
Page 1

I Spy (and Follow)

18-551, Fall 2005
Final Report

12/14/2005

Group 2:
 Khalid Harun (kharun@)
 Ramu Bhagavatula (rbhagava@)
 Joe Leonelli (jleonell@)

Page 2

Table of Contents
Section 1. Our Solution 4
Section 2. Prior 551 Work 5
Section 3. Data Sets 5

Section 3.1 Training Data 6
Section 3.2 Test Data 8

Section 4. Algorithms 9
Section 4.1 Correlation Filters 9
Section 4.2 Overlap-Save Convolution/Correlation 13
Section 4.3 Central Slice Theorem 13
Section 4.4 Detection 14
Section 4.5 Identification 15
Section 4.6 Tracking 15
Section 4.7 Overall Algorithm 18

Section 5. Signal Flow 19
Section 6. What was done on EVM 21
Section 7. Speed Issues 21

Section 7.1 Target Movement Rate (pixels/second) 21
Section 7.2 Frame Capture Rate (frames/second) 21
Section 7.3 Frame Processing Rate (frames/second) 21

Section 8. Video Interface 22
Section 8.1 GUI 22
Section 8.2 Grayscale 23
Section 8.3 Cast to float for processing 23

Section 9. Synchronization 23
Section 9.1 Naming Standards 23
Section 9.2 GUI and PC side 25
Section 9.3 PC side and EVM 26

Section 10. PC side 27
Section 10.1 Algorithm functions 27
Section 10.2 EVM communication 27
Section 10.3 Filter preparation 28
Section 10.4 Block preparation 28
Section 10.5 EVM Emulation 28

Section 11. EVM 28
Section 11.1 Data Memory and Code Size Needed 29
Section 11.2 Memory Allocation 30
Section 11.3 Table of profile results 31

Section 12. Comparisons of Data and Results 31
Section 13. Analysis of Results/Future Improvements 31
Section 14. Problems encountered 32

Section 14.1 Fixed point precision 32
Section 15. Code Referenced online 33

Section 15.1 Webcam 33
Section 15.2 FFT Shift and Mixed Radix FFT 33

Section 16. References 34

Page 3

Section 17. Code 35
Section 17.1 MATLAB Scripts 35
Section 17.2 EVM Code 36
Section 17.3 PC algorithm 44

Page 4

Section 1. Our Solution

Many places in today’s society are seeing an increased reliance on electronic devices
and their ability to remove 24/7 human monitors. In the fields of aviation and
automotive travel, the importance of constantly monitoring a landing strip or a busy
roadway is more important than it has been in the past. A DSP system that is able to
detect, identify, and track large objects as they cross a fixed field of view (FOV) is
critical to maintaining safe and efficient transportation solutions.

For our project, we will be designing such a system that will be created to
detect, identify, and track radio controlled (RC) cars and tanks in the 18-551 lab from
a fixed view (on top of the 18-474 cabinet) at a fixed angle. In this scene, the RC
vehicles will be moving while the camera remains fixed. However, due to processing
limitations, we will not be able to track the targets in real-time. Instead, we will
capture a time sequence and then use our DSP system to detect, identify, and track
designated targets using correlation filters, the Central Slice Theorem (CST), and
Hidden Markov Models (HMMs). The use of the CST and HMMs are unique to 18-551,
and should provide a new perspective to the ATR problem. Ideally, our system would
be extended and improved to deal with the more complex scenarios described below.

When managing the take-off queue of a busy airport, the volume of aircraft
moving through a fixed location can be quite significant. This environment can
increase the possibility of aircraft misidentification by the traffic controllers,
miscommunication between a pilot and the traffic controllers (regarding which take-
off strip to use), and unintentional delays as traffic controllers ‘lose track’ of aircraft
already in the queue. By placing the detection, identification, and tracking roles
under the control of a semi-autonomous DSP system, traffic controllers can better
utilize their time by efficiently allocating take-off strips. Their decisions will be based
on data collected by several of these identical DSP systems, each set up on a different
aircraft strip, taking data from a fixed camera at a single view. This will allow the
DSP system to deal with detection and identification of aircraft on only a scaling
dimension, rather than also on a rotational dimension. This means that on the training
phase of the DSP system, data will be provided showing the possible tracking target at
different sizes, but all at the same perspective. However, in order to make the
system more adaptable, data may be collected of the same tracking target positioned
at different orientations to make rotated detection possible.

In the field of automotive travel, a DSP system as described above would serve
several purposes. Primarily as an extension of the police force, this system would be
used to track and follow a dangerous target down a long roadway, through a busy
intersection, or even in an urban setting. This ability to track vehicles, during car
chases and for stolen vehicles, is of extreme importance to highway and city police
teams. Cameras would have to be set up at key points along a freeway, at
intersections, or positioned above the desired streets, but would be limited to a fixed
FOV. It is possible that this functionality could be extended to track large-scale traffic
patterns in a city, as well as tracking speed limits and traffic violations.

Ultimately, this type of device will be of extreme importance to the military.
As today’s military is increasingly moving towards a more automated force of highly
specialized vehicles and highly trained operators, these vehicles will have advanced

Page 5

controls that are used to perform basic tasks that would otherwise consume valuable
man hours and resources. In order for these controls to be effective, they must be
able to automatically and independently find potential targets and track their
position across the FOV. As a result, operators of offensive vehicles can focus entirely
on directing the vehicle and taking necessary actions against any detected and
confirmed threats. To be of maximum value, the DSP system would have to integrate
both the scaling solution and the rotation solution into a single device that could be
attached to a movable camera and assist in tracking and identification of military
aircraft, tanks, and naval vessels.

Section 2. Prior 551 Work
The only groups to pursue identification and detection design projects were Face
Verification for ATM Access (Group 2, 2003) and Automatic Target Recognition in
Synthetic Aperture Radar Images (Group 2, 2000). The 2000 group used feature
extraction along with a classifier, which is very different from our proposed project,
which uses correlation for the identification and detection. The 2003 group uses
correlation filters for the same purpose as us, but they have no tracking capabilities
in their system. Additionally, they were not forced to implement another detection
method, such as the Central Slice Theorem, in order to complete their DSP system.
However, our system was required to use the CST in order to significantly reduce the
number of computations (at the cost of significantly increasing our processing speed,
making real-time processing near impossible). The details and necessity of the CST
will be demonstrated in Section 4. Algorithms.

Beyond these identification and tracking design projects, several previous
projects addressed the topic of object tracking. These four projects, Object Tracking
via Optical Flow in Video (Group 15, 2000), Face Detection for Surveillance (Group 2,
2002), Where’s the Ball? (Group 2, 2004), and Lights, Camera…Action! (Group 12,
2004). However, none of these projects required the use of correlation filters, since
most were dealing with human faces, in which blob coloring, frame differencing, and
optical flow are more reliable and simpler to implement. Since we are dealing with
both rotation and scale changes in a highly variable environment (the lab has
significant noise due to the lighting, number of other objects, etc), none of these
three methods would be appropriate or successful for our solution. Thus, we must use
correlation filters to more accurately render the position and identity of our targets.
We also use Hidden Markov Models to help predict future detections, using a Gaussian
probability to reliably track the targets.

Because we are introducing new algorithms to solve an expanded problem that
integrates tracking and identification/detection, our project is certainly unique.

Section 3. Data Sets
For our project we acquired five radio-controlled (RC) models to attempt to detect,
identify, and track. Taking into consideration the real-world application of our
project for both the military and civilian applications we decided to acquire both
military and civilian related RC models. Military related models included an M1A2
Abrams battle tank, a German Leopard tank, and a “Nerf” tank. The civilian models

Page 6

included a Smart Coupe and a Mitsubishi Lancer. Respectively we designated these
classes as Classes 1 through 5.

Section 3.1 Training Data

Our primary concern in assembling our training set was to gather a set of data that
sufficiently generalized all rotations and a range of scales for each of the targets. The
primary problem with this requirement is that there naturally exist an infinite number
of rotations. The same is true even for a limited range of scales. However, we cannot
possibly hope to capture such a set of data accurately. Also, it is an unrealistic
expectation that we will be provided such of data; particularly in our application
where our tool is designed to potentially track the vehicles of enemy forces.
Therefore, we must limit the size of our training set to the bare minimum that meets
some specified threshold of performance. For this we must establish this threshold
based on performance expectations w.r.t. our detection scheme (expected
probability of detection/miss rate) and w.r.t to our identifications scheme
(probability of correct identification).
 We first considered the five potential targets we had. The targets psycho-
visually (to the human eye) are fairly different to each other except in one case. The
models of the M1A2 tank and the German Leopard Tank present similar profiles but do
have different coloring schemes and camouflage patterns. The difference in coloring
schemes is greatly reduced when compared in the grayscale range but still exists to
some degree. The difference in camouflage patterns is far more significant since
regardless of colormap it is still present and significantly contributes to frequency-
domain profile of each target. With these things in mind, we started our training data
collection.
 Our training set capture setup consisted of the USB Logitech QuickCam Pro
4000 connected to an IBM G41. We used a camera capture tool for Matlab called
vcapg2.dll [1]. This is a Matlab community developed tool that can be found on the
Mathworks Central File Exchange. This tool allowed us to capture imagery from a USB
enabled capture device directly into the Matlab workspace. Other features of this tool
include the ability to specify the colorspace, resolution, zoom, pan, and tilt of the
camera where available. In our setup we used the YUV colorspace, a resolution of 320
× 240 pixels, and default zoom/pan/tilt parameters. Once in the Matlab workspace,
we could convert the YUV colorspace images into grayscale images.
 Our initial training set consisted of twenty-four angular views of the targets at
close range (approximately one yard along line of sight), constant elevation, and
depression angle. This resulted in images being taken at every fifteen degree
increment views. In order to maximize the profile of the targets, we placed them on
white poster board (non-reflective side). This would aid us in the pre-processing of
the training data that will be discussed later on. We made sure to note the time of
day and place at which the data was take which was between the hours of 7:30 and
9:00 PM and in the 18-551 lab. The importance of this is reflected in the fact that the
lighting conditions of the environment strongly dictate in which lighting conditions
tools trained with such data will perform reasonably in. Figure 1 are example images
demonstrating the setup under which our grayscale training data was generated under
both gray and jet colormaps found in Matlab. The jet colormap image is used to
demonstrate the isolation/difference of the target from the background. It is also

Page 7

important to note that this image is unprocessed except for conversion from YUV to
grayscale.

Figure 1: Example on unprocessed grayscale M1A2 training data image (Left) Grayscale colormap

(Right) Jet colormap

Once all twenty-four images of each of the targets were acquired, they underwent a
set of pre-processing to massage the data into a usable form. Pre-processing of the
data began with cropping of the data down to a constant size and positioned bounding
box among all the data. This was dictated by the largest horizontal and vertical views
of any of the target i.e., the size of both the M1A2 and the German Leopard when
they presented forward, backwards, and side profiles. The dimension of this bounding
box was determined upon visual inspection to be 205 × 120 pixels. At this point, the
targets were now surrounded by only white pixels which are relatively high-valued;
grayscale pixel values run from 0 (pure black) to 255 (pure white).
 It would have been possible to train on this set of data, but there is a
significant problem with doing this. This problem is that difference between the white
background and the relatively dark colored targets creates numerous high frequency
components in the training data’s frequency profile. Our goal in creating this training
set is to accurately represent our target’s profiles in the spatial and frequency
domains. If we introduce previously unrepresented high-frequency components we are
artificially changing the data. The best solution to this was to replace the surrounding
background with the mean pixel value of only the target. By doing this, we are only
contributing to the DC frequency component of the data. The significance of this will
be detailed later in the Algorithms section. In order to isolate only the target, we first
raised the value of each pixel to a power of 5. This exaggerated the difference
between the target and the background. From this we were able to derive a binary
mask for the target by first applying a threshold where all pixels above a certain value
where marked. These marked pixels made up the 0 values in our mask while the non-
marked pixels made up the 1’s. Following this masking, a series of erosions and
dilations were applied using block-shaped structuring elements. The result of this
filled in any accidentally removed pixels from the target itself and any outlier pixels.
 At this point we had an image which consisted of mostly 0’s except within a
tightly bound area around the target only. The mean of the non-zero values (i.e. the
target) was calculated and used to replace all the 0 values. The image was also
padded up to a square size using the mean value. Figure 2 is the result of all this pre-
processing on the image shown above in Figure 1. This pre-processing was applied to

Page 8

all twenty-four images of each target’s training set. Figure 3 shows the result of
applying this pre-processing to the training set of the M1A2.

Figure 2: Result of pre-processing on image in Figure(1) (Left) Grayscale colormap (Right) Jet colormap

Figure 3: Pre-processed training data for M1A2

Section 3.2 Test Data

Testing data was captured in the same setup as the training data. The first set of
testing data was comprised of one-degree increment angular views of the targets
taken at the same range and depression angle as the training data. As a result, each
class had a testing set consisting of 360 images taken in constant conditions. This
testing set would be used to test the identification capabilities of the correlation
filters that will be detailed later. The second set of testing data consisted of
approximately two minute long video sequences. For each class/target we captured
two sequences that consisted of only that target moving throughout the scene
performing different maneuvers. This data was used in our Matlab simulations to test
the effectiveness of out algorithm. We also captured an additional fifteen sequences
that consisted of multiple targets moving throughout the scenes. This data was used
to test the multiple target tracking capabilities of our algorithm. We focused the
content of this data to contain combinations of classes that presented the strongest

Page 9

confusers for the algorithm. This meant placing both the M1A2 and the German
Leopard in a set of sequences together, and in other sequences placing the Smart
Coupe and the Mitsubishi Lancer together. The Nerf Tank did not prove to be a
significant confuser to any of the classes and was thus included sparsely. We
intentionally maneuvered the targets in these sequences to cross each others paths in
order to present the possibility of occlusion and target loss. These sets of testing data
aided us immensely in assessing the effectiveness of our approach.

Section 4. Algorithms
As stated before, our algorithm is strongly based on work done by Ryan Kerekes,
Balakrishnan Narayanaswamy, and Mike Beattie [2]. The primary difference between
our approach and theirs is in implementation. When compared to the power and
precision of PC using Matlab, the C67 EVM is a severely limited piece of hardware.
Incapable of doing two-dimensional FFT’s of significant size in floating-point double
precision as can be done in Matlab, the EVM forces us to carefully consider many
factors when it comes to both precision and as a direct consequence size of data.
Such considerations strongly influence how directly we can implement previously done
work without introducing new aspects. Since our task is to implement a tracking and
identification algorithm, we must consider three tasks. The first task being detection
of potential targets, followed by identification of these detected targets, and then
tracking of these targets. We will detail each task separately. However, before we
can do that we must first go into some detail above certain tools/algorithms we use in
our overall approach.

Section 4.1 Correlation Filters

Correlation filters [3] are template-based classifiers that when correlated with an
image result in a correlation plane. The correlation plane C measures the correlation
between the filter and the image. Correlation of a class-specific filter with authentic
and imposter data yield very different correlation planes. Figure 4 demonstrates this
difference.

Figure 4: (Left) correlation plane for authentic sample (Right) Correlation plane for imposter sample

To quantify the difference between the two types of correlation planes, we define a
measure of recognition called Peak to Sidelobe Ratio (PSR) [4]. This will measure the

Page 10

sharpness of the largest peak in the correlation plane with respect to the immediate
area around the peak. PSR is an effective measure of correlation when we expect
multiple peaks to be present in one correlation plane or in other words multiple
authentic targets.

..devstd
meanpeak

PSR
−= (1)

There are various types of correlation filters a set of which we considered for use in
our algorithm. We will now describe these filters.
 The Minimum Average Correlation Energy (MACE) Filter [5] is designed to
minimize the average energy E in the correlation plane or Average Correlation Energy
(ACE). In the filter we also constrain the value of the correlation peak to be 1. To
achieve this we analyze the spectral power density which is placed on the diagonal of
the matrix D. Our goal is to minimize E which is defined as:

DhhE += (2)

where + denotes the conjugate transpose. The constrained minimization of Eq. 2
results in the MACE filter hMAC2E:

() uXDXXDhMACE
111 −−+−= (3)

where u is the constrained peak values (vector of ones).
 The Unconstrained MACE (UMACE) Filter [6] removes the constraint on the peak
value. By removing this constraint, more solutions to the minimization problem are
available. We also try to maximize the average value of the peaks or Average
Correlation Height (ACH). The closed form solution to the UMACE filter hUMACE:

mDhMACE
1−= (4)

where m is the average of the columns of X.
 We will consider generalizations of the MACE and UMACE filters called the
Optimal Tradeoff Synthetic Discriminant Function (OTSDF) filter [7] and the
Unconstrained OTSDF (UOTSDF) filter respectively. These generalized filters offer
sharp correlation peaks and noise tolerance which are related to the ACE and Output
Noise Variance (ONV) of the filter respectively. However, these two qualities are
inversely proportional to each other by a constant α. Given a desired proportion of
peak sharpness to noise tolerance, the filter designs hOTSDF and hUOTSDF are:

() uXTXXThOTSDF
111 −−+−= (5)

mThUOTSDF
1−= (6)

where T is defined as:

Page 11

10 given 1 2 ≤≤−+= αααααααααααα CDT (7)

where C is the Gaussian white noise matrix (identity matrix). The primary difference
between MACE and OTSDF is the replacement of D with T.
 We analyzed each of these four correlation filter designs to determine which
one was best suited to our approach. First we built filters using each design on the
training data described above. The first test was to determine which filter was best at
identification. Using the testing data that comprised of one-degree increment angular
views we tested the identification abilities of each filter. This meant correlating each
filter with both authentic and imposter data. The filter that yielded the highest PSR
value extracted from the maximum peak within the correlation planes was marked as
the determined class. The confusion matrices for each filter build are shown in Table
1, Table 2, Table 3, and Table 4. The alpha parameter for both the OTSDF and
UOTSDF filters are chose essentially arbitrarily, but are based on past experience with
these filters in non-ATR related situations.

Table 1: Mace filter confusion matrix

Determined Class

MACE Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 285 56 15 0 4

Class 2 62 296 2 0 0

Class 3 21 26 302 6 5

Class 4 0 0 15 312 33

Testing Class

Class 5 2 0 20 34 304

Table 2: UMCAE filter confusion matrix

Determined Class

UMACE Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 263 75 5 4 2

Class 2 71 273 10 6 0

Class 3 14 12 314 8 12

Class 4 4 13 21 287 35

Testing Class

Class 5 6 3 5 52 292

Table 3: OTSDF filter confusion matrix, alpha = 0.99

Determined Class

OTSDF Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 312 46 2 0 0

Class 2 34 323 2 0 1

Class 3 2 6 322 12 18

Class 4 0 0 3 336 21

Testing Class

Class 5 3 4 10 12 331

Page 12

Table 4: UOTSDF filter confusion matrix, alpha = 0.99

Determined Class

UOTSDF Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 300 40 11 1 8

Class 2 51 298 2 0 9

Class 3 16 11 304 8 11

Class 4 3 1 15 308 33

Testing Class

Class 5 1 1 1 36 321

These results demonstrate that the OTSDF filter is the best filter for identification.
However, we are also interested in how well these filters separate the classes. During
the previously described test of identification capabilities we also made sure to store
all calculated PSR values.

Table 5: Mace filter average PSR values

Determined Class

MACE Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 10.0406 8.7621 1.4325 1.2167 1.1452

Class 2 9.2912 11.2451 1.8742 1.3542 1.6562

Class 3 1.2201 1.8641 10.5632 0.9238 1.0023

Class 4 1.8342 1.9451 1.0342 10.9823 0.7542

Testing Class

Class 5 1.4231 1.1374 1.1045 1.8652 10.1284

Table 6: UMCAE filter average PSR values

Determined Class

UMACE Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 9.8417 8.8650 1.7221 1.7214 1.2179

Class 2 8.5963 10.1727 1.3622 1.2511 1.2410

Class 3 1.1211 1.7724 9.3671 1.1131 1.2125

Class 4 1.6211 1.6312 1.6453 9.1244 1.5532

Testing Class

Class 5 1.8532 1.2321 1.4111 1.2253 8.1317

Table 7: OTSDF filter PSR values, alpha = 0.99

Determined Class

OTSDF Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 11.9422 9.1632 1.6225 1.1244 1.3342

Class 2 9.2934 12.6724 1.1922 1.3872 1.4263

Class 3 1.1154 1.4426 10.7121 1.0227 1.0023

Class 4 1.7611 1.5112 1.1231 10.7114 0.9113

Testing Class

Class 5 1.2117 1.0311 1.0765 1.1289 10.7128

Page 13

Table 8: UOTSDF filter PSR values, alpha = 0.99

Determined Class

UOTSDF Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 10.5221 8.7122 1.5127 1.3281 1.2117

Class 2 9.3325 11.1178 1.7653 1.4123 1.4667

Class 3 1.5612 1.8641 10.8141 1.0041 1.0157

Class 4 1.9115 1.8672 1.0342 10.1241 0.9213

Testing Class

Class 5 1.5112 1.5216 1.2217 0.9913 9.9813

These table demonstrate that the OTSDF filter provides the best separation, but also
shows that the two tanks (Class 1 and Class 2/M1A2 and German Leopard) are strongly
correlated compared to the other classes. However, taking into account our overall
algorithm, we felt confident that we would be able to further increase the effective
separation of these classes.
 These tests of both identification capabilities and effective separation
indicated to us that the OTSDF filter was the best suited filter. However, we could
have performed further tests to determine what alpha parameter in the OTSDF filter
build would have yielded the best performance. However, considering the range of
possible alpha values such testing would have occupied too much time with respect to
the overall project schedule. As such, we settled on the OTSDF filter built with alpha
equal to 0.99.

Section 4.2 Overlap-Save Convolution/Correlation

Due to memory issues on the EVM, which will be detailed in later sections, we were
forced to use a technique called overlap-save which we will not detail but provide a
reference to, [8]. Using overlap-save we can perform the correlation of a 320 × 240
image by breaking it up into smaller blocks. This will also allow us to perform linear
correlation as opposed to circular correlation. It is important to note that we will only
perform linear correlation that results in the correlations being generated as a result
of the center of the filter being above a valid portion of the image.

