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Section 1. Our Solution 
 
Many places in today’s society are seeing an increased reliance on electronic devices 
and their ability to remove 24/7 human monitors. In the fields of aviation and 
automotive travel, the importance of constantly monitoring a landing strip or a busy 
roadway is more important than it has been in the past. A DSP system that is able to 
detect, identify, and track large objects as they cross a fixed field of view (FOV) is 
critical to maintaining safe and efficient transportation solutions. 

For our project, we will be designing such a system that will be created to 
detect, identify, and track radio controlled (RC) cars and tanks in the 18-551 lab from 
a fixed view (on top of the 18-474 cabinet) at a fixed angle. In this scene, the RC 
vehicles will be moving while the camera remains fixed. However, due to processing 
limitations, we will not be able to track the targets in real-time. Instead, we will 
capture a time sequence and then use our DSP system to detect, identify, and track 
designated targets using correlation filters, the Central Slice Theorem (CST), and 
Hidden Markov Models (HMMs). The use of the CST and HMMs are unique to 18-551, 
and should provide a new perspective to the ATR problem. Ideally, our system would 
be extended and improved to deal with the more complex scenarios described below. 

When managing the take-off queue of a busy airport, the volume of aircraft 
moving through a fixed location can be quite significant. This environment can 
increase the possibility of aircraft misidentification by the traffic controllers, 
miscommunication between a pilot and the traffic controllers (regarding which take-
off strip to use), and unintentional delays as traffic controllers ‘lose track’ of aircraft 
already in the queue. By placing the detection, identification, and tracking roles 
under the control of a semi-autonomous DSP system, traffic controllers can better 
utilize their time by efficiently allocating take-off strips. Their decisions will be based 
on data collected by several of these identical DSP systems, each set up on a different 
aircraft strip, taking data from a fixed camera at a single view. This will allow the 
DSP system to deal with detection and identification of aircraft on only a scaling 
dimension, rather than also on a rotational dimension. This means that on the training 
phase of the DSP system, data will be provided showing the possible tracking target at 
different sizes, but all at the same perspective. However, in order to make the 
system more adaptable, data may be collected of the same tracking target positioned 
at different orientations to make rotated detection possible. 

In the field of automotive travel, a DSP system as described above would serve 
several purposes. Primarily as an extension of the police force, this system would be 
used to track and follow a dangerous target down a long roadway, through a busy 
intersection, or even in an urban setting. This ability to track vehicles, during car 
chases and for stolen vehicles, is of extreme importance to highway and city police 
teams. Cameras would have to be set up at key points along a freeway, at 
intersections, or positioned above the desired streets, but would be limited to a fixed 
FOV. It is possible that this functionality could be extended to track large-scale traffic 
patterns in a city, as well as tracking speed limits and traffic violations. 

Ultimately, this type of device will be of extreme importance to the military. 
As today’s military is increasingly moving towards a more automated force of highly 
specialized vehicles and highly trained operators, these vehicles will have advanced 
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controls that are used to perform basic tasks that would otherwise consume valuable 
man hours and resources. In order for these controls to be effective, they must be 
able to automatically and independently find potential targets and track their 
position across the FOV. As a result, operators of offensive vehicles can focus entirely 
on directing the vehicle and taking necessary actions against any detected and 
confirmed threats. To be of maximum value, the DSP system would have to integrate 
both the scaling solution and the rotation solution into a single device that could be 
attached to a movable camera and assist in tracking and identification of military 
aircraft, tanks, and naval vessels. 

Section 2. Prior 551 Work 
The only groups to pursue identification and detection design projects were Face 
Verification for ATM Access (Group 2, 2003) and Automatic Target Recognition in 
Synthetic Aperture Radar Images (Group 2, 2000). The 2000 group used feature 
extraction along with a classifier, which is very different from our proposed project, 
which uses correlation for the identification and detection. The 2003 group uses 
correlation filters for the same purpose as us, but they have no tracking capabilities 
in their system. Additionally, they were not forced to implement another detection 
method, such as the Central Slice Theorem, in order to complete their DSP system. 
However, our system was required to use the CST in order to significantly reduce the 
number of computations (at the cost of significantly increasing our processing speed, 
making real-time processing near impossible). The details and necessity of the CST 
will be demonstrated in Section 4. Algorithms. 

Beyond these identification and tracking design projects, several previous 
projects addressed the topic of object tracking. These four projects, Object Tracking 
via Optical Flow in Video (Group 15, 2000), Face Detection for Surveