment or training from the user side. Thus, it is very intuitive 

for the users to switch from traditional mouse to Handimouse. 

 

 

Overview 
The set-up of Handimouse includes a webcam, a piece of blue paper, EVM, and a 

PC. The user can define his workspace by using a black marker to draw a rectangle grid 

on the blue paper; only movements and actions within the workspace will be detected and 

executed.  Webcam should be placed at an elevated position in order to capture the entire 

workspace.  This completes the initial hardware set up of the device. 
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Figure 1. Image captured by the Webcam:  

workspace (the rectangle grid) on a blue paper

Figure 2. Image captured by the Webcam: 

Handimouse in operation 

 

The following describes the detail operation of Handimouse. Once the application 

starts, Handimouse will be activated when user place his hand inside the workspace.  

User’s thumb position in the workspace will be mapped to the cursor position on the 

computer monitor in a one-to-one scale. For example, if the user places his thumb in the 

lower left hand corner of the grid, the mouse cursor will carry out the corresponding 

movement. Our program will detect the motion of the index finger and the middle finger 

to control the left and right mouse button respectively. Since webcam cannot detect 

pressure applied on a surface, mouse-button-down is signaled by holding up the finger, 

while the mouse-button-up is signaled by putting down the finger in the workspace. This 

may be unnatural for dragging action, since the user will need to hold up his index finger 

instead of pressing down. However clicking action and double-clicking action would still 

be the same as using a traditional mouse, i.e. bringing finger up then putting down 

defines a button click.  

 

 

Division of Labor 
 The following data flow diagram shows the interaction between the user interface, 

PC, and EVM.  
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Figure 3: Application Flow: Division of Tasks among UI, PC and EVM 

 

User Interface and PC Side: 
The User Interface is on the PC Side as well.  It guides the user through and 

handles the initial set up of the Handimouse, i.e. it collects the data for the transformation 

matrix from image-space to monitor-space, and it also collects the templates for defining 

the right and left mouse button click.   

The PC handles most of the static computations. The tasks of the PC include: 

1. Handling data transfer between Webcam and EVM, and also data pre-

processing before sending to EVM; 

2. Downsampling of the images; 

3. Conversion of RGB to HSV, and determination of Luminosity Threshold for 

defining the workspace in image-space (refer to the Morphological Operations 

in the Algorithm Matrix for procedure details); 

4. Obtaining the Transformation Matrix for the workspace between image-space 

and monitor-space, and also the workspace mapping between image-space and 
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monitor-space (refer to Transformation Matrix in the Algorithm section for 

procedure details); 

5. Skin Detection on the raw input images (refer to Skin Detection in the 

Algorithm section for procedure details);  

6. Defining the templates for correlation of hand postures (refer to Pattern 

Recognition/Correlation in the Algorithm section for procedure details); 

7. Defining the correlation input from the raw image (refer to Pattern 

Recognition/Correlation in the Algorithm section for procedure details). 

We will discuss the detail of the above procedures and algorithms in the later 

Algorithm section. 

 

 

EVM Side: 
The EVM handles most of the dynamic computations and intensive image 

processing.  Following is the list of tasks that EVM performs: 

1. Downsampling on inputs to Radon Transform (refer to Radon Transform in 

Algorithm section for procedure details); 

2. Morphological Operations (i.e. erosion, dilation and edge detection) (refer to 

Morphological Operation in Algorithm section for procedure details); 

3. Radon Transform (refer to Radon Transform in Algorithm section for 

procedure details); 

4. Calculation of the Transformation Matrix (refer to Transformation Matrix for 

procedure details); 

5. Defining the Mapping Equations of the workspace between image-space and 

monitor-space (refer to Transformation Matrix for procedure details); 

6. Locating the position of the thumb in the workspace; 

7. Pattern Recognition (refer to Pattern Recognition/Correlation in Algorithm 

section for procedure details). 
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Previous Project Compare and Contrast  
Our project has some similarities to a previous 551 project.  Group 13 in Spring 

2000 purposed using an Eye-Tracking System for the eventual mouse-input removal. 

However, in their eye-tracking system, no clicking action was implemented. This makes 

the human-computer interaction system incomplete. In our project, we will complete the 

human-computer interaction system by implementing clicking and dragging motions of 

the mouse. And also, the superiority of our Handimouse when comparing to the previous 

551 project is the fact that it is more simple, easy and intuitive to use. 

To our best knowledge, there is no commercial product that does the same thing 

as Handimouse. However, similar products like EagleEye’s CamMouse, Handieye from 

MouseVision exists. These products use the motion of the face or the nose as input to the 

devices. These products (trial version) lower user performance, and their accuracy is 

unsatisfactory. Moreover, none of the above products implement the mouse dragging 

activity.  We expect our design to be more complete and user-friendly, and to provide 

higher efficiency.  

 

 

Webcam Input Formats and Conversions 
 All raw image inputs from the webcam are in Bitmap format. Multiple 

conversions are needed for the following purposes: 

1. To define the workspace on the image-space: 

Obtain the V (i.e. V as in HSV format, the luminosity) values of the pixel 

from its R G B values that obtained from the bitmap.  The V value will then used 

to determine the workspace location. 

 

2. To accomplish faster computations in EVM:  

Since EVM does not offer great processing power, fast computations are 

required in order to achieve the real time response that we desire in our device.  In 

order to accomplish faster computation in EVM, all the input images that are 

needed by EVM will be converted into binary format.  Based on the R G B values 

of every pixel that obtained from the raw bitmap input, the corresponding pixel in 
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the binary output will be determined as skin pixel or non-skin pixel. In the raw 

bitmap input, all the skin pixels will assign a value 1 to the corresponding pixel in 

the output, while all the non-skin pixels will assign a value 0 to the corresponding 

pixel in the output.  As a result, all input images can be represented by binary 

matrices. These conversions greatly improve the speed of image processing, and 

also reduction in memory usages. 

 

 

Algorithms 

 The following section presents an in-depth discussion on the algorithms that we 

have implemented in Handimouse.  

1. Radon Transform 

Radon Transform is used to determine the workspace boundaries in the 

image-space; its outputs are then used to determine the four corner points of the 

workspace from the image-space, so that the transformation matrix for workspace 

mapping between the image-space and the monitor space can be calculated based 

on the information of the four corner points. 

 

 

Figure 4. Image that includes 

the workspace 

Figure 5. Result of the Radon 

Transform of the workspace 

boundaries 

Figure 6. Locate the four 

corners and the boundaries 

of the workspace 

 

We first convert the image includes the workspace into HSV format and 

use the V value of the pixels to determine the block that represents the workspace 

in the image.  Radon Transform is able to transform two dimensional images with 
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lines into a domain of possible line parameters (in our case we will be using ρ and 

θ, where ρ is the distance from the origin of the image to the line, and θ is the 

angle that ρ makes with the positive x-axis), where each line in the image will 

give a peak positioned at the corresponding line parameters. Radon Transform is 

used in the initial set up for defining the workspace boundaries of Handimouse in 

image-space. 

After we have obtained the line parameters, we can now define the 

workspace of Handimouse by locating the four corners of workspace. This is done 

by finding the four line equations and their intersections. Since the output of the 

Radon Transform is given in terms of ρ and θ as defined above, a quick way of 

obtaining the line equations that define the bounties is to use the polar form 

representation of a line equation. The polar form is given by x*cos(θ) + y*sin(θ) = 

ρ, where x and y is the coordinates of the image space.       

 

2. Transformation Matrix 

Transformation Matrix is used for mapping the workspace between image-

space and monitor-space. The mapping algorithm is obtained from an online 

source listed in the reference. The implementation is quite straight forward. First 

we need the location of the four corner points, which we can calculate from 

Radon Transform detailed above. Then we are able to construct two 

transformation matrices, one for forward mapping and one for backward mapping. 

For examples, if we want to go from the image-space to the monitor-space we can 

use the following matrix multiplication formula, u = x*A, where u is the 

coordinate of the monitor-space and x is the coordinate of the image-space.  