Section 4.3 Central Slice Theorem

The Central Slice Theorem (CST) [9] in two dimensions states that the Fourier
transform of the projection of a two-dimensional function f(r) onto a line is equal to a
slice through the origin of the two-dimensional Fourier transform of that function
which is parallel to the projection line. The usefulness of the CST is in the fact that if
we cane project an image, or in our case a frame of a video sequence, onto a pair of
dimensions and do the same for our correlation filters and still retain their identities
w.r.t. to the axes upon which they were projected. If we apply our projected one-
dimensional correlation filters to the respective one-dimensional projections of the
frame, we should still see distinct peaks in each resulting one-dimensional
correlations. Suppose we only apply projections along two axes, x and y for simplicity,
If we have only one target in our frame, then we should only see one peak in each
correlation. By combining the positions of those peaks we will be able to isolate
where the target is in the frame. The advantage of this approach is that we are now
performing a pair of one-dimensional correlations rather than a fill two-dimensional

Page 14

correlation. This is a huge advantage is speed but comes at the cost of decreased
accuracy. If we want to detect more than one target using only two projections we
will not be able to exactly isolate the target. Instead, we will get a set of peaks in
each one-dimensional correlation where the relation between the peaks in each
correlation is not clear. Rather, if we get a set of N peaks in each one-dimensional
correlation we will only be able to say that we have N × N possible positions for N
potential targets. If we increase the number of projections we can reduce the number
of possible positions for the N targets. However, using two-dimensional discrete data
as is the case with images, it is not easy to compute projections along varying axes
other than multiples of forty-five degrees. Due to this difficulty, we will consign
ourselves to using only two or three projections and being satisfied with the relative
isolation of detections. We tested the effectiveness of the filters by taking frames
from our testing sequences and calculated probability of detection and miss rate for
those frames. We tested a total of 50 frames for each target and each range with
Range1 being the closest and Range3 being the farthest and using a threshold of 0.9 ×
the maximum peak value. These results, show in Table 9, are adequate for our
purposes since the overall miss rate is at low enough percentages.

Table 9: Central Slice Theorem analysis results

Class
(Range1/Range2/Range3)

Class 1 Class 2 Class 3 Class 4 Class 5

of Correct Detections 41/36/38 40/37/37 36/33/34 46/44/40 47/45/44

of False Detections 5/6/9 5/5/5 8/12/9 2/4/7 0/2/5

Probability of Detection .82/.72/.76 .80/.74/.74 .72/.66/.68 .92/.88/.80 .94/.90/.92

Miss Rate .08/.16/.06 .10/.10/.10 .12/.10/.14 .04/.04/.14 .06/.04/.10

Section 4.4 Detection

Detection is a difficult task in that it requires us to discriminate a target from its
background. In real work applications, the background is often filled with what is
collectively called “clutter”. Clutter is unpredictable and cannot be easily modeled
statistically. This does not mean that there are not techniques/algorithms designed to
identify and isolate clutter. However, such algorithms are well beyond the
capabilities of the EVM and the scope of this class. As such, we cannot expect to
identify things as being clutter and mark them as such. A more intuitive solution is to
mark the object that could be targets.
 For this purpose we use the CST as described above to provide us a set of
possible detections. Around each of these detections we will place a window of
varying size. The size of the window is dictated by the position of the detection
relative to the depth of the image. The further back into the scene the detection is,
the smaller the window which logically follows from the fact that targets farther away
will appear smaller. The closer the detection is the larger the window used will be.
The size of the window used is reflective of the maximum target size at those ranges.
As stated above, our hope is that the limited number of available targets will created
a limited number of possible detections and as a direct result a limited number of
windows. We are sure to enforce a minimum distance between potential detections to
insure that we do not have overlapping detections. This minimum distance is the
maximum size of a target. This may detriment performance by causing us to throw

Page 15

out correct detections, but it is preferable to trying to perform identification and
tracking on obscured and overlapping targets. The number and sizes of these windows
will directly impact the speed and performance of the identification stage. The end
results of the detection stage are a set of windows of varying sizes each centered on
the location of a potential detection which are then input into the identification
stage.

Section 4.5 Identification

In the windows provided by the detection stage there may possibly be a target of
interest. At this point we are interested in not only confirming the presence of a
target, but also the identity of the target. Assuming that the user of the system has
specified a set of targets that they are interested in tracking, we proceed to apply
the correlation filters created to identify those classes. Let us now consider one
window containing one potential target. The user has chosen M classes of targets and
we proceed to apply the corresponding M correlation filters. From those M
correlations, we get M correlation planes in which we isolate the peak and calculate
the PSR for. At this point we have M PSR values for a single window, each one
corresponding to a particular class’s correlation filter. The class’s correlation filter
which yields the highest PSR value is designated the class from which the target
belongs to. We also consider the possibility that no target or an object that is not
actually a target is contained in the window. If this is the case we expect to get a
relatively low PSR value. What is considered to be a low PSR value is the result of
analysis that we will detail later. We threshold our maximum PSR value to this
threshold to limit the number of false identifications. Once we have either confirmed
or denied the presence of a target and its identity, we make sure to not the position
at which the peak was detected. The position of the peak tells us the suspected
location of the target. At the end of this stage we have hopefully detected and
identified all targets within a single frame. However, there is a possibility that we
have either missed targets or detected objects that are not targets (miss rate and
false alarm rate respectively). We now proceed to the tracking stage.

Section 4.6 Tracking

It is important to note that the previous two stages of detection and identification are
performed consecutively and sparsely. In other words, we do not perform these stages
on each frame. This is due to limitations of the EVM in terms of processing speed and
storage capacity. However, if we do not perform these stages, how do we perform
tracking? The solution to this is the algorithm proposed in [2]. We relate the
processing of consecutive frames in a Markovian sense which will lead us to call the
tracking algorithm a Hidden Markov Model [10].
 Taking the results from the identification stage we now apply a probabilistic
model. We create a probability plane the same size as a single frame, in our case 320
× 240. The probability at each position represents the probability that a target is at
that position. Immediately following the identification stage we have a series of
target locations that as far as the algorithm is concerned are correct. Therefore, at
each of these “confirmed and identified” target positions we have a probability of 1.
Expressed formally the probability of pi target ti being at pixel x in frame F is

Page 16

()Fxpi (8)

Since we assume fill confidence in our initial set of detections and identifications, pi
is equal to 1 for all targets. Thus, our probability plane sums to the total number of
detections. This may seem counterintuitive to the notion of a probability distribution
function (pdf), but the probability plane is not a pdf. It is a collection of pdf’s
centered on target positions. Therefore, the total probability or sum of values within
the probability should be the sum of all the pdf’s present.
 Now the question is how do we track these targets across frames? If we assume
that pi is independent across frames the solution is to relate the frames
probabilistically using two-dimensional Gaussian distributions that represent the
probability of a target moving from one position to another. This distribution should
be representative of the speed and direction at which the target is expected to move
across the span of a frame during a video sequence. If we expect the target to move
slowly and downwards across the frame, we will model that as a non-circular Gaussian
with low standard deviation. This will result in the higher probabilities being
concentrated around the origin and downwards. However, since in our case we do not
expect any predictable movement from our targets we will model our distributions as
circular ones. Therefore, we can express the probability of a target moving from pixel
x1 to x2 in terms of displacement and not position. Thus given a Gaussian distribution
G(d) where d is the displacement or distance from a the mean or center of the
distribution, we can say that the probability of pt of a target ti moving from pixel x1 in
frame F1 to pixel x2 in frame F2 is

() ()212121 ,, xxGFFxxpt −= (9)

Also, we will assume the target does not move exceedingly far between frames. To
this end we can specify the sigma parameter our Gaussians to reflect the expected
movement of our circular Gaussians, the larger the expected movement, the larger
the sigma parameter. We will call these Gaussians transition probability matrix (TPM).
Figure 5 demonstrates the difference between sigma parameters.

Figure 5: Transition probability matrix (Left) Sigma = 4 pixels (Right) Sigma = 1 pixel

Page 17

 Now that we have established what our TPM’s represent, how do they factor
into our tracking scheme? Following the detection and identification stages, which
span only one frame, we have a set of targets whose initial location and identities
have been established. We then process the next frame by extracting windows
centered on each target location. As was with the identification stage, the size of the
window depends on the range of the target. However, these windows are larger than
those in the identification stage to accommodate for target movement. In these
windows we apply the correlation filter of the class to which the target belongs to.
From the resulting correlation plane we extract PSR of the maximum peak. Now given
that we have detected our peak in frame Ff at position/pixel xi, we compute the
probability that it reached xi from previous positions. Let us suppose that f is 2, in
other words we are processing the second frame assuming the first frame has been
used in the detection and identification stages. At this point we are interested in
determining the probability for each target that they have reached their respective
pixels as determined by their correlation planes. Using our Markovian assumption and
the independence of the frames, the probability for target ti being at pixel xi in frame
Ff given we have calculated its PSR value is

() () ()() () 2f given ** 11 =−= −− fiififiifii FxpFxFxGpsrFxp (10)

Let us now consider even more future frames or for values of i greater than 2.
Therefore, the probability of target i being at position xi in frame Ff is

() () ()() () 1for **
1

1
1 >−= ∏

−=

=
− fFxpFxFxGpsrFxp

fg

g
giififiifii (11)

Without any further operations, this equation implies that given that pi is a true pdf
(maximum value is 1) then as we process frames pi will continue to decrease in value
regardless of how strong a PSR value we achieve for each target in each frame. Also,
the nature of the tracking problem necessitates the use of a threshold to insure that
only true and actual targets are detected and followed. Unless we normalize the
probabilities in each frame in a constant manner then any threshold we establish is
arbitrary and unjustified. While there are many kinds of normalization, we choose to
normalize all pi to the total number of targets detected, identified, and being
tracked. After this normalization, each pi is now normalized to between 0 and 1. By
using this normalization we can use a threshold for pi to track and identify our
targets. Matlab simulations on our captured video sequences containing only one
target with varying thresholds have yielded the false alarm/miss rates in Table 10. We
make sure to note the false alarm rates because in our scheme a false alarm means a
false target being tracked.

