
What’s The Big Picture?

18 - 551

Group 3

Fall 2005

Ali Naveed (anaveed@andrew.cmu.edu)
Carl Yang (carlyang@andrew.cmu.edu)

Kevin Smith (kevinsmi@andrew.cmu.edu)

December 12, 2005

1

Figure 1: 8 images taken on the CMU campus

Figure 2: 1 panoramic image combining all 8 using our application

2

Contents

1 Background 4
1.1 History . 4
1.2 Applications . 4
1.3 Prior 551 Projects . 5

1.3.1 Spring 2001 . 5
1.3.2 Spring 2003 . 5

2 Implementation 5
2.1 Overview . 5
2.2 Algorithms . 6

2.2.1 SIFT Keypoint Detector 6
2.2.2 Keypoint Matching . 8
2.2.3 RANSAC . 10
2.2.4 Warping . 12
2.2.5 Blending . 14

2.3 Data Flow . 16
2.4 A Note About Image Formats . 17

3 Testing 17
3.1 SIFT Keypoint Detector . 17
3.2 RANSAC . 18
3.3 Warping . 19
3.4 Blending . 20

4 EVM Results 22
4.1 Test Data . 22
4.2 Memory Management . 22
4.3 Data Transfers . 23

4.3.1 PC ->EVM . 23
4.3.2 EVM ->PC . 23

4.4 Processing Time . 24
4.4.1 Optimization Level Local (-o1) 24
4.4.2 Optimization Level Function (-o2) 24
4.4.3 Optimization Level File (-o3) 25

4.5 Profiling . 25
4.6 Discussion . 26

5 Web References 27

3

1 Background

1.1 History

Cameras are restricted by their field of view, and as a result, images with a large
field of view must be created by combining several smaller images. In the past,
images were manually pieced together, but this gave very poor results and was
very inconvenient.

After the development of airplane technology, aerophotography became an
exciting new field. The limited flying heights of the early airplanes and the
need for larger photo maps forced image experts to construct mosaic images
from overlapping photographs.

The need for mosaicing continued to increase later in history as satellites
started sending pictures back to Earth. Improvements in computer technology
became a natural motivation to develop computational techniques to solve these
problems.

Image mosaicing is the technique that has been introduced to address these
issues. By collecting several overlapping images and combining them together
one can generate a larger area of view. Also, image mosaicing is currently being
widely used for research in photogrammetry, computer vision, image processing,
medical imaging, real rendering, robot vision and computer graphics.

1.2 Applications

• Texture Mapping — Texture mapping is the method of adding real-
ism to a computer generated graphic. By mapping the mosaic onto an
arbitrary texture mapped surface we can explore the entire virtual envi-
ronment.

• Satellite Imagery — Satellite imagery generates larger areas of view on
distant moons and planets. It was widely used by the mars pathfinder to
generate images of Mars.

• Forensic Analysis — Image mosaicing is heavily used in forensic analysis
to generate larger areas for crime investigation purposes.

• Visual Scene Representation — The complete description of visual
scene and scene models often entails the recovery of depth and parallax
information as well.

• Image Based Rendering — These systems combine computer vision
and computer graphics algorithms to create a model directly from images
and then use this representation to generate new photorealistic views from
viewpoints other than the original images.

4

1.3 Prior 551 Projects

1.3.1 Spring 2001

When we started this project we researched previous projects and found a
project that was similar to ours. In Spring 2001, a group did a project on
“Panoramic Image Mosaics” which had the same idea as us of combining im-
ages. The algorithms they used were completely different and they did not
account for calculating any sort of correspondences between the two images.

They used an error minimization technique known as Levenberg-Marquard
to come up with the best transformation matrix that relates two individual
images and kept iterating over and over until the error was minimized to a
certain threshold.

In addition they only accounted for four degrees of freedom which gave them
limited ability in warping as it only accounted for rotation and change in focal
length. Further they assumed that focal length was constant. We on the other
hand accounted for all forms of transformation since our transformation matrix
consisted of eight degrees of freedom.

1.3.2 Spring 2003

In spring 2003 a group worked on trying to improve the stability of a sequence of
video images. Although not close to our project, they looked at different frames
to calculate the similarity which they did by edge detection. They were able to
detect blocks that were similar in each frame and then tried to combine them
in one. We calculated similarities between two frames by calculating possible
point matches and then proceeding with our task of combining them.

2 Implementation

2.1 Overview

The aim of our project was to create an image mosaicing application which uti-
lized the C67 DSP (digital signal processor) board from TI (Texas Instruments).
Figure 2 given at the beginning of this document illustrates our application. We
wanted our application to be able to combine overlapping images regardless of
the type of transformation between them (combining satellite imagery requires
detecting a different type of transformation between images than that of the
overlapping images of a panoramic image, for example). In order to combine
overlapping images there are a number of steps to go through:

1. Detect “Interesting” Points
In order to combine two overlapping images (We can only work on two
images at a time, but after combining two images, we have a new image
which we can combine with a third image. In this manner, we can combine
any number of images, two at a time), we have to know where one point
in the first image would appear in the second image. The first step in

5

this process is to detect points in both images which we should be able to
detect again even if the images are changed in some manner.