(Refer to reference [1] on the reference page for algorithm/equation detail)  
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Figure 7. workspace mapping from image-

space to monitor-space 

Figure 8. the resulting area after mapping the 

complete  monitor-space back to the 

workspace in  image-space (the whole 

monitor-space is the transformed workspace) 

 

3. Skin Detection 

In order to segment the hand of the user from the background, we need to 

apply Skin Detection algorithm.   

We have investigated several color spaces for detecting skin color in the 

image.  Here are some scatter plots of the skin color distribution in different color 

spaces that we obtained from the skin samples: 

  

Figure9. Skin Sample 1 used Figure 10.  Skin Sample 2 used 
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Figure 11. Color distribution of Skin Samples in RGB space 

 

 
Figure 12. Color distribution of Skin Samples in HSV space 
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Figure 13.  Color distribution of Skin Samples in YCrCb space: the color represents the Y 

values ranged from 0 to 1; the red represents the highest Y values while the blue 

represents the lowest Y values 

 

As seen above, the skin color cannot be determined by solely restricting 

the extent of individual dimensions in the color spaces.  From observation, the 

color distribution is most uniform in the YCrCb space as seen above; ignoring the 

Y(luminosity) values, the color distributions are concentrated within a small 

extend of Cr and Cb values.  Yet, when tested thoroughly, if we define the skin 

color by solely setting a threshold in Cr and Cb values, it include some non-skin 

pixels as skin-pixels from time to time; hence we decided that we cannot obtain a 

robust skin detection by solely constraining the Cr and Cb values in the YCrCb 

space.  From inspection, the best way to define skin color is using principal 

component analysis, since the color distribution in the color spaces are pretty 

linear.  However, we do not want to spend too much machine power on 

segmentation of the hand, as it is a procedure that will be required in every cycle 

in real time, and especially when the complex computation takes a relatively 

much longer time to complete in the EVM than in the PC.  
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As a result, we choose to define the skin pixels using the relationship 

between the R G B values of the pixels, as they are the first color information we 

can obtain from the raw image input.  We are able to obtain a fairly robust skin 

color detection algorithm based on R G B relationships from the Internet.  

Although the calculation is done in the RGB color space, it defines the skin pixels 

depending on the relationships among all RGB values instead of solely depends 

on the individual thresholds of R, G and B values.  The details of the algorithm 

can be found in the reference.  Please note that the accuracies of our skin 

detection are greatly affected by other outside issues as well:  we have 

encountered digital camera noise problems when applying the skin detection on 

the webcam inputs.  It will be discussed in detail later in the conclusion section. 

This skin detection logistic is not perfect, though it serves the purpose of our 

Handimouse. 

 
Figure 14. Handimouse Skin Detection output 

 

4. Morphological Operations  

Morphological operations can eliminate the errors/noise in image 

generated by skin color detection or luminosity threshold. 

We were considering a lot of different combinations of morphological 

operations, but in the end we have decided on using a combination of only erosion 

and dilation, since the other morphological operations are expensive and do not 

help too much in improvement and thus are decided as unworthy to implement.  

Erosion:  

It is a morphological operation that usually decreases the number 

of pixels in a black and white picture. We used a 2D convolution kernel of 

dimension 3x3, whose entries are all 1. For each convolute location, if the 

value is lower than 9, that pixel will be set as a black pixel next generation. 
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In other words, for a given pixel, if it or any of its neighbors is not white, 

then the pixel will be black in next generation. 

 

Dilation:  

It is a morphological operation that usually decreases the number 

of pixels in a black and white picture. We used a 2D convolution kernel of 

dimension 3x3, which entries are all 1. For each convolute location, if the 

value is larger than 0, that pixel will be set as a black pixel next generation. 

In other words, for a given pixel, if it or any of its neighbors is white, then 

the pixel will be white in the next generation. 

 

When the operations are used in “erosion, dilation” order, the output 

image will include less noisy pixels while the general shape and size of the main 

features preserves. When we use the morphologies in higher orders (for example 

erosion twice then dilation twice), we are able to remove noises in larger area. 