Table 10: Matlab simulation false alarm/miss rates

Threshold Class 1 Class 2 Class 3 Class 4 Class 5

0.60 0.514/0.006 0.522/0.012 0.564/0.080 0.482/0.002 0.498/0.004

Page 18

0.65 0.428/0.042 0.468/0.062 0.492/0.122 0.416/0.024 0.422/0.036

0.70 0.324/0.094 0.346/0.084 0.386/0.172 0.286/0.054 0.298/0.064

0.71 0.302/0.102 0.322/0.114 0.346/0.264 0.264/0.092 0.282/0.098

0.72 0.286/0.122 0.264/0.182 0.338/0.298 0.242/0.100 0.258/0.106

0.73 0.274/0.156 0.246/0.146 0.312/0.328 0.220/0.108 0.238/0.114

0.74 0.268/0.188 0.238/0.174 0.306/0.364 0.212/0.132 0.228/0.154

0.75 0.254/0.204 0.224/0.218 0.294/0.408 0.204/0.186 0.214/0.198

0.76 0.245/0.216 0.220/0.242 0.286/0.426 0.196/0.202 0.202/0.208

0.77 0.222/0.274 0.218/0.286 0.262/0.484 0.188/0.254 0.194/0.260

0.78 0.216/0.328 0.214/0.334 0.254/0.592 0.182/0.316 0.188/0.322

0.79 0.210/0.412 0.208/0.404 0.248/0.610 0.174/0.364 0.176/0.376

0.80 0.182/0.472 0.186/0.448 0.224/0.632 0.148/0.422 0.156/0.438

0.85 0.108/0.568 0.112/0.554 0.182/0.688 0.092/0.496 0.102/0.512

0.90 0.052/0.640 0.086/0.626 0.128/0.740 0.012/0.522 0.038/0.546

Section 4.7 Overall Algorithm

In order to put all of these stages together with reference to the overall algorithm we
will address the role and position of each stage. We have three distinct stages of
which only the tracking stage is iterated through more than once. However, we also
wish to detect new targets that may have entered the scene and as such we should
apply the detection and identification stages again to detect those newly introduced
targets. The frequency at which we apply the detection and identification stages can
be though of as a “detection increment” in that we will only attempt to detect and
identify targets when the frame being processed is the kth frame where k is the size of
the increment. In this way, we can limit the processing load of detecting targets and
still retain some chance of detecting new ones. An added bonus to the repetition of
these stages is that it allows us to confirm or deny the presence and identity of
already detected and identified targets.
 This should be done because there is a chance that the filters have incorrectly
identified the target for reasons of range and orientation. A common difficulty in ATR
applications is the idea of pixels-on-target which describes the number of pixels that
make up the target in the frame. This number in essence describes how much data is
available for analysis. The less data the harder it will be to perform correct analysis.
The most common reason for reduced pixels-on-target count is range. The farther
away an object is the smaller its profile and the less pixels-on-target it presents. If
we had initially identified a target at far range we say that we have less confidence
on that identification. However, if the opportunity to identify that target at a closer
range is available we would be more confident in the resulting identification. As such,
we should try to reconfirm the identities of targets periodically to insure confidence
in our identifications. We can only do this because we have confidence in the tracking
algorithm which will follow even incorrectly identified targets from far range to close
range.
 Now that we have addressed the role and position of the detection and
identification stages, we can address the tracking stage. The most thorough approach

Page 19

to the problem of tracking would be to analyze all frames in a video sequence.
However, we can say with some measure of confidence that the targets in our
application will not be moving very far between frames assuming a certain frame
rate. The standard frame rate for USB webcams is 30 fps. At such capture speeds,
there is unlikely to be significant variation in target position from frame to frame.
Thus, it would more efficient for us to analyze frames which are still ordered but now
separated by a delay to insure some target movement. The delay or “tracking
increment” d depends not only on the speed of the camera capture but also the speed
of the target. As such, we would only apply the tracking stage to every dth frame.
Considering that we are in full control of the targets, we will limit them to be
relatively slow moving in a scene that is being captured at 30 fps. Taking into account
the digital controls of most of the RC models (models move in fixed increments) we
have found through simulation that a tracking increment of five frames works for
most cases.
 The following is the overall algorithm with respect to the implementation of a
GUI:

1. User chooses class(es) of target(s) that he wishes to detect, identify, and track
2. Appropriate filters are loaded
3. User chooses video sequence to analyze/track targets through
4. Detection and identification stages are applied to first frame
5. Tracking stage is applied to every dth frame following
6. Detection and identification stages are applied to every kth frame following

Section 5. Signal Flow
Our DSP system began with a very ambitious signal flow which incorporated a large
portion of the ATR solution on the EVM. In this original signal flow, the PC was
responsible primarily for capturing each time frame, pre-processing the current frame
into windows using the Central Slice Theorem (CST), and displaying the results from
the EVM on the Graphical User Interface (GUI), showing the position and identity of all
tracked targets.

On the EVM side, the C67 processor unit was responsible for receiving the
properly arranged windows, correlating them with specific filters using two-
dimensional Fast Fourier Transforms (FFTs) and Inverse FFTs (IFFTs), and then finding
the correct position and identity of each target in the window using Peak-to-Sidelobe
Ratios (PSRs) and Hidden Markov Models (HMMs).

However, it was quickly realized that not all of this data could possibly fit on
the EVM, due to memory constraints. Because of this, only the FFT and IFFT would
occur on the EVM, with the peak detection and HMM modeling done on the PC side.
Thus, the signal was captured by the camera and arranged on the PC into appropriate
windows, which were then sent to the EVM. On the EVM, the windows were correlated
with a specific filter (which had been loaded onto the EVM during the initial start-up),
which was then sent back to the PC to form part of the frame’s correlation plane. By
using priority queues to determine the peak and PSR calculations to determine the
best correlation (and the identity), a set of positions and identities for the entire
frame was generated.

Page 20

Figure 6: Complete signal flow between GUI, PC side, and EVM.

IFFT FFT

Stored
Correlation
Filter Bank

Overlap-Save
Blocks

Correlated
Blocks

EVM
HPI

Transfer
HPI

Transfer

Block Assembly

Position
And

Identity

Dynamic
Tracking (HMM)

Central Slice
Theorem

Overlap-Save
Block Creation

PSR windows

PC RGB to
grayscale

Frame Sensor

From EVM Loaded in EVM at start-up To EVM

 Frames from the camera

To PC each frame From PC each frame

Page 21

From this set, later targets were tracked by taking the windows as found by the
CST and applying only the filters of the identity determined in the previous detection
stage. These correlation planes were then multiplied by the HMM probabilistic
distribution to determine the likely position of each target in the current tracking
frame.

Section 6. What was done on EVM

Originally we expected the EVM to compute the correlation plane of a set of blocks
and only return back to the PC the location and value of the highest peaks from the
correlation peak. However, that proved to be unfeasible do to memory constraints.
As described in the algorithm, finding a peak involves finding the PSR value as well as
making sure that the peak is not adjacent to another peak (suggesting, multiple
detections for the same object). We realized that if a detection was found close to
the edge of a block, in order to accomplish this task correctly, it will require
knowledge about the correlation values in adjacent blocks. Thus, we had to move
PSR calculations to the PC where the correlation plane of the image is reassembled.
For that reason, the function of the EVM has been reduced to computing the
correlation plane of the specified window and returning the entire correlation plane
for further processing on the PC.

Section 7. Speed Issues
The rate of data transfers and processing that are required for the project begin with
the maximum speed of our targets and continues through to the processing time on
the EVM. Originally, we had hoped to do the tracking in real-time however, this was
unrealizable due the speed limitations of our devices. The following explains in detail
the derivation of the different processing rates necessary to realize this project in
real-time. Lastly, we will explain what we decided implement in our design.

Section 7.1 Target Movement Rate (pixels/second)

The maximum speed of the target in terms of pixels changes based on the distance
from the camera. The small cars, take between 1 seconds and 3 seconds to go across
320 pixels on at the closer scale and the larger scale, respectively. However, our plan
was to drive them slowly to avoid blurring images. The tanks on the other hand, are
much slower than the cars. They generally take about 3 and 10 seconds to cross 320
pixels at a closer and further scale, respectively.

Section 7.2 Frame Capture Rate (frames/second)

As a result of the analysis we thought that 30fps would be a good frame capture rate
for testing purposes. However, a frame rate of 10fps would be a feasible capture rate
for this project. 10 fps would limit the movement of the targets to a maximum of 32
pixels between frames at the largest scale.

Section 7.3 Frame Processing Rate (frames/second)

In order to get real-time results, the frame must be processed at less than 10fps.
Frame processing includes several complex steps as is explained above. During each

Page 22

frame, the amount of processing changes based on several factors. The number of
targets determines how many windows within the frame we need to look for the
targets within. The position of the target determines the size of the window and size
of the filters needed for processing.
 Some rough calculations of the processing time using the timer given in the
timer.h gave the following results: HPI transfer PC� EVM: 3.5 ms/block, HPI transfer
EVM �PC: 7 ms/block, 2D Correlation on EVM: 25 ms/block

Section 8. Video Interface
The source of our video stream comes from two sources. Our primary source is a live
webcam feed. Our secondary source is a video file in AVI format. In order for the
video to be compatible with the targeting process, the video needs to be broken into
individual frames. Each frame is a 320 x 240 grayscale image saved in RAW format.
The RAW format is similar to format used in Lab 3 except that each pixel is stored as
a 1-byte char rather than a 4-byte int. The webcam capture library we are using is
the DirectX SDK.

Section 8.1 GUI

The graphical user interface (GUI) has two modes, a tracking mode and a testing
mode. The tracking mode captures a live feed from a webcam attached to the
computer as the source of the tracking procedures. The test mode uses a
prerecorded set of images for the tracking procedures. The user has the option of
selecting a directory and a filename for testing and tracking modes.

Figure 7: Screen shot of GUI tracking two different objects. Notice how the bounding boxes around
the two targets are of different. The size of the bounding box denotes the scale and color represent
the identity.

Page 23

Section 8.2 Grayscale

Using the Microsoft DirectX SDK, it captures images as 24-bit RBG Bitmaps. In order to
convert it to grayscale, we used the following conversion formula:

)BLUE11.0()GREEN59.0()RED3.0(VALUE GRAYSCALE ×+×+×= (12)[13]

Section 8.3 Cast to float for processing

Since the saved capture frames are saved as 1-byte pixels and the rest of the
processing is done in float, the images are cast as float when they are read into the
program that controls the EVM.

Section 9. Synchronization
Synchronizing the GUI with the EVM in one application was a difficult problem due to
our lack of experience with Windows Messaging. Therefore, we decided to break the
problem into two stages, GUI to PC side, and PC side to EVM. The two sections
communicate to each other through files created in a shared directory.

Section 9.1 Naming Standards

As mentioned prior, synchronization is done through files created within a specified
directory. Therefore, it is important to be able to distinguish between different file
types. There are three different file types we deal with, .exp, .raw, and .track files.
Below is a discussion of the format or each file. Before that, a quick word needs to
be mentioned about the general naming scheme. Every file related to a particular
experiment can be distinguished by the same initial part of the file name.
Additionally, information specific to particular frames are related by the same the
four-digit number following the filename. This number is zero padded to four digits
for consistency.

Page 24

[experiment name].exp – experiment setup file

Figure 8: An experiment setup file encodes the targets to look for in the current experiment. Each bit
is mapped to a target as the specified in the figure above.

The setup file is a 1-byte file that tells the PC side which targets to track. It is
bitmapped for each separate target. If a bit is 1, it means that we are tracking that
target and if the bit is 0 then we are ignoring it. Since we track up to five objects,
the 5 LSBs are used the represent the target selection and the 3 MSBs are unused.
The figure above shows the mapping for our particular case.

[experiment name][####].track – tracking information

Figure 9: The diagram on the left shows the format of the tracking file with two targets. The diagram
on the right shows a tracking file if there are no targets in the window.

The size of the tracking file changes with the number of targets identified by the PC
side application. The information for a target is encoded in 4 integer values that are

Row

Column

Scale

ID

Row

Column

Scale

ID

T
a
rg
e
t
1

T
a
rg
e
t
2

-1

-1

-1

-1

N
o
 T
a
rg
e
ts

X X X 0/1 0/1 0/1 0/1 0/1

T
a
n
k
 A
b
ra
m

T
a
n
k
 L
e
o
p
a
rd

T
a
n
k
 N
e
rf

C
a
r L

a
n
c
e
r

C
a
r S

m
a
rt C

o
u
p
e

Page 25

written to the file. For each target, another 4 integer values are appended to the
file. The 4 integer values encode for the position of the target in a row index and
column index, the scale of the object, and the identity of the object.

[experiment name][####].raw – grayscale image of a frame

This file is setup as explained in Section 8 (Video Interface). There is no header or
footer for the file; it is just raw data. We are able to get away with this since all of
our images are of the same dimensions and types.