2. Find Matching Points
After we have found all these points in both images, we must find which
of these points appear in both images. If we can do that, then we will be
able to take any point in the first image and calculate its corresponding
location in the second image.

3. Generate A Mapping Function
Once we have generated a list of probable matches between the two images,
we must use this information to develop some mapping function which can
map any point in the first image to its corresponding location in the second
image.

4. Transform An Image
After generating our mapping function, we can begin the process of apply-
ing it to the first image (or whatever image is not acting as the reference
image). After doing so, we will have a new image which properly aligns
with the other image.

5. Blend Images
At this point, we have two images which are properly aligned, and we
could just lay one on top of the other. If we do it this way, though, it will
be obvious that the resulting image was created by combining two smaller
images because the edges of both images will be clearly visible. So what
we do instead is “blend” one image with the other as we lay it down. By
implementing some method of “blending”, the edges of the two images
will not be visible in the resulting image.

2.2 Algorithms

2.2.1 SIFT Keypoint Detector

SIFT, which stands for Scale Invariant Feature Transform, has been the most
improved feature detection method to date. It was created by Professor David
Lowe at the University of British Columbia. This method transforms an image
into a large collection of local feature vectors, each of which is invariant to image
translation, scaling, rotation and partially invariant to illumination changes and
affine or 3D projection. Most previous methods such as the Harris Corner
Detector lacked invariance to scale, other types of transformation, and were
more sensitive to intensity changes. As a result, SIFT can detect many more
matches between two images and allows greater flexibility in the amount of
change between two images. SIFT consists of four main stages:

1. Scale Space Peak Selection
Potential interest points are identified by scanning an image over loca-
tion and scale. This is implemented efficiently by constructing a Gaussian

6

pyramid and searching for local peaks in a series of difference-of-Gaussian
(DoG) images. Each point is used to generate a feature vector that de-
scribes the local image region sampled relative to its scale-space coordinate
frame.

2. Keypoint Localization
Candidate keypoints are localized to sub-pixel accuracy and eliminated if
found to be unstable.

3. Orientation Assignment
SIFT identifies the dominant orientations for each keypoint based on its
local image patch. The assigned orientation’s scale and location for each
key point enables SIFT to construct a canonical view for the keypoint that
is invariant to similarity transforms.

4. Keypoint Descriptor
The final stage of the SIFT algorithm builds a representation for each
keypoint based on a patch of pixels in its local neighborhood.

After running SIFT on an image, we will have a list of sub-pixel (meaning
non-integer) coordinates identifying the location of all keypoints discovered by
SIFT. The origin of the image coordinate system is the top left corner of the
image; thus, a coordinate of (5, 10) would correspond to the pixel 5 columns to
the right of and 10 rows down from the top left corner of the image.

Along with the coordinates of each keypoint, SIFT also reports the scale (how
many levels of the Gaussian pyramid through which the keypoint persisted) and
orientation (a value from −π to π indicating the direction of the gradient in the
neighborhood of the keypoint) of each keypoint it found.

In addition to these four numbers, SIFT returns the keypoint descriptors
which it calculated for every keypoint. These keypoint descriptors, which are
the most important aspect of SIFT, act as unique IDs for each keypoint. Even
if an image is rotated, scaled to a different size, or has its luminosity altered,
the same keypoint descriptor value will be calculated for a given keypoint. This
is the reason why SIFT can be used to match points in two overlapping images
even if the two images are at a different scale, have been rotated, etc.

The keypoint descriptor which SIFT generates is a set of 128 numbers be-
tween 0 and 255. As you can see, this means that if two keypoints have the same
descriptor, it is virtually guaranteed that they are the same keypoint. Running
SIFT on an image, will generate output such as the following:

110 128
105.25 119.38 12.39 3.100
0 7 25 0 0 0 0 0 0 5 11 1 5 5 2 0 0 0 0 0
4 17 29 11 0 0 0 0 0 0 35 53 16 41 99 2 1 1 0 0
97 44 23 0 3 5 17 23 39 0 0 0 2 17 120 109 42 0 0 0
0 1 138 138 42 14 9 2 5 11 3 9 138 44 0 0 0 0 1 8
138 25 0 0 0 0 9 42 138 24 0 0 0 0 25 86 12 17 30 7
1 1 3 5 118 87 11 0 0 0 0 6 101 130 46 0 0 0 0 0

7

138 132 2 0 0 0 0 0
83.92 178.24 8.05 2.912
0 1 55 19 1 3 0 0 6 14 130 71 10 13 1 0 81 63 130 24
0 0 0 1 130 91 16 0 0 0 2 19 0 0 2 3 5 23 3 0
21 8 16 14 73 130 9 2 130 50 6 0 8 20 7 17 130 130 0 0
0 0 0 1 0 0 0 0 4 2 0 0 2 0 15 8 51 83 22 6
51 6 56 23 5 27 39 66 130 115 42 8 1 0 0 5 0 0 0 0
0 0 0 0 0 0 53 54 1 1 1 0 6 13 123 97 5 2 4 5
79 84 56 5 0 0 0 15
...