However the main features will be distorted or even disappeared if the 

morphologies are used in a very high order. Therefore, we chose the order of 2 

(erosion twice then dilation twice) based on experience of the noise we encounter. 

These noises mostly from the error in skin color detection, which recognize some 

parts of the lines of grid as skin. These noise are at most 3 pixels wide, hence 

morphologies at order of 2 serves the purpose for Handimouse. 

 
Figure 15. Sample Skin Detection that contains noise; in such case, 

morphological operations are needed 
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Moreover, Radon transform needs further noise reduction.  To generate a 

sensible result from radon transform to obtain information of the grid lines 

(workspace boundaries) from the image, we need to isolate the edges of the grid 

from the image, and thus we need to first locate the position of the grid 

(workspace), and then extract the edges of the grid (workspace boundaries). 

 In the following paragraph we will describe the method we obtain the 

location and shape of the workspace. Firstly, we obtain a luminosity threshold 

image which indicates any pixel is almost as bright as white. We assume that the 

whole workspace is bright enough and also the workspace covers the middle point 

of the image. From the middle point of the image we check if there is any point 

around it on the image is a white. We will mark the pixels and all its connecting 

neighboring white pixels as white on the corresponding pixels in another image. 

The result is a connected blob that has a marked pixel in the middle point of the 

image. If the workspace boundaries are marked black enough and thick enough, 

the workspace can be clearly separated from the background in the luminosity 

threshold image; the blob should represent the workspace. 

Furthermore, we need to perform edge detection on the grid space blob 

before radon transform, so that the result of radon transform will achieve 

satisfactory accuracy. We have chosen to implement Sobel edge detection. [7] 

This simple edge detection consists of two convolution kernel (Gx and Gy) 

representing horizontal and vertical edges representatively. After convolution of 

the blob image with these 2 kernels, we obtain a black and white image by 

applying a threshold. (i.e. if the sum of the two convolutions is greater than 3, the 

pixel will be set as white, else set as black) As a result, only the edges of the grid 

are visible, hence the result of radon transform can be interpreted easily. 
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Figure 16. Handimouse output of Edge Detection 

 

5. Locating the Thumb 

Originally we decided that the leftmost bottom pixel can be seen as the location 

of the left side of user’s thumb. However, during testing phase, we discovered that 

different user has different posture of hand, and sometimes our algorithm locates the 

joint that connect thumb and hand, instead of locating the thumb position. Hence we 

abandoned the previous idea and tried to locate the right side of the thumb. Our new 

idea is the following.  We first locate the leftmost bottom skin-pixel and then traverse 

from that pixel downward and rightward until we cannot go any farther. This way, we 

are able to obtain correct and very stable thumb position. However, since the right 

side of a right handed user’s thumb is the inward side of the thumb, which means that 

the thumb is usually shadowed by itself and the index finger, and thus it lower the 

accuracy. Moreover, because of the memory effect that we encounter (will be 

discussed later in the conclusion section), our accuracy of locating the thumb is 

greatly reduced. 

As we can see from the picture below, the red dots indicate where the grid corners 

are. Since some of the grid lines (workspace boundaries) reflect ambient light as well 

that the skin color detection cannot tell it apart from the skin color. 
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Figure17. Sample Image that demonstrated the Error encountered when tracking 

the thumb 

 

6. Pattern Recognition/Correlation 

 Pattern Recognition is implemented to determine the finger activities that 

trigger the mouse button action, i.e. whether the index finger is holding up or 

down, whether the middle finger is holding up or down. The basic algorithm used 

for pattern recognition is 2-dimention-correlation.   

 The following describes the implementation of our pattern recognition.  

During the initial phase of the program, the UI (user interface) at the PC side will 

request the user for 3 picture of his hand: picture of his hand in relaxed posture, 

picture of his hand with index finger holding up, and picture of his hand with 

middle finger holding up. The images are first transformed into grid space in PC. 