Section 9.2 GUI and PC side

The GUI provides the PC side with an experiment setup file and all of the frames to
process. As mentioned above, the images are converted into 320 x 240 chars and
saved to a .RAW file. These files are saved to the same directory. The first file is
saved as [experiment name]0000.raw. In each frame captured the number
increments by one. This number is what we use to properly sync captured frames
with the resulting targeting information.

Figure 10: Overall communication scheme between the GUI, PC side, and EVM modules.

Once these images are created, they are ready for processing by the PC side

application. The PC side application keeps reading in frames with incrementing
filenames starting with [experiment name]0000.raw. When a file is not found, the
experiment ends. This works because, the frame capture rate is greater than the
frame processing rate. After each frame is processed, a track file is created in the
same directory.
While the PC side is processing a frame, the GUI polls every 200 milliseconds for a
newly processed tracking file from the PC side. When a tracking file is found, it the
GUI loads the corresponding frame from the saved .raw file and uses the information
from the tracking file to overlay a box around the target. After this process is
complete, the GUI waits for the next track file that is create by the PC side process
until the tracking index on the tracking file matches the last captured frame.

GUI

PC Side

EVM

webcam

experiment setup
(objects to track)

User

frames

tracking files

preload filters

filter number

window

correlation plane

setup file

Page 26

Section 9.3 PC side and EVM

On the other end of the PC side, it communicates with the EVM to compute the
correlation plane. On initialization, the PC side loads the filters needed for the
current experiment based on which target is being tracked. Additionally, the EVM
allocates space for the blocks that are to be sent into the EVM. After this initial load,
the communication protocol between the EVM and the PC side is detailed below. As
you can see below, among the things we had to add several wait stages in order to
synchronize the two sides and reduce the risk for error.

Table 11: PC Side �� EVM Communication Protocol.

Initialization – Runs only once on initialization

1. The PC side waits until the EVM is initialized and makes a request
through a PCI mailbox message.

2. A mailbox PCI transfer is sent to the EVM with an integer value that
represents the maximum number of blocks that will be transferred to
the EVM. This is used to allocate enough space in the external memory
to store future data transfers.

3. The PC side waits until the EVM makes a request through a PCI mailbox
message.

4. A mailbox PCI transfer is sent to the EVM with an integer value that
represents the total number of filters to store in external memory. This
is used to allocate enough space in the external memory to store all of
the filters needed for the particular experiment in external memory.

5. The PC side waits until the EVM makes a request through a PCI mailbox
message.

6. An HPI transfer is initiated to transfer the entire bank of filters to the
EVM.

Main Routine – Repeats until the end of the experiment

7. The PC side waits until the EVM is done processing and sends a message
through a PCI mailbox message that it is ready to receive a new set of
blocks to process.

8. A mailbox PCI transfer is sent to the EVM with an integer value that
represents which of the preloaded filters to use on the current blocks.

9. PC waits until the mailbox has been read.
10. A second mailbox PCI transfer is sent to the EVM denoting the number of

blocks to use this filer on.
11. PC waits until the mailbox has been read.
12. The window that we want a correlation plane for is sent to the EVM in

blocks of 64 by 64 pixels through an HPI transfer.
13. After the EVM processes each block, the results are returned to the PC

sided through another HPI transfer.
14. PC waits until the HPI transfer completes.

Page 27

Section 10. PC side
Taking into account the complexity of our algorithm, we soon realized that it was
unfeasible to implement a significant number of the operations on the EVM. As such,
the PC implemented most of our algorithm. Here we will briefly describe what the PC
was responsible with respect to pre-processing and algorithm implementation.

Section 10.1 Algorithm functions

The PC was responsible for all of the algorithm functions except for the correlation of
the individual blocks used in the overlap-save correlation as described above. As a
result, the first part of algorithm addressed by the PC was the detection stage. In this
step, the PC not only projected the frame being processed onto the axes being used
but also performed a time-domain correlation of the frame projections with the
detection filter projections. We chose to use a time-domain correlation for two
reasons. The first was to insure that we performed a linear correlation as opposed to
a circular correlation. The second was to prevent a circumvention of the EVM
responsibilities. To implement a FFT on the PC would undermine the use of the EVM
at all.
 After detection of potential targets is complete, the next step would be to use
the correlation filters to determine the identities of PC uses the locations of these
detections to position a window of the appropriate size around each size. In each
window all available filters should be applied to determine the identity of the target.
The correlation being performed by the EVM, the PC must prepare the blocks needed
for overlap-save correlation. The specifics of the block preparation are discussed in
following sections. Once the blocks are prepared they are transferred to the EVM.
Once the EVM is finished performing the correlation the resulting correlated blocks
are transferred back to the PC. The PC then takes these blocks and extracts the valid
portions and assembles them into the correlation plane. Using priority queues, the PC
extracts the five largest peaks in the correlation plane that not only meet a certain
PSR threshold but are also separated from each other and the edges of the image by a
certain distance to insure that only peaks are detected and not the sidelobes of
peaks. The peak yielding the highest PSR is determined to be the location of the
target. This process of maximum PSR extraction is repeated for each filter application
and the class of the filter yielding the highest PSR value is labeled as the target’s
class. This process is repeated for all detections following which we enter the tracking
stage.
 Using the detection and identification results, in subsequent frames we applied
appropriate correlation filters to windows centered on the detections and current
tracking positions. Using the probabilistic model described above, we tracked the
targets through the sequence while applying the detection and identification stages at
appropriate frames to confirm the identities and presence of existing targets and to
detect new targets.

Section 10.2 EVM communication

EVM communication was primarily concerned with correct transfer of overlap-save
blocks to and from the EVM. This was achieved via HPI and PCI transfers. HPI transfers
were used for the blocks themselves while PCI was used to inform the EVM of

Page 28

parameter information concerning the number of blocks, filters to be used, and
timing synchronization between the EVM and the PC.
 However, before this could occur the filters that would be used first had to be
transmitted. This meant notifying the EVM via PCI how many filters were to be used
overall or in other words how many classes were going to be tested for. After
receiving the filters via HPI, the EVM would be ready to perform overlap-save
correlation. This first involved notification of the EVM via PCI about the number of
blocks to receive and how filters to apply to a set of blocks. We are concerned with
applying more than one filter to one set of blocks during the identification stage
where we apply all filters to one window or set of blocks. Then the EVM was informed
of which filters to apply for a certain set of blocks. Following the correlation of the
blocks with a filter, the EVM notified the PC to be ready for reception of the
correlated blocks. The correlated blocks would be sent back to the PC via HPI.

Section 10.3 Filter preparation

Preparation of the filters was done using the OTSDF filter with an alpha parameter of
0.99. Due to the single precision native to the EVM, we built our filters using single
precision. The Matlab code in later sections has the specific details of our filter build.

Section 10.4 Block preparation

Block preparation was done in the way detailed in [8] but in a two-dimensional sense.
We made sure to zero-pad the original image in such a way that when blocks where
extracted, their valid portions would contain correlation values resulting from
correlation of the filter with the image when the filter’s center is above a valid
portion of the image. This portion of the PC code occupied the vast majority of the
processing time since it essentially required us to clone the image and separate it into
the appropriately overlapping blocks necessary for overlap-save correlation.

Section 10.5 EVM Emulation

In order to expedite our debugging of our algorithm, we developed an EVM emulator
in C to be used on the PC. This emulator included emulation of both HPI and PCI
transfers to insure complete similarity of the emulator to the actual EVM. As such, no
major changes to the PC code were necessitated except for the change in name of
some basic function calls involving the EVM. One primary difference between the
emulator and the actual EVM was the specific FFT being used. While the EVM utilized
a radix-4 single precision FFT, the emulator utilized a mixed-radix FFT whose source
is listed in the references.

Section 11. EVM
In the original draft of our project, the TMS320C6701 Evaluation Module (C67 EVM, or
EVM, for short) was responsible for a whole host of processes relating to the
integrated ATR system. In an effort to maximize utility and efficiency of our system,
the EVM was going to compute a frequency domain correlation with a given
identification filter. This entailed performing a two-dimensional FFT of the current
frame, multiplying this frame by a specific identification filter to create a correlation
in the frequency domain, and finally compute the two-dimensional IFFT of this

Page 29

correlated frame to compute the correlation plane in the time domain. The original
plan then also called for peak detection and PSR calculations, which were computed
by sorting the frame and finding the maximum correlation plane values.

However, it soon became apparent that all of this data could not fit on the
EVM. Since we planned on using Radix 4 FFTs over Radix 2 FFTs (due to the smaller
number of cycles, meaning Radix 4 is faster), we needed to choose a row size and
column size that were factors of 4. It became obvious that a 256 x 256 (44 x 44) block
would be much too large for the EVM, and a 16 x 16 block (42 x 42) would be too small
to correlate with our filters, which were 50 x 50 at the largest scale (meaning we
would have to page in both the input and the filter, which was undesirable). We
therefore decided on 64 x 64 (43 x 43) blocks to FFT and correlate on the EVM.

Since we wanted to perform all of the additional operations on the EVM, we
originally tried a fixed point iteration of the FFT on the EVM, requiring half as much
memory as the floating point FFT. This soon proved untenable though, as we
discovered that the fixed point representation was incompatible with the PC side, and
the FFT was not reliably invertible.

This lead to our final decision to use the floating point Radix 4 FFT on 64 x 64
blocks, and to move all of the non-correlation functions to the PC side.

Section 11.1 Data Memory and Code Size Needed

The specific values for each of these sections of memory were extracted from the
.map file that was created when the project was built.

11.1.1 Internal Memory, on-chip

ONCHIP_DATA: 0x0de06 used out of 0x10000
ONCHIP_PROG: 0x0fc20 used out of 0x10000

Table 12: Internal Memory, on chip

Data Element Size (bytes) Total Location

currentBlock 64 x 64 x 2 x4 32768 ONCHIP_DATA

Filter 64 x 32 x 2 x 4 16384 ONCHIP_DATA

rowTemp 64 x 2 x 4 512 ONCHIP_DATA

currentNumFilters 4 4 ONCHIP_DATA

currentNumBlocks 4 4 ONCHIP_DATA

currentFilter 4 4 ONCHIP_DATA

Twiddle 64 x 2 x 3 / 4 x 4 384 ONCHIP_DATA

Revtable 64 x 4 256 ONCHIP_DATA

rev_j 4 4 ONCHIP_DATA

I 2 2 ONCHIP_DATA

J 2 2 ONCHIP_DATA

Page 30

maxNumBlocks 4 4 ONCHIP_DATA, stack

totalNumFilters 4 4 ONCHIP_DATA, stack

Done 4 4 ONCHIP_DATA, stack

Reinitialize 4 4 ONCHIP_DATA, stack

Request 1 1 ONCHIP_DATA, stack

Function variables <24 <24 ONCHIP_DATA, stack

11.1.2 On-board Memory, off-chip

SBSRAM_DATA: 0x00000 used out of 0x2c000
SBSRAM_PROG: 0x001a0 used out of 0x14000

Table 13: On-board Memory, off-chip

Program Element Location

Mkrevtable SBSRAM_PROG, “FAST”

Fillwtable SBSRAM_PROG, “FAST”

11.1.3 External Memory, off-board

SDRAM0: 0x400000 used out of 0x400000
SDRAM1: 0x320000 used out of 0x400000

Table 14: External Memory, off-board

Data Element Size (bytes) Total Location

filterBank <15 x 64 x 64 x 2 x 4 <491520 SDRAM0

evmInput <128 x 64 x 64 x 2 x 4 <4194304 SDRAM0

evmOutput 100 x 64 x 64 x 2 x 4 3276800 SDRAM1

Section 11.2 Memory Allocation

Originally, in the fixed point implementation of the FFT, we had implemented paging
in each frame to compute the correlation over the entire frame, since there was no
way that we could store a 320 x 240 image in the on-chip memory of the EVM. This
was accomplished using DMA transfers from external memory, where the blocks had
been HPI transferred from the PC side, which had properly arranged them according
to their 64 x 64 block within the larger window. The hope was to ping-pong DMA
transfer two blocks on the EVM at a time, similar to lab 3, greatly increasing our
efficiency.