The first line tells us that it detected 110 keypoints and that the length of the
descriptor for each keypoint is 128. After the first line, SIFT reports all the data
it calculated for all the keypoints it found. For each keypoint, the x coordinate,
y coordinate, scale, and orientation are reported on one line, and then the 128
values of the descriptor are given. Shown below is a visual representation of
SIFT results:

The arrows are placed at the locations of the keypoints. The length of an
arrow signifies the scale of the keypoint at that location, and the angle of the
arrow represents the orientation of the keypoint at that location. The images
above are images we took of the entrance to Hamerschlag Hall.

2.2.2 Keypoint Matching

Now that we have a list of keypoints for two images, we have to see if any
of the keypoints in the first image are present in the second image. There are

8

different ways of accomplishing this, but we are using the method recommended
by Professor Lowe. In this method, we compare every keypoint in the first
image to every keypoint in the second image to find its two closest matches in
the second image. By compare we mean take the sum of squared differences of
the keypoint descriptors.

After comparing descriptors and finding the keypoint’s two closest matches
in the second image, we consider the closest match to be an actual match if
it falls within a certain fraction of the second closest match. Professor Lowe’s
papers suggest using a fraction of 0.6.

This means that if the difference between the keypoint in the first image and
its closest match in the second image is within 60% of the difference between
the keypoint in the first image and its second closest match in the second image,
then the keypoint in the first image and its closest match in the second image
are considered to be a match.

This percentage can be increased or decreased to allow for more or less
matches. Professor Lowe offers more details in his papers on why a value of 0.6
is chosen for the default value. Running our implementation of this matching
algorithm on two sets of SIFT results will generate output such as the following:

119.199997 11.540000 45.240002 8.440000
152.130005 52.349998 72.309998 54.750000
152.130005 52.349998 72.309998 54.750000
167.649994 52.849998 87.190002 57.330002
...

This data tells us that pixel (119.199997, 11.54) in the first image can be
found at (45.240002, 8.44) in the second image and so on for all the matches
found. Given below is a visual representation of the match results:

9

The resulting picture shows all matches detected based on the SIFT results
given from the two input images.

2.2.3 RANSAC

Before we can go any further, we should explain the idea of image transforma-
tions. There are many types of image transformations, and several are given in
the figure below:

1. Image Alignment and Stitching 3

!

"

!"#"$%&"'(

)*+$",-%. %//".-

0&12-+'"3-

'&%.!$%'"1.

FIGURE 1. Basic set of 2D planar transformations

rotations, for example when different portions of a larger image are scanned
on a flatbed scanner.

Scaled rotation, also known as the similarity transform, adds a fourth
isotropic scale parameter s. This is a good model for a slowly panning and
zooming camera, especially when the camera has a long focal length. The
similarity transform preserves angles between lines.

The six parameter affine transform uses a general 2×3 matrix (or equiv-
alently, a 3× 3 matrix where the bottom row is

[

0 0 1
]

). It is a good
model of local deformations induced by more complex transforms, and also
models the 3D surface foreshortening observed by an orthographic camera.
Affine transforms preserve parallelism between lines.

The most general planar 2D transform is the eight-parameter perspective
transform or homography denoted by a general 3×3 matrix H. The result of
multiplying Hx must be normalized in order to obtain an inhomogeneous
result, i.e.,

x′ =
h00x + h01y + h02

h20x + h21y + h22
and y′ =

h10x + h11y + h12

h20x + h21y + h22
. (1.2)

Perspective transformations preserve straight lines, and, as we will see
shortly, are an appropriate model for planes observed under general 3D
motion and 3D scenes observed under pure camera rotation.

In 3D, the process of central projection maps 3D coordinates x = (x, y, z)
to 2D coordinates x′ = (x′, y′, 1) through a pinhole at the camera origin
onto a 2D projection plane a distance f along the z axis,

x′ = f
x

z
, y′ = f

y

z
. (1.3)

Perspective projection can also be denoted using an upper-triangular 3 ×
3 intrinsic calibration matrix K that can account for non-square pixels,
skew, and a variable optic center location. However, in practice, the simple
focal length scaling used above provides high-quality results when stitching
images from regular cameras.