As the positions of the thumbs are found, we can crop a template starting from the 

thumb points. The size of the crop templates is equal to the size of the workspace. 
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Figure 18. Sample image that demonstrates the template that is cropped from the picture 

that is taken by the webcam at Handimouse initialization 

  

 These templates are stored in the EVM with a downsample factor of 8. 

Since we know the maximum correlation value is obtained when the hand in the 

templates overlap with the hand in the current image, we can deduce that the 

maximum correlation value for a template is obtained when the thumb in the 

template is aligned with the thumb in the current image. From the values of the 

three template correlation, we can determine if the user is holding up any finger, 

and which finger it is. 

 Our correlation achieves high processing speed, though it suffers from the 

accuracy issue of thumb location. And also, the result template correlation is not 

rotational invariant, and thus we cannot consider the case when user rotates his 

hand during Handimouse operation. 

 

 

The Handimouse 

 In this section, we will discuss the operation procedures of Handimouse in detail. 

To start Handimouse, the user first need to run the GUI at the PC side that guides the user 

through the initial set up procedures. The initial set up includes defining the workspace 

and obtaining various templates for pattern recognition.  The initial setup steps are 

illustrated as following: 
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Step 1: Defining the workspace 

 First we start the GUI, and make sure the camera can see the entire workspace.  

Click on the “Initialize” button.   

 
Figure19. Handimouse GUI at start up: place the workspace so that the red dot is inside 

the workspace 

Place the workspace (the rectangle grid) so that the red dot is inside the 

workspace.  Click on “OK” when done.  The application will then start performing Radon 

Transform on the input image to obtain the four corner points of the workspace in image-

space.  

                 
Figure19. Handimouse GUI after detecting the four corner points of the workspace using Radon 

Transform 

 

Above is the output image after the Radon Transform.  The four red dots in the 

figure above indicate the four corner points of the workspace points found and calculated 
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by our program.  Click “OK” if the corner points are detected correctly, or click on 

“Cancel” and redo the Radon Transform if the corner points obtained are incorrect.  After 

the “OK” button is clicked, the four corner points will be passed to the EVM to determine 

the transformation matrix for workspace mapping between image-space and monitor-

space.  

 

Step 2: Obtaining the four-finger-template 

 After the transformation matrix is defined, the GUI will then ask the user for the 

templates for later pattern recognition purpose.  At first, it will request the user to place 

his hand flat showing all his fingers except for the thumb.  If all four fingers show up in 

the GUI correctly, click on “OK” to confirm on the template, or click on “Cancel” to 

redefine the template.   

 
Figure20. Handimouse GUI showing four-finger-template of a user 

 

The figure shows a four-finger-template of the user. The four-finger-template is 

defined as the “default” state. It is used to compare with the incoming image to determine 

if the index or middle finger is raised. 

   

Step3: Obtaining the raise-index-finger-template 

 After the four-finger-template is confirmed, the GUI will then ask for the user to 

raise his index finger.   
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Figure21. Handimouse GUI showing index-finger-template of a user 

 

The figure above shows the index-finger-template of a user. The index-finger-

template is used to detect left-mouse-button-down action of Handimouse. Click on “OK” 

to confirm the template, or click on “Cancel” to redefine the template.   

 

Step 4: Obtaining the middle finger template 

 After that, the GUI will request the user to raise his middle finger for the last 

template.    

 
Figure22. Handimouse GUI showing middle-finger-template of a user 

 

The figure shows the middle-finger-template of a user. The middle-finger-

template is used to detect right-mouse-button-down action of Handimouse. Click on 

“OK” to confirm the template, or click on “Cancel” to redefine the template.    
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After completing this simple initialization procedure, Handimouse is ready to go. 

User can then click on the “Start” button on the GUI to start using Handimouse. The 

basic operations of Handimouse are exactly the same as any traditional mouse, except for 

the dragging motion. Basically, the index finger controls the left mouse button, while the 

middle finger controls the right mouse button.  The mouse-button-down actions are 

signaled by holding up the finger, while the mouse-button-up is signaled by putting down 

the finger in the workspace.  In other words, left click is accomplished by putting the 

index finger up and then down in the workspace; left double click is accomplished by 

putting the index finger up and then down twice; and similarly for right click.  Dragging 

is accomplished by holding the index finger up and moves the hand to the desire position 

and put the index finger down. Since the program is not rotational invariant, we overlay 

the user’s template onto the user’s hand to remind him of his template orientation and 

shape. The blacked out pixels are the places the hand matches template. The four red 

points indicate the position of the grid, and the green dot is the detected thumb position. 