Unfortunately, we were unable to fit this amount of data on the EVM using
floating point without significantly reducing the processing ability of our system. With
a 64 x 64 block, we would need two of these blocks at once for a ping-pong DMA
transfer, which would require 64 kB of on-chip memory just for the blocks. Since
other data needed to be stored in the on-chip memory (such as the twiddle and digit

Page 31

reversal tables), this was not a possibility. The other option to use ping-pong DMA
transfers on the blocks would be to make the blocks 16 x 16; however, this would be
significantly inefficient both when correlating the filters and when paging in and out
of the frame. Because of this, we abandoned the idea of ping-pong DMA transfers for
the blocks, and merely planned on paging one block of 64 x 64 complex interleaved
data points.

11.2.1 Use Paging and parallelizing

The aforementioned memory allocation issues forced us to do only minimal paging,
rather than ping-pong DMA transfer paging. Unfortunately, one DMA channel was
always idle because of this, and the other channel was idle during all of the
correlation calculations.

A solution to this problem was devised, however, when we thought about ping-
pong DMA transferring in the filter, since only half of it could be stored in on-chip
memory as it was. Rather than waiting for the half filter to finish correlating with half
of the frequency domain block, transferring in the second half, and completing the
correlation, we would create a ping-pong DMA transfer that split the filter into
quarters. While one quarter of the filter was calculating the correlation, the next
quarter was being transferred into on-chip memory in preparation of the next portion
of the correlation calculation. Although this was never implemented, we are
confident that it would represent a significant speed improvement in the overall
system and would be an easy correction.

Section 11.3 Table of profile results
Table 15. Table of Profile Results

Avg. Cycles Time
1D FFT 1,506 0.06 ms
2D FFT 2.45 million 98.00 ms
Complex matrix transpose 101,840 4.07 ms
Filter multiplication 97,365 3.89 ms
2D correlation/block 12.1 million 484.00 ms

Section 12. Comparisons of Data and Results
Unfortunately, we are not able to show the results of our final running design because
we were not able to fully debug our PC side code. However, there is extensive data
shown in the algorithms section of our report.

Section 13. Analysis of Results/Future Improvements
Unfortunately, due to the complexity of our project we were unable to produce
results for our EVM implementation. However, results using Matlab are detailed in the
Algorithms section. Analysis of these results demonstrates a relatively acceptable
level of performance among all classes but could be vastly improved on. False alarm
and miss rates for the M1A2 and German Leopard tanks are strongly dependent on the
separation achieved by the correlation filters. While there exists some separation, the
current filter design and build lead to the system being consistently confused when
presented with both tanks.

Page 32

 The alpha parameter of 0.99 chosen for the OTSDF filter did not prove to be a
significant value in the sense that it provided markedly profound results. As such,
there remains much analysis into the exact relationship between the alpha parameter
and the performance of the algorithm. Perhaps more noise tolerance would benefit
the algorithm in the presence of few pixels-on-target or the poor lighting conditions
of the lab. The speculars presented by some of the models could be adapted for by
modeling them as Gaussian white noise.
 The parameters of the Gaussian distributions used in the Matlab simulations
were chosen as a direct result of observation of maximum possible position
displacement of each class. However, this in no way suffices for a scientific analysis
and as such leaves room for more work. Closer analysis of the nature of the target
classes will yield a better modeling of their movement via these Gaussian
distributions. These distributions could and should be adaptable to target range.

Section 14. Problems encountered
During our exploration of methods to efficiently and effectively perform large size
correlations on the EVM we considered the use of fixed point precision and associated
functions such fixed point FFT’s.

Section 14.1 Fixed point precision

Fixed point precision offers many advantages such as reduced data size and improved
processing speed due to smaller data size. However, it comes at the cost reduced
precision. Taking this into account we considered the use of DSP functions from the
C62x library [11] which included a radix-4 fixed point FFT. This function necessitated
the use of 16-bit data in Q15 format. Q15 format [12] refers to the use of 16 bits to
represent numbers between -1 and 1. This meant that the most significant bit (MSB)
represented the sign bit while the remaining fifteen bits represented fractional bits.
Such a format requires conversion from standard floating point formats to Q15. In
essence this meant that all of our floating point numbers should be between -1 and 1
to insure that they would be properly represented in Q15. However, conversion
between these two formats is not intuitive although we eventually determined a
reliable conversion. Still, such a conversion caused quantization error in terms of both
the FFT and the application of the filter which we found to be unacceptable.
 Another issue concerning fixed point precision is whether the C67x DSP is
capable of performing proper fixed point operations. Specifically we were concerned
with the multiplication of Q15 numbers. In typical integer multiplication, the
necessary bit growth does no affect the value that the least significant bits (LSB)
represent since the bit growth grows from the MSB. However, in Q15 or fractional
multiplication the bit growth occurs from the LSB and does change the values that the
other bits represent. This was not an issue on the C62x DSP which is a fixed point
processor designed for Q15 format and as such is designed to accommodate for
fractional bit growth. Our concern with multiplication mainly addressed the
application of our correlation filters to the resulting FFT of a block. This could be
addressed by conversion of Q15 numbers into float and allowing the EVM to properly
grow the resulting product. However, this does not address the internal working of
the fixed point FFT being used from the C62x DSP library. Since the fixed point FFT

Page 33

was designed to work on the fixed point processor of the C62x DSP, we could not be
sure of its proper functioning on the C67x DSP considering the integral part that
multiplication plays in calculation of the FFT.
 Repeated attempts at solving these problems yielded much insight into the
nature of finite precision and quantization effects along with some innovative
solutions to some of these problems. However, we were not able to achieve
satisfactory results with respect to the FFT and application of the correlation filters.
The end result of our attempts with finite precision was the conclusion that it was not
a feasible option in our application concerning the precision required. After we
reached this conclusion, we returned to using floating point functions which required
us to rework our EVM implementation.

Section 15. Code Referenced online
We had references several sources online for different parts of our code. The GUI was
mainly done using the help pages in MSDN. Other code that we implemented are a
mixed-radix FFT in our EVM emulator, an FFT shift that works for odd as well as even
sized blocks, and a priority queue from Visual C++ libraries.

Section 15.1 Webcam

The base code for the GUI was a sample program, StillCap, in the DirectX SDK in the
Direct Show API. Its original function was to capture feed from webcam in the form
of a single 24bit RGB bitmap frame or to capture a stream in an AVI file. [14] Some of
the added benefits of this code were that it had a preview screen which continuously
updated the view from the webcam and the fact that the application runs in a modal
dialog box. The advantage of running a modal dialog box is that the appearance and
user control interfaces is easily changeable in Visual Studios using the resource editor.

This code had to be adapted to include the additional controls we wanted to
implement such as the ability to choose targets, starting and stopping experiments,
and various other options. Additionally, we added a frame to display the tracking
resulting on the right side of the GUI.

Section 15.2 FFT Shift and Mixed Radix FFT

Originally we tried to create our own FFT shift code; however, it didn’t work for a
correlation plane with odd dimensions. We found an algorithm for the FFT shift
online which worked correctly for both odd and even dimensions. [15]

For our EVM emulator, we needed to implement an FFT to do the correlation. Since
the code runs on the PC, we needed to find a good FFT online. No changes were
made to the code. [16]

Page 34

Section 16. References
[1] http://www.ikko.k.hosei.ac.jp/~matlab/matkatuyo/vcapg2.htm

[2] Kerekes, R., Narayanaswamy, B., and Beattie, M. "Efficient target tracking with

correlation filters." Spring, 2005.

[3] B.V.K. Vijaya Kumar, “Tutorial Survey of Composite Filter designs for Optical

Correlators,” Applied Optics, vol. 31, pp. 4773-4801, 1992.

[4] B. V. K. Vijaya Kumar and L. Hassebrook. “Performance measures for correlation

filters,” Appl. Opt., vol. 29, pp. 2997- 3006, 1990.

[5] A. Mahalanobis, B.V.K. Vijaya Kumar, and D. Casasent, “Minimum average

correlation energy filters,” Applied Optics, vol. 26:3633-3640, 1987.

[6] A. Mahalanobis, B.V.K. Vijaya Kumar, S. Song, S.R.F. Sims, and J.F. Epperson,

“Unconstrained correlation filters,” Applied Optics, vol. 33:3751-3759, 1994.

[7] B. V. K. V. Kumar, D. Carlson, and A. Mahalanobis, “Optimal tradeoff synthetic

discriminant function (OTSDF) filters for arbitrary devices,” Opt. Lett., vol. 19,
pp. 1556–1558, 1994.

[8] Bracewell, R.N. (1990). Numerical Transforms, Science, 248: 697-704

[9] Oppenheim, A. V. and Schafer R. W., Discrete-Time Signal Processing.

[10] Rabiner, L. R. (1989). “A tutorial on hidden Markov models and selected

applications in speech recognition.” Proc. IEEE, 77 (2), 257-286.

[11] http://focus.ti.com/docs/apps/catalog/resources/appnoteabstract.jhtml?abstra

ctName=spru657b

[12] http://www.mathworks.com/access/helpdesk/help/toolbox/tic6000/

[13] http://www.bobpowell.net/grayscale.htm

[14] DirectX SDK. http://www.msdn.microsoft.com

[15] http://www.dsprelated.com/showmessage/20790/1.php

[16] http://hjem.get2net.dk/jjn/fft.htm

Page 35

Section 17. Code

Section 17.1 MATLAB Scripts
function H = otsdf(tr_set, alpha)

% H = otsdf(tr_set, alpha)
%
% Author: Ramu Bhagavatula
% Data Created: April 5, 2005
% Last Modified: April 9, 2005
%
% Purpose:
% Creates otsdf filter based on training set of images and alpha value
%
% Inputs:
% 1. tr_set = Cell array of training images
% 2. alpha = Number between 0 and 1 describing the ratio of noise tolerance
% to peak sharpness in the otsdf and uotsdf filters.
%
% Outputs:
% 1. H = ostdf filter that results from using the tr_set and alpha

[d1,d2] = size(tr_set{1}); % Dimensions of training images
N = length(tr_set); % Number of training images
d = d1*d2; % Total dimensionality of images

X = zeros(d,N); % Initializes matrix whose columns are the FFTs of the training images

for(i = 1:N) % Iterates through training images
 img = single(tr_set{i});
 buf = fft2(img);
 X(:,i)=buf(:); % Stores FFT of each training images as columns in X
end

D = zeros(d,1); % Initializes average spectral power density matrix
for(i = 1:N) % Iterates through FFTs of training images
 D = D+X(:,i).*conj(X(:,i)); % Calculates total spectral power density of training images as a column
rather than a diagonal
end
D = D/N; % Calculates average spectral power density matrix