What happens when we take two images of a 3D scene from different
camera positions and/or orientations? A 3D point p = (X, Y, Z, 1) gets

Many transformations can be represented by a 2x2 matrix where to apply
the matrix to an image, you just multiply it by every pixel in the image in the
form of a 2x1 matrix: [

h11 h12

h21 h22

] [
x
y

]
=

[
x′

y′

]
However, if we want to handle projective transformations, which account

for a combination of linear transformations, translations, and projective warps,
then we need a 3x3 transformation matrix. To represent the coordinates in
2 dimensions with a 3x1 vector, each pixel coordinate is now in the form of
homogeneous coordinates: h11 h12 h13

h21 h22 h23

h31 h32 h33

 x
y
1

 =

 wx′

wy′

w


where w is a scaling factor

In our case, though, we do not know what transformation was used to get
from the first image to the second image. Therefore, our job is to solve for the
transformation matrix H. This is why we have to find a list of matches between
the two images so that we may solve for this transformation matrix. Given one
match, we can derive two equations:

(x, y) → (x′, y′)

h11x + h12y + h13 − h31xx′ − h32yx′ − x′ = 0

h21x + h22y + h23 − h31xy′ − h32yy′ − y′ = 0

10

Unfortunately, this gives us eight unknowns with only two equations, but if
we are given four matches, we can derive 8 equations:

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3

0 0 0 x3 y3 1 −x3y
′
3 −y3y

′
3

x4 y4 1 0 0 0 −x4x
′
4 −y4x

′
4

0 0 0 x4 y4 1 −x4y
′
4 −y4y

′
4





h11

h12

h13

h21

h22

h23

h31

h32


=



x′1
y′1
x′2
y′2
x′3
y′3
x′4
y′4


Now that we can calculate an arbitrary transformation matrix H given four

matches, we need some model fitting method which will attempt to calculate
that H which best fits the list of matches generated by the keypoint matching
step above. One popular model fitting method is the “Least Squares” method.
The problem with using this method is that if there are incorrect matches in
our list, the results of the “Least Squares” method will be skewed. RANSAC
(Random Sample Consensus) provides a general technique for model fitting in
the presence of “outliners” (incorrect matches in our case). The figure below
illustrates these differences nicely. Line 1 is the line calculated using the “Least
Squares” method, line 2 is the line calculated using the “Least Squares” method
if data point 7 was removed, and line 3 is the line calculated by RANSAC:

As one can see, RANSAC chooses that line which passes through the most
number of points whereas the “Least Squares” method chooses that line which
is the closest distance to every point. Therefore, we can see that RANSAC is a
better choice for our problem.

11

So to implement RANSAC, we will select four matches at random from our
list of matches. We will use these four matches to solve for the matrix H. We
will then apply this H to all the coordinates from image1 in the match list and
see how close this H gets us to the coordinates of image2 in the match list.
More simply, if we apply H to (x1, y1) of some match in the match list, and we
are within a certain distance of (x2, y2) of the same match, then we say this H
gave us an inliner. We proceed to apply and test this H against all matches in
the match list. We repeat this process of selecting random matches, calculating
an H based on those random matches, and testing this H against all matches
in the match list for many iterations. After doing this for many iterations, we
choose that H which gave us the most number of inliners as our transformation
matrix from the first image to the second image.

Below is a visual representation of RANSAC:

H =

 1.473109 −0.175044 −118.174385
0.326636 1.294937 −44.596180
0.002276 −0.000198 1.000000


The picture shows that given the list of matches between our two images

of Hamerschlag Hall, our implementation of RANSAC calculated the above
transformation matrix.

2.2.4 Warping

Once a homography has been determined by RANSAC, it is possible to warp the
first image and then lay it onto the reference image coordinate system. There
are two types of warping, forward warping and inverse warping. In forward
warping, each pixel from the original image is sent to its corresponding location
on the warped image.

p2 = Hp1

12

 wx2

wy2

w

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 x1

y1

1


⇒ (x2, y2) = (

h11x1 + h12y1 + h13

h31x1 + h32y1 + h33
,
h21x1 + h22y1 + h23

h31x1 + h32y1 + h33
)

If after applying the homography, a pixel from the original image lands
between pixels on the warped image, then the color from the original pixel must
be distributed to the neighboring pixels on the warped image. However, a huge
drawback to forward warping is the possibility of holes. If the warped image is
bigger than the original image, then all the pixels on the warped image may not
be filled in.

In order to solve the problem of holes, we instead implemented inverse warp-
ing, also referred to as backward warping. This involves iterating through all
the pixels of the warped image, and applying the inverse of the homography to
find the corresponding point on the original image.

H−1p2 = p1 h11 h12 h13

h21 h22 h23

h31 h32 h33

−1  x2

y2

1

 =

 wx1

wy1

w


Before traversing through the warped image, one must determine the nec-

essary size for the final warped image. This can be accomplished quickly by
applying the homography to each of the four corners of the original image to
obtain the corners of the warped image. We know that all warped image points
will lie within the quadrilateral defined by the four resultant corner points. The
number of rows in the warped image is determined by rounding up the differ-
ence between the top-most and bottom-most corner points. The total number
of columns is determined in the same way.