 

 
Figure23. Handimouse GUI demonstrating Handimouse in operation 

   

Clicking on the “Stop” button terminates the Handimouse and switches the 

window mouse input to the default traditional mouse, while clicking on the “Exit” button 

on the GUI will exit the Handimouse program completely.   
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Optimization 

 In order to fully utilize the EVM, we have tried to perform many intensive image 

processing computations on the EVM instead of on the PC.  As a result, we are required 

to speed up the EVM process as much as possible. Thus, we had applied several bitwise 

manipulations and tricks to replace some algorithm that require brute force calculation. 

No memory optimization is needed (e.g. paging, ping pong memory) because all of the 

memory we needed are allocated in the 64kb on-chip memory. 

1. Erosion and dilation 

These two operations are used extensively in our program, requires 

multiple access of a single memory address if we use naïve method to calculate. 

This is because of the manner of our storage (a single memory address contains 

32 bits, each correspond to one pixel). However, if we use bitwise shift operations 

on a memory address, each bit in the memory address we would have to consider 

separately will be aligned with its neighborhood. This is very convenient for 

calculating erosion and dilation because these functions are determined by the 

disjoint or union of neighborhood of a single pixel.  

 

2. Radon Transform 

Discrete Radon transform is a very calculation expensive algorithm. Naïve 

implementation of it has the efficiency of O(n^3). Also since we have to store a 

multi-bit value for the radon transform output, the on-chip memory will not be 

able to hold all the output value hence the performance will be greatly reduced. 

Fast discrete radon transform has the efficiency of O(n^2 log(n)) but require 4 

times the memory than naïve implementation needs. We discard the idea of using 

fast discrete radon transform because that will require more memory than on-chip 

memory provides. Fast discrete radon transform will therefore greatly decrease 

the performance. Since the usage of radon transform is the detection of the grid, 

which is used only to reveal the perceptive distortion the image is undergoing, sub 

pixel error in radon transform is tolerable. We decided to reduce the size of the 
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radon transform by a half (n/2) and implement the radon transform using naïve 

method. 

 

What is more, we have successfully speeded up the Radon transform process by 

another factor of 1/8 by creating a lookup table for storing the repetitive cosine and sine 

values (reduce the operations by 1/2) and by combining similar mathematical operations 

(operations that are negation of each other) in a single for-loop instead of repeating the 

same process four times.  
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Memory Usage 

 Since the program is intended to be real time operation, we allocate all the 

memory from on-chip memory, which is of the size 64kilobytes. Because of this memory 

constraint, all the input images to EVM are binary (black and white) images. These 

binary images are produced by either a threshold of luminosity of the consisting pixels, or 

the skin detection condition that have been discussed above. 

 The major memory allocations are these: 

1) Buffer for accepting incoming  

Size of buffer: 320*240*1/8 bytes = 9.375kilobytes 

2) Buffer for calculation of radon transform (which value is recorded as an 8-bit 

value). Since the accuracy of the position of the grid is not very important, we 

down sampled the image before we perform radon transform. 

Size of buffer: 320/2*240/2 bytes = 18.75kilobytes 

3) 3 Buffers for template storage (each of them is down sampled by a factor of  8) 

Size of each buffer: 320/8 * 240/8 * 1/8 bytes = 0.1465kilobytes 

Total size of buffers: 28.56Kilobytes  

Note: 320 = pixel width of the input image, 240=pixel height of the input image 

 

 

Conclusion 

 The performance of Handimouse is only satisfactory. We are now going to 

discuss the problems that we encountered.  