C = ones(d,1); % Noise covariance matrix
beta = (alpha*D)+(sqrt(1-alpha^2)*C); % Tradeoff between noise tolerance and peak sharpness
u = ones(N,1)*d1*d2; % Normalizes output of correlation planes to be 1

tmp = zeros(d,N); % Initializes temp matrix for inv(T)*X
for(i = 1:N) % Iterates through FFTs of training images
 tmp(:,i) = X(:,i)./beta; % Element by element division works as inverse because D is stored as a
column
end

V = X'*tmp;
h = tmp*inv(V)*u; % Calculates otsdf filter
H = reshape(h,d1,d2); % Reshapes filter to match dimensions of training images

Page 36

Section 17.2 EVM Code
#include <stdio.h>
#include <stdlib.h>
#include <common.h>
#include <board.h> /* EVM library */
#include <pci.h> /* PCI communication li brary */
#include <dma.h>
#include <mathf.h>

typedef float T;

#define N_POINTS 64
#define HALF_BLOCK N_POINTS*N_POINTS
#define FULL_BLOCK N_POINTS*N_POINTS*2
#define ROW_SIZE N_POINTS*2
#define ROW_BYTES ROW_SIZE*sizeof(T)
#define HALF_SIZE_BYTES HALF_BLOCK*sizeof(T)
#define BLK_SIZE_BYTES FULL_BLOCK*sizeof(T)

//#pragma CODE_SECTION(loadFILTER, "FAST"); // prob ably don't want, the other three we
probably do
#pragma CODE_SECTION(fillwtable, "FAST");
#pragma CODE_SECTION(mkrevtable, "FAST");
#pragma DATA_SECTION(evmOutput, "NOTFAST");

unsigned short int i, j;
unsigned int currentNumFilters, currentNumBlocks, c urrentFilter;

// FFT CODE
T twiddle[N_POINTS*3/2];
int revtable[N_POINTS]; // Look-up table for digit-reversing
int rev_j;
int count = 0;

// I/O blocks, evmOutput was corrBlocks, evmInput w as blocks
T evmOutput[FULL_BLOCK*100]; // arbitrary big leng th, to hold max number of blocks per
'frame', can be up to 128
T *evmInput;
T *filterBank;

// manipulation blocks
T rowTemp[ROW_SIZE];
T currentBlock[FULL_BLOCK]; // full block
T filter[HALF_BLOCK]; // half a full bloc k
//T *fwdFilter = filter1(?); // for future rol ling DMA filters?
//T *transFilter = filter2(?);

/* Function prototypes */
int requestTRANSFER(void *buf, int size, int comman d);
int waitTRANSFER();
int dmaCopyBLOCK(void *src, void *dest, int numByte s, int chan);
int waitBlockTRANSFER();

// FFT CODE
void cfftr4_dif(float* x, float* w, short n); /* Pr ototype for FFT routine */
void Do2dCorrelationFloat(int numBlocks);
void fillwtable(int n);
void complexMatrixTranspose(float *x, int rows, int cols);

Page 37

void mkrevtable(int n);
void loadFILTER(T *newFilter);
void loadHalfFILTER(T *newFilter);

/*
 * DMA transfer a new Filter
 * Each filter is a 64 x 64 block of float numbers
 * SIZE_FILTER_BYTES = BLOCK_SIZE_BYTES = 64*64*si zeof(float)
 */

int main(void)
{
 int maxNumBlocks, totalNumFilters;
 int done, reinitialize;
 char request[1];

 evm_init(); /* Initialize the board */
 pci_driver_init(); /* Call before using any PCI code */

 DMA_AUXCR = 0x00000010; /* Set priority of HPI ove r CPU to avoid crashing */

 fillwtable(N_POINTS);
 mkrevtable(N_POINTS);

 while(1)
 {
 printf("\nStart\n");

 // Poll PC for maximum number of blocks to expect
 requestTRANSFER(request, 0, 0x01);
 maxNumBlocks = waitTRANSFER();

 // Allocate evmOutput and evmInput in external me mory; evmOutput already
allocated for 100 blocks
 evmInput = (T *)malloc(maxNumBlocks*BLK_SIZE_BYTE S);
// evmOutput = (T *)malloc(maxNumBlocks*BLK_SIZE_B YTES);

 if(evmInput == NULL || evmOutput == NULL) {
 printf("\nError #1!\n");
 exit(1);
 }

 // Poll PC for total number of filters availabl e
 requestTRANSFER(request, 0, 0x01);
 totalNumFilters = waitTRANSFER();

 // Allocate memory for filters
 filterBank = (T *)malloc(totalNumFilters*BLK_SIZE _BYTES);
 if(filterBank == NULL) {
 printf("\nError #2!\n");
 exit(1);
 }

 // Ask PC to send filters
 requestTRANSFER(filterBank, totalNumFilters*BLK_S IZE_BYTES, 0x02);
 waitTRANSFER();

 // Poll PC as to whether or not process is done

Page 38

 requestTRANSFER(request, 0, 0x05);
 done = waitTRANSFER();

 while(!done)
 {
 // Poll PC about how many filters to apply to in coming set of blocks
 requestTRANSFER(request, 0, 0x01);
 currentNumFilters = waitTRANSFER();

 // Poll PC about how many blocks are being sent
 requestTRANSFER(request, 0, 0x01);
 currentNumBlocks = waitTRANSFER();

 // Ask PC to send block
 requestTRANSFER(evmInput, currentNumBlocks*BLK _SIZE_BYTES, 0x03);
 waitTRANSFER();

 // Iterate over each filter being applied to c urrent set of blocks
 for(i = 0; i < currentNumFilters; i++)
 {
 //Poll PC as to which filter to apply currently outt of total
number to apply
 requestTRANSFER(request, 0, 0x01);
 currentFilter = waitTRANSFER();

 // Load specified filter
 loadFILTER(filter);

 // Perform 2D overlap-save correlation on curre nt set of blocks
using current filter
 Do2dCorrelationFloat(currentNumBlocks);

 // Ask PC to retrieve correlated blocks using c urrent filter

 requestTRANSFER(evmOutput, currentNumBlocks*B LK_SIZE_BYTES,
0x04);
 waitTRANSFER();
 }
 }
 // Poll PC if user wishes to start entire proc ess over again, reinitialize the tool
 requestTRANSFER(request, 0, 0x06);
 reinitialize = waitTRANSFER();

 if(!reinitialize)
 break;
 }
 // Free allocated memory
 free(evmInput);
 free(filterBank);
}

/* Use mailbox 1 for address, 2 for size, and 3 for command */
int requestTRANSFER(void *buf, int size, int comman d) {
 amcc_mailbox_write(2, size);
 amcc_mailbox_write(3, command);
 pci_message_sync_send((unsigned int)buf, FALSE);
 return(0);
}

Page 39

/* The PC will send a message when the transfer is complete. Wait
 for that to happen */
int waitTRANSFER() {
 unsigned int value;

 pci_message_sync_retrieve(&value);
 return(value);
}

/* dma_copy_block: Copies numBytes from src to dest using DMA channel
 chan. chan can be 0 or 1. this function is ASYNC HRONOUS! You must
 poll DMA0_TRANSFER_COUNT (or DMA1_TRANSFER_COUNT) to see when the
 transfer is complete */
/* Only valid for numBytes < 4 * 0xFFFF */
int dmaCopyBLOCK(void *src, void *dest, int numByte s, int chan) {
 unsigned int dma_pri_ctrl=0;
 unsigned int dma_tcnt=0;

 /* Give DMA priority over CPU, and increment src and dest
 after each element */
 dma_pri_ctrl = 0x01000050;

 /* One frame, and we're using 4 byte elements */
 dma_tcnt = 0x00010000 | (numBytes/4);

 /* Write to DMA channel configuration registers * /
 dma_init(chan,
 dma_pri_ctrl,
 0,
 (unsigned int) src,
 (unsigned int) dest,
 dma_tcnt);

 DMA_START(chan);
 return(OK);
}

void loadFILTER(T *newFilter) {
 // Start DMA transfer for new filter
 dmaCopyBLOCK(&(filterBank[currentFilter*FULL_BLOCK]), newFilter, HALF_SIZE_BYTES, 0);
 while(DMA0_XFER_COUNTER);
 // Done!
}

void loadHalfFILTER(T *newFilter) {
 // Start DMA transfer for new filter
 dmaCopyBLOCK(&(filterBank[currentFilter*FULL_BLOC K+HALF_BLOCK]), newFilter,
HALF_SIZE_BYTES, 0);
 while(DMA0_XFER_COUNTER);
 // Done!
}

// Perform 2D overlap-save correlation using the cu rrent set of blocks and varying number of
filters
void Do2dCorrelationFloat(int numBlocks)
{

Page 40

 int blockNum;
 float temp;

 // Iterate through current set of blocks
 for (blockNum=0; blockNum<numBlocks; blockNum++)
 {
 // DMA copy in the current block from external me mory
 dmaCopyBLOCK(&(evmInput[FULL_BLOCK*blockNum]), cu rrentBlock, BLK_SIZE_BYTES,
0);
 while(DMA0_XFER_COUNTER);
 count++;

 // Begin 2D FFT
 // 1. FFT along rows
 // 2. Digit Reverse
 // 3. Transpose
 // 4. FFT along rows (essentially columns of orig inal matrix)
 // 5. Digit Reverse
 // 6. Divide by N

 // FFT along rows
 for(i=0;i<N_POINTS;i++)
 cfftr4_dif(&(currentBlock[i*ROW_SIZE]), twiddle, N_POINTS);

 // Digit reverse after first set of FFT's
 for(i=0; i<N_POINTS; i++)
 {
 for(j=0;j<N_POINTS;j++)
 {
 rev_j = revtable[j]; // rev_j is now t he digit-reversal of
j

 rowTemp[2*j] = currentBlock[i*ROW_SIZE+2*rev_ j];
 rowTemp[2*j+1] = currentBlock[i*ROW_SIZE+2*rev_ j + 1];
 }
 memcpy(&(currentBlock[i*ROW_SIZE]),rowTemp,ROW _BYTES);
 }

 // Complex interleaved float transpose
 complexMatrixTranspose(currentBlock,N_POINTS,N_PO INTS);

 // FFT along rows (essentially FFT along column s of original matrix)
 for(i=0;i<N_POINTS;i++)
 cfftr4_dif(&(currentBlock[i*ROW_SIZE]), twiddl e, N_POINTS);

 // Digit reverse after second set of FFT's
 for(i=0; i<N_POINTS; i++)
 {
 for(j=0;j<N_POINTS;j++)
 {
 rev_j = revtable[j]; // rev_i is now t he digit-reversal of
i

 rowTemp[2*j] = currentBlock[i*ROW_SIZE+2*rev_ j];
 rowTemp[2*j+1] = currentBlock[i*ROW_SIZE+2*rev_ j + 1];
 }
 memcpy(&(currentBlock[i*ROW_SIZE]),rowTemp,ROW _BYTES);
 }

Page 41

 // Divide by N (premepts divide by N necessary later and also helps to prevent
overflow)
 for(i=0;i<N_POINTS;i++)
 {
 for(j=0;j<N_POINTS*2; j++)
 {
 currentBlock[i*ROW_SIZE+j] /= N_POINTS;
 }
 }