When applying the inverse homography to each pixel on the warped image,
there would be a case that the pixel becomes mapped to a coordinate between
pixels on the original image. In that case, it is best to interpolate color values
from neighbors. We chose bilinear interpolation as it provides the best trade-off
between speed and accuracy. Other methods of interpolation include nearest
neighbor and bicubic interpolation.

Shown below is a visual representation of our implementation of warping:

13

 1.473109 −0.175044 −118.174385
0.326636 1.294937 −44.596180
0.002276 −0.000198 1.000000

−1

Given the original image and the inverse of the H given by RANSAC, we
get the resulting image shown above.

2.2.5 Blending

Once the individual images are warped to generate a larger panorama the visible
seams that are present must be removed so that it looks more realistic. Simply
averaging pixels in the area of overlap is not an effective means of blending.
Variation in intensity may make the average value be extremely skewed from
what should be an accurate value. This combined with the fact that sometimes
there are misregistrations present in the warped image leads to what are known
as ghosting effects. This estimate can be greatly improved by assigning weights
to each pixel from the nearest edge and then averaging out the values.

The value of the RGB components of a given pixel corresponds to the
weighted average of the values of the RGB components of the images that
overlap in that point. The weight of the components of a pixel of each im-
age decreases as the distance between that pixel and the center of the image
increases. This situation is illustrated below:

14

The simple feathering technique that we are using to blend the images works
like this: Let (x, y) denote a pixel location on the final mosaic. We define the
weight wref to be the minimum distance from (x, y) to any edge of the reference
image or zero if (x, y) lies outside of the reference image borders. By the same
virtue, we define the weight wwarp to be the minimum distance from (x, y) to
any edge of the warped image or zero if (x, y) lies outside of the warped image
borders. Let Pi(x, y) be the color value at (x, y) of the ith image. The final,
feathered, RGB value of the composite mosaic pixel at (x, y) is thus given by:

Pmosaic(x, y) =
wrefPref (x, y) + wwarpPwarp(x, y)

wref + wwarp

Notice that if the image lies outside the borders of the reference image, then
wref = 0 and Pmosaic(x, y) = Pwarp(x, y). The opposite is true if the image lies
outside of the borders of the warped image.

Given below is an example of the results of our implementation of blending:

15

Given the reference image and the warped image, the resulting image shown
above was created. Notice that even though one image is considerably darker
than the other image, the blending was able to combine the two images rather
smoothly.

2.3 Data Flow

16

2.4 A Note About Image Formats

Images taken by our digital camera were in the JPEG (Joint Photographic
Experts Group) format, and user-supplied images could be of virtually any
format. However, we converted these images to Portable PixMap (PPM) format,
since the PPM format is very simple to read and write.

A PPM file in RAW format is a binary file which contains some basic meta-
data such as number of rows and columns. This metadata is followed by a stream
of bytes where the first three bytes represent the three RGB values of the first
pixel, the second three bytes represent the three RGB values of the second pixel,
and so on. Thus, the number of bytes is calculated as (rows ∗ cols ∗ 3). After
reading the PPM file, we represent the image with the following C structure:

typedef struct ImageSt {
int rows, cols;
unsigned char ***pixels;

} *Image;

The three dimensional array pixels, contains the row and column coordi-
nates of each pixel in the first two dimensions and the RGB (red, green, blue)
values of each pixel as an array of length 3 in the third dimension. For exam-
ple, im1->pixels[1][1][0] would access the red value of the pixel at (2,2) in
the image im1 ((2,2) because counting starts from 0); im1->pixels[5][3][1]
would access the green value of the pixel at (6,4) in the image and so on.

For the PPM images we are working with, these color values are an integer
between 0 and 255. Thus, to save memory we can define the array using the
unsigned char data type, which takes up only 1 byte, as opposed to integers,
which occupy 4 bytes.

Using this structure makes working with the image data quite easy. However,
because we only transmit one-dimensional arrays over the HPI interface between
the EVM and the PC, we have a function which “flattens” an image (converts it
to a one-dimensional array) before transmitting it. Once received on the other
side, we can reconstruct the struct if we know the number of rows and columns.

3 Testing

3.1 SIFT Keypoint Detector

We wanted to test if SIFT was truly invariant to scale among other things. In
this section we will demonstrate the capabilities of the SIFT algorithm. Figure 3
shows the images we will use to test SIFT. Notice that image 3(b) has been
rotated, given a scale different from that of image 3(a), and is slightly darker.
For image 3(a), SIFT detected 1007 keypoints, and it detected 129 keypoints in
image 3(b). After running this set of keypoints through the matching algorithm,
50 matches were found.