The most serious error that we have encountered is an image artifact known as 

memory effect (ME). Pattern of the resulting noise image is called banding. This pattern 

is a pattern consists of alternating lighter-darker horizontal stripes that is of constant 

frequency. Memory effect is known to be caused by circuitry contained in the pre-

amplifiers immediately following the detectors in the instrument electronics. This is 

primarily due to a portion of feedback circuit that contains a resistor/capacitor 

combination.  And also, because of the data structure of the image memory, in which data 

are set by the order red followed by green followed by blue, the memory effect of the red 
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value leads the memory effect of blue value by a significant amount that some of the 

colors are distorted.  The problem can be illustrated by the following web cam inputs: 

 
Figure24. raw image from the webcam demonstrating the banding effect 

 

   
Figure 25. Red component of 

Figure 24 

Figure26. Green component of 

Figure 24 

Figure 27. Blue component of 

Figure 24 

 

From the pictures above, we can see that all color domains suffer from memory 

effect. The effect is more dominating at where amplitude changes rapidly. For instance, 

when we take a picture of the user’s hand, the resulting banding pattern at the edge of his 

hand will affect the skin color detection result, and results in fluctuations in measurement. 

The problem is worsened by the pattern traversing in the image. 

This is a core problem for our project, as our skin detection outputs all strictly 

depend on the relationship among the RGB values that obtained to determine skin pixel 

or non-skin pixel. As the RGB values of the pixels cannot be accurately obtained from 

the raw image input, the accuracy of our mouse cursor is greatly decreased. Moreover, 

because the banding pattern is not a standard pattern, the thumb location that we obtain is 

constantly changing even when the user’s hand is not moving. So far, we had tried to 

reduce this problem with the following 3 methods:  
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Elimination of the specific frequency of banding pattern:  

We tried to take the Fourier transform of the image and expecting to 

determine the specific frequency of the banding, so that we could apply a 

combination of sine and/or cosine waveforms to cancel out the banding effect.  

However, we have figured out that there is no specific frequency of the banding 

since the amplitude of banding pattern depends on the amplitude of the original 

pixel. The banding pattern consists of many different frequency components. 

Within the constrained time, we are not able to figure out a mathematical model 

of the frequency of the banding that occurs.   

 

Stabilizing the moving stripes by changing sampling rate 

Since the major problem is that the banding pattern travels in the image in 

time, the problem is solved we can stop the pattern moving. We were hoping to 

stabilize the moving of the stripes by sampling images at an integer multiple of 

the frequency of banding to make the image seem to stand still.  The best 

sampling rate we obtained to avoid the banding is 1/161(samples/ms), but at this 

frequency the banding pattern only stand still for about a second until it jumps to 

another position. We suspect that multiple of the frequency of banding cannot be 

converge to a certain integer, and/or the sampling time of C++ is not a constant.  

As a result, we are not able to obtain a satisfactory improvement from this method.  

 

Research for skin detection that do not require great accuracy of all R G B values  

After the above two trials, we realized that we could avoid the errors 

generated by these artifacts without develop our own mathematical model of the 

banding frequency of our web cam.  We try to solve the problem in a more 

efficient one by researching another option of skin detection that does not strongly 

depend on the accuracy of all R G B values.  We have investigated the following 

options: 

1) Do not depend on color space 

This is impossible to achieve, since skin only can be determined by its 

color from the image 
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2) Try to convert the detection depend on solely one or two values for the three 

R G B values to reduce the error produced by the artifacts 

All other color space, i.e. HSV, YCrCb, NTSC, etc, are calculated on the 

relationship among the R G B values; in other words, switching to another 

color space will not improve the situation.  Moreover, as mentioned in 

algorithm section, the skin color distribution spans all R G B dimensions, 

and as a result, the detection requires all three of the R G B values.  Even 

if we consider using principal component analysis as proposed before, it 

will requires all R G B values to obtain the eigenvalues and eigenvectors.   

 

To conclude, there is still much room left for improvements. Further work can be 

conducted on how to improve the accuracy, performance, and usability of Handimouse. 

Rotational invariant, shape invariant and remedies to memory effect are the major 

improvements we look forward to. 
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