 // Begin correlation
 // 1. Load first/top half of filter
 // 2. Apply first/top half of filter
 // 3. Load second/bottom half of filter
 // 4. Apply second/bottom half of filter

 // Load first/top half of current filter
 loadFILTER(filter);

 // Apply first/top half of current filter to curr ent block
 for (i=0; i<N_POINTS/2; i++)
 {
 for (j=0; j<2*N_POINTS; j+=2)
 {
 // Foil and conjugate for IFFT
 temp = currentBlock[i*R OW_SIZE+j] *
filter[i*ROW_SIZE+j] + currentBlock[i*ROW_SIZE+j+ 1] * filter[i*ROW_SIZE+j+1];
 currentBlock[i*ROW_SIZE+j+1] = currentBlock[i*R OW_SIZE+j] *
filter[i*ROW_SIZE+j+1] - currentBlock[i*ROW_SIZE+j+ 1] * filter[i*ROW_SIZE+j];
 currentBlock[i*ROW_SIZE+j] = temp;
 }
 }

 // Load second/bottom half of current filter
 loadHalfFILTER(filter);

 // Apply second/bottom half of current filter to current block
 for (i=0; i<N_POINTS/2; i++)
 {
 for (j=0; j<2*N_POINTS; j+=2)
 {
 // Foil and conjugate for IFFT
 temp =
currentBlock[i*ROW_SIZE+j+HALF_BLOCK] * filter[i*RO W_SIZE+j] +
currentBlock[i*ROW_SIZE+j+1+HALF_BLOCK] * filter[i* ROW_SIZE+j+1];
 currentBlock[i*ROW_SIZE+j+1+HALF_BLOCK] =
currentBlock[i*ROW_SIZE+j+HALF_BLOCK] * filter[i*RO W_SIZE+j+1] -
currentBlock[i*ROW_SIZE+j+1+HALF_BLOCK] * filter[i* ROW_SIZE+j];
 currentBlock[i*ROW_SIZE+j+HALF_BLOCK] = temp;
 }
 }

 // Begin 2D IFFT
 // Note: Due to conjugation done in application of the filter, it is unecessary
to conjugate before applying FFT to achieve IFFT

Page 42

 // 1. FFT (IFFT) along rows
 // 2. Digit Reverse
 // 3. Divide by N
 // 4. Transpose
 // 5. FFT along rows (essentially columns of orig inal matrix)
 // 6. Digit Reverse

 // FFT (IFFT) along rows
 for(i=0;i<N_POINTS;i++)
 cfftr4_dif(&(currentBlock[i*ROW_SIZE]), twiddle, N_POINTS);

 // Digit reverse after first set of FFT's (IFFT's)
 for(i=0; i<N_POINTS; i++)
 {
 for(j=0;j<N_POINTS;j++)
 {
 rev_j = revtable[j]; // rev_i is now t he digit-reversal of
i

 rowTemp[2*j] = currentBlock[i*ROW_SIZE+2*rev_ j];
 rowTemp[2*j+1] = currentBlock[i*ROW_SIZE+2*rev_ j + 1];
 }
 memcpy(&(currentBlock[i*ROW_SIZE]),rowTemp,ROW _BYTES);
 }

 // Divide by N
 for(i=0;i<N_POINTS;i++)
 for(j=0;j<N_POINTS*2; j++)
 currentBlock[i*ROW_SIZE+j] /= N_POINTS;

 // Complex interleaved float transpose
 complexMatrixTranspose(currentBlock,N_POINTS,N_PO INTS);

 // FFT (IFFT) along rows (essentially columns of original matrix)
 for(i=0;i<N_POINTS;i++)
 cfftr4_dif(&(currentBlock[i*ROW_SIZE]), twiddle, N_POINTS);

 // Digit reverse after second set of FFT's (IFFT' s)
 for(i=0; i<N_POINTS; i++)
 {
 for(j=0;j<N_POINTS;j++)
 {
 rev_j = revtable[j]; /* rev_i is now t he digit-reversal of
i */

 rowTemp[2*j] = currentBlock[i*ROW_SIZE+2*rev_ j];
 rowTemp[2*j+1] = (currentBlock[i*ROW_SIZE+2*rev _j + 1]);
 }
 memcpy(&(currentBlock[i*ROW_SIZE]),rowTemp,ROW _BYTES);
 }

 // DMA copy the correlated block into external me mory
 dmaCopyBLOCK(currentBlock, &(evmOutput[FULL_BLO CK*blockNum]), BLK_SIZE_BYTES,
1);
 while(DMA1_XFER_COUNTER);
 }
}

Page 43

// Fill in twiddle table needed for FFT
void fillwtable(int n) {

 int k;
 float constant=2.0*(float)PI/(float)n;

 for (k=0; k<3*n/4; k++)
 {
 twiddle[2*k] = cosf(constant*(float)k);
 twiddle[2*k+1] = sinf(constant*(float)k);
 }
}

// Complex interleaved matrix float transpose
void complexMatrixTranspose(float *x, int rows, int cols)
{
 float tempReal, tempImag;
 int i, j;

 // Iterate through rows
 for(i=0;i<rows;i++)
 {
 // Iterate through columns
 for(j=i+1;j<cols;j++)
 {
 // Store current complex value
 tempReal=x[i*2*cols+2*j];
 tempImag=x[i*2*cols+2*j+1];
 // Transfer in transposed complex value into cur rent (row, column)
 x[i*2*cols+2*j]=x[j*2*cols+2*i];
 x[i*2*cols+2*j+1]=x[j*2*cols+2*i+1];
 // Transfer out current complex value in transpo sed (row, column)
 x[j*2*cols+2*i]=tempReal;
 x[j*2*cols+2*i+1]=tempImag;
 }
 }
}

/* This function creates the lookup table for digit reversing. After
 it is run, revtable[n] equals the pairwise digit -reversal of n.
 n is the size of the FFT this table will be used for.*/
void mkrevtable(int n) {
 int bits, i, j, r, o;

 bits= (31 - _lmbd(1, n))/2; /* _lmbd(1,n) finds leftmost 1 bit in n */
 for(i=0; i<n; i++) {
 r=0; o=i;
 _nassert(bits>=3);
 for(j=0; j<bits; j++) {
 r <<= 2;
 r |= o & 0x03;
 o >>= 2;
 }
 revtable[i] = r;
 }
}

Page 44

Section 17.3 PC algorithm
int main(int argc, char* argv[])
{
 int programExit = 0;
 int i = 0;
 int done = 0;
 int reinitialize = 0;
 TS ts; // why was this commented out?

 colThresh = 4*100000000;
 rowThresh = 4*100000000;
 corrThresh = (float) 0.9;

 totalNumTargetsDetected = 0;

 initializeEVM();

 loadEXPERIMENT();

// loadGAUSSIANS();

 totalNumFilters = NUM_SCALES*totalNumClasses;
 filterBank = (EVM_TYPE *)
malloc(BLK_SIZE*2*totalNumFilters*sizeof(EVM_TYPE)) ;
 filterDims = (unsigned int *)
malloc(totalNumFilters*NUM_SCALES*sizeof(int));

 loadFILTERS();

 maxNumBlocks = ((((MAX_WINDOW_SIZE)/(BLK_DIM-
MAX_FILT_SIZE+1))*((MAX_WINDOW_SIZE)/(BLK_DIM-MAX_F ILT_SIZE+1)))+1);
 blocks = (EVM_TYPE *)
malloc(maxNumBlocks*2*BLK_SIZE*sizeof(EVM_TYPE));
 corrBlocks = (EVM_TYPE *)
malloc(maxNumBlocks*2*BLK_SIZE*sizeof(EVM_TYPE));

 waitREQUEST(&ts);
 fprintf(stderr, "Transfer request: CMD %x, SIZE %i , ADDRESS %x\n",
ts.command, ts.size, ts.buffer);
 if(!evm6x_send_message(hBd, (PULONG)&maxNumBlocks)) // #1
 {
 fprintf(stderr, "Send message error!\n");
 exit(1);
 }

// PCItransfer(myEVM.maxNumBlocks , maxNumBlocks); // EVM
communication
// EVM_malloc_blocks(&myEVM);

 waitREQUEST(&ts);
 fprintf(stderr, "Transfer request: CMD %x, SIZE %i , ADDRESS %x\n",
ts.command, ts.size, ts.buffer);
 if(!evm6x_send_message(hBd, (PULONG)&totalNumFilte rs)) // #2
 {
 fprintf(stderr, "Send message error!\n");
 exit(2);
 }

Page 45

// PCItransfer(myEVM.totalNumFilters , totalNumFil ters);
// EVM_malloc_filter_bank(&myEVM);

 waitREQUEST(&ts);
 fprintf(stderr, "Transfer request: CMD %x, SIZE %i , ADDRESS %x\n",
ts.command, ts.size, ts.buffer);
 if(ts.command==0x02)
 {
 if(ts.size != (BLK_SIZE*2)*totalNumFilters*sizeof (EVM_TYPE))

 fprintf(stderr, "Wrong size!!!\n");

 START_TIMER;
 sendDATA(&ts, &(filterBank[0]));
 STOP_TIMER;
 fprintf(stderr, "Elapsed Time for Send Filter Ban k: %f\n",
elapsed_time());
 }

// HPItransfer(myEVM.filterBank, filterBank,
(BLK_SIZE*2)*totalNumFilters*sizeof(EVM_TYPE));
 frameNum = 0;

 while(1)
 {
 if(!loadFRAME())
 done = 1;
 else
 done = 0;

 waitREQUEST(&ts);
 fprintf(stderr, "Transfer request: CMD %x, SIZE % i, ADDRESS %x\n",
ts.command, ts.size, ts.buffer);
 if(!evm6x_send_message(hBd, (PULONG)&done))
 {
 fprintf(stderr, "Send message error!\n");
 exit(19);
 }

// PCItransfer(myEVM.done , done);
// EVM_check_done(&myEVM);

 if(done)
 break;

 //if(frameNum%DETECT_STEP==0)
 if((frameNum == 0) || (!targets))
 {
 fprintf(stderr, "Entering Detection Stage...\n") ;
 detectionSTAGE();
 //applyGAUSSIAN();
 writeFrameINFO();
 }
 else if(frameNum%FRAME_STEP == 0)
 {
 fprintf(stderr, "Entering Tracking Stage\n");
 trackingSTAGE();
 //applyGAUSSIAN();
 writeFrameINFO();
 }
 //writeFrameINFO();

Page 46

 frameNum++;
 }

 waitREQUEST(&ts);
 fprintf(stderr, "Transfer request: CMD %x, SIZE %i , ADDRESS %x\n",
ts.command, ts.size, ts.buffer);
 if(!evm6x_send_message(hBd, (PULONG)&reinitialize))
 {
 fprintf(stderr, "Send message error!\n");
 exit(20);
 }

// PCItransfer(myEVM.reinitialize, reinitialize);

 free(blocks);
 free(corrBlocks);
 free(filterBank);
 free(filterDims);
 if(targets)
 freeTargets(targets);

 fprintf(stderr, "Freeing allocated memory\n");

 /* Clean up and exit */
 if (!evm6x_hpi_close(hHpi))
 {
 fprintf(stderr, "Error closing connection to EVM! \n");
 exit(13);
 }
 if (!evm6x_close(hBd))
 {

 fprintf(stderr, "Error closing connection to EVM! \n");
 exit(14);
 }

 fprintf(stderr, "Closed connection to EVM\n");

 return(0);
}