After combining these two images, we get the results shown in Figure 4. We
used image 3(a) as the reference image, so image 3(b) had to be rotated and

17

enlarged to line up properly with the first image. Clearly, SIFT had no problem
with these two images despite their differences.

(a) Reference Image (b) Pre-Warped Image

Figure 3: SIFT Test Images

3.2 RANSAC

Before beginning our discussion of RANSAC, it’s important to mention that
the performance of RANSAC depends heavily on the correctness of the matches
generated by SIFT. If a high percentage of the matches reported by SIFT are
correct, then RANSAC will need very few iterations to develop our transforma-
tion matrix.

Another important factor is the threshhold with which we test RANSAC.
In our discussion of RANSAC we mention that when testing a transformation
matrix, we say it gave us an inliner if the result of applying it to (x1, y1) is
within a certain distance of (x2, y2). If we set this threshhold to a distance
of 5 or more, RANSAC will stop improving the transformation matrix after
very few iterations (assuming a high percentage of correct matches from SIFT).
If, however, we set this threshhold to a value such as 0.5, then RANSAC will
continue to improve the transformation matrix for many iterations. Figure 5
shows two images which we will use to test RANSAC (the image on the left,
will be acting as our reference image).

These two images are of size 205 x 154, and for the image on the left,
SIFT detects 273 keypoints while detecting 326 keypoints for the image on the
right. After running these two sets of keypoints through the matching algo-
rithm, 103 matches are found. We then had RANSAC run for 1,000 iterations.
Figures 6(a), 6(b), and 6(c) show the results of combining the two images using
different threshholds for RANSAC.

Figure 6(a) shows the results of using a value of 10. Using a threshhold

18

Figure 4: Combining two images of different rotation, scale, and luminosity
works fine thanks to SIFT

distance of 10, RANSAC stopped improving after 2 iterations at which time it
had found a transformation matrix which gave 100 inliners in the list of 103
matches.

Figure 6(b) shows the results of using a value of 2. Using a threshhold
distance of 2, RANSAC stopped improving after 15 iterations at which time it
had found a transformation matrix which gave 100 inliners in the list of 103
matches.

Figure 6(c) shows the results of using a value of 0.5. Using a threshhold
distance of 0.5, RANSAC stopped improving after 442 iterations at which time
it had found a transformation matrix which gave 86 inliners in the list of 103
matches.

The thing to note here is that we could have set the threshhold to 10 and
used only a couple iterations of RANSAC. As one can see in the figures, there
was no improvement by setting a tighter threshhold and running RANSAC for
so many interations. The other thing to note is that this shows that SIFT gave
very good results for these two images. If a large percentage of the matches had
been incorrect, then the tight threshhold would have been necessary.

3.3 Warping

We said in our introduction that before the advent of computer technology, the
only way to combine overlapping images was to lay them on top of one another.
Figure 7 shows the results of using this method to combine some overlapping
images. As one can see, this leaves a lot to be desired. If we do not warp the
images, they will not line up properly when being layed on top of one another.

Figure 8 illustrates the importance of warping. If we warp the images, they

19

Figure 5: RANSAC Test Images

(a) Threshhold 10 (b) Threshhold 2 (c) Threshhold 0.5

Figure 6: RANSAC Results

will be properly aligned, and we can then lay the images on top of each other
and get a realistic result.

Figure 7: Combining Images Without Warping

3.4 Blending

Figure 9 shows the mosaic of two images of Porter Hall without blending.
Figure 10 shows the results of mosaicing the two images with blending turned

on. After blending was performed the visible seam that was present was not
entirely removed but considerably improved upon. Also, the “ghosting effects”
become more visible in the blended picture. The trees in the background are

20

Figure 8: Combining Images After Warping

clearly more hazed than the same trees in the first image. In addition there
is some fuzziness across regions in the side walk. So while Weighted Average
Blending considerably improves the ghosting effect which would be much more
visible in normal average blending, it does not completely eliminate it.

Figure 9: Mosaic With No Blending

21

Figure 10: Mosaic With Blending

4 EVM Results

4.1 Test Data

The following results came from running our application on the two images
shown above. Both images have dimensions of 205 x 154.

4.2 Memory Management

Given below is our *.cmd file for our project. This file tells Code Composer
Studio (IDE provided by Texas Instruments) how to partition memory on the
EVM.

-heap 0x400000
-stack 0x8000

MEMORY
{
ONCHIP_PROG (RX) : origin = 0x00000000 length = 0x00010000

22

ONCHIP_DATA (RW) : origin = 0x80000000 length = 0x00010000
SBSRAM_PROG (RX) : origin = 0x00400000 length = 0x00014000
SBSRAM_DATA (RW) : origin = 0x00414000 length = 0x0002C000
SDRAM0 (RW) : origin = 0x02000000 length = 0x00300000
SDRAM1 (RW) : origin = 0x03000000 length = 0x00500000

}

/* Allocates different parts into the different areas of memory */
SECTIONS
{
.vec: load = 0x00000000 /* Interrupt vector table */
.text: load = SBSRAM_PROG /* Code */
.const: load = ONCHIP_DATA /* Variables defined with const */
.bss: load = ONCHIP_DATA /* Global variables */
.data: load = SBSRAM_DATA
.cinit load = ONCHIP_DATA
.pinit load = ONCHIP_DATA
.stack load = ONCHIP_DATA /* Stack (for local variables) */
.far load = SDRAM0 /* Variables defined with far */
.sysmem load = SDRAM1 /* Heap: malloc and friends */
.cio load = ONCHIP_DATA
.ipmtext load = ONCHIP_PROG /* Shut the linker up */

}

4.3 Data Transfers

4.3.1 PC ->EVM

For PC ->EVM transfers, we transmit image metadata (number of rows, number
of columns, and number of keypoints), image data, and keypoint data. The
metadata is 24 bytes (6 int values), the image data for both images is 94712
bytes (images are 205 x 154 and each pixel requires three bytes - this works out
to 94710, but HPI transfers require that the number of bytes be divisble by 4
so it can fill up the 32-bit bus), the keypoint data for the first image is 200640
bytes (380 keypoints stored as float), and the keypoint data for the second
image is 165792 bytes (314 keypoints). In total, this is 555880 bytes to be sent
from the PC to the EVM. We ran this several times, and found an average
transfer time of 0.168 seconds which implies an average data rate of 3.16 MB/s.
We knew from previous lab work that HPI transfers typically occur at rates of
3 - 5 MB/s.

4.3.2 EVM ->PC

For EVM ->PC transfers, we transmit the resulting image metadata and the
resulting image pixel values. For this test, we only timed the transfer of the
pixel values and not the metadata because the wait time between these transfers

23

skewed the results. This amount of data (8 bytes) is negligible anyway. After
timing this transfer several times, we calculated an average data rate of 3.5
MB/s.

4.4 Processing Time

Code Composer Studio has the option of setting the optimization level with
which the compiler will compile code for the EVM. Below, we present our results
from running our application at three different optimization levels in order of
increasing optimization.

4.4.1 Optimization Level Local (-o1)

Avgerage Processing Time 67.3 s
Percentage Spent on Reconstructing Data 1.5%

Percentage Spent on FindMatches() 28.7%
Percentage Spent on RANSAC() 2.0%

Percentage Spent on Warp() 63.3%
Percentage Spent on Blend() 3.9%

Percentage Spent on “Flattening” Data 0.5%

Given below is the memory map generated by CCS at this optimization level:

ENTRY POINT SYMBOL: "_c_int00" address: 00413020

MEMORY CONFIGURATION

name origin length used attr fill
---------------------- -------- --------- -------- ---- --------
ONCHIP_PROG 00000000 00010000 000002c0 R X
SBSRAM_PROG 00400000 00014000 00013240 R X
SBSRAM_DATA 00414000 0002c000 00000000 RW
SDRAM0 02000000 00300000 00004e54 RW
SDRAM1 03000000 00500000 00400000 RW
ONCHIP_DATA 80000000 00010000 00008cc5 RW

4.4.2 Optimization Level Function (-o2)

Avgerage Processing Time 61.0 s
Percentage Spent on Reconstructing Data 2.2%

Percentage Spent on FindMatches() 21.9%
Percentage Spent on RANSAC() 2.4%

Percentage Spent on Warp() 68.9%
Percentage Spent on Blend() 3.8%

Percentage Spent on “Flattening” Data 1.1%

Given below is the memory map generated by CCS at this optimization level:

24

ENTRY POINT SYMBOL: "_c_int00" address: 00413920

MEMORY CONFIGURATION

name origin length used attr fill
---------------------- -------- --------- -------- ---- --------
ONCHIP_PROG 00000000 00010000 000002c0 R X
SBSRAM_PROG 00400000 00014000 00013b40 R X
SBSRAM_DATA 00414000 0002c000 00000000 RW
SDRAM0 02000000 00300000 00004e54 RW
SDRAM1 03000000 00500000 00400000 RW
ONCHIP_DATA 80000000 00010000 00008cc5 RW

4.4.3 Optimization Level File (-o3)

Avgerage Processing Time 61.0 s
Percentage Spent on Reconstructing Data 2.8%

Percentage Spent on FindMatches() 21.9%
Percentage Spent on RANSAC() 2.2%

Percentage Spent on Warp() 68.8%
Percentage Spent on Blend() 3.8%

Percentage Spent on “Flattening” Data 0.5%

Given below is the memory map generated by CCS at this optimization level:

ENTRY POINT SYMBOL: "_c_int00" address: 00412800

MEMORY CONFIGURATION

name origin length used attr fill
---------------------- -------- --------- -------- ---- --------
ONCHIP_PROG 00000000 00010000 000002c0 R X
SBSRAM_PROG 00400000 00014000 00012980 R X
SBSRAM_DATA 00414000 0002c000 00000000 RW
SDRAM0 02000000 00300000 00004d2c RW
SDRAM1 03000000 00500000 00400000 RW
ONCHIP_DATA 80000000 00010000 00008b6a RW

4.5 Profiling

Another useful feature of CCS is the Profiler. This feature lets you, among
other things, see how many clock cycles a block of code or an entire function
requires. If a function is profiled, the profiler will report how many cycles were
within the function itself (Excl.) and how many cycles were within the function
itself plus those within the functions which were called from the function being

25

profiled (Incl.). We attempted to profile the four algorithms on the EVM, but
the last two took too much time. The highest optimization level (File (-o3))
was being used when obtaining the results below.

Algorithm Excl. Avg. Incl. Avg.
FindMatches() 38,853 338,279,409

RANSAC() 4,745 12,574,920
Warp() N/A N/A
Blend() N/A N/A

4.6 Discussion

Implementing image mosaicing on the EVM was a challenging and rewarding
experience. Consequently we gained some new insight with regards to the dis-
parity between how C code worked on a PC versus how our C code executed on
the EVM. For example, because the heap is in external memory on the EVM,
calls to malloc() are costly and require approximately 15 cycles. In our code
to calculate the determinant for matrix inversion, malloc() is called repeatedly
in a nested loop as the determinant function recursively calls itself. Therefore,
we needed to revise the code in order to perform matrix inversion without calls
to malloc().

In addition, our warping function slowed down on the EVM dramatically
because of multiple accesses to pixels in the original image in external memory
for every pixel on the warped image. These multiple accesses resulted from
our use of bilinear interpolation to average color values from neighboring pixels
when applying the inverse of the homography gives a pixel coordinate between
multiple pixels on the original image. Our code could have run faster on the
EVM had we used nearest neighbor interpolation although the resulting warped
image would have less smoother edges.

It’s also worth mentioning that our RANSAC code ran considerably faster
on the EVM than it did on a PC. Using even 100 iterations for RANSAC took
15 - 20 seconds on the PC while taking roughly 1 - 2 seconds on the EVM. The
difference was even more pronounced using 1000 iterations. Using this many
iterations takes minutes on the PC while requiring only several seconds on the
EVM. The most costly portion of RANSAC is solving the system of 8 equations,
and we must conclude that the EVM architecture and the CCS compiler were
suited especially well for this type of computation.

We felt confident that our SIFT keypoint detector, RANSAC, and warping
algorithms gave very accurate results. With regards to our choice of blending
algorithms, although our weighted average blending worked well for most im-
ages, it may be beneficial to try out other algorithms such as image blending
with Laplacian Pyramids. Overall, we were pleased with our results; our project
successfully builds image mosaics without user input of correspondence points
and with images taken by hand, without necessarily a tripod.

26

5 Web References

• Benedict Brown and Philip Shilane. Image Mosaic. Image mosaicing
assignment from Princeton which provides a general overview.
http://www.cs.princeton.edu/∼pshilane/class/mosaic/

• Tsuhan Chen, Advanced Multimedia Processing Lab. The Self-Reconfigurable
Camera Array. Provided test data.
http://amp.ece.cmu.edu/projects/MobileCamArray/

• Alexei Efros. CMU 15-463: Computational Photography. Lots of useful
information on many aspects of computational photography.
http://graphics.cs.cmu.edu/courses/15-463/2005 fall/www/463.html

• Paul Heckbert. Programming Assignment 1: IMAGE MOSAICING - Re-
vision 2. September 13, 1999. General overview of image mosaicing pro-
cess. Suggestions on software, tools, and algorithms.
http://www.cs.cmu.edu/∼ph/869/src/asst1/asst1.html

• Paul Heckbert. Projective Mappings for Image Warping. September 13,
1999. Reference for image warping.
http://graphics.cs.cmu.edu/courses/15-463/2005 fall/www/Papers/proj.pdf

• Image Mosaicing. Image Mosaicing. Provides information on the topic.
http://www.cs.ust.hk/∼cstws/research/641D/mosaic/

• David G. Lowe. Demo Software: SIFT Keypoint Detector. Professor
Lowe’s website provides SIFT program and sample matching code.
http://www.cs.ubc.ca/ lowe/keypoints/

• David G. Lowe. Object Recognition from Local Scale-Invariant Features.
Proceedings of the International Conference on Computer Vision. Septem-
ber 1999. Professor Lowe’s original paper on his SIFT algorithm.
http://www.cs.ubc.ca/∼lowe/papers/iccv99.pdf

• Richard Szeliski. Image Alignment and Stitching. Discussion of different
methods of image warping and image blending. Provided figure of differ-
ent image transformations.
http://www.cs.cornell.edu/courses/cs664/2005fa/Handouts/Nikos-Szeliski.pdf

27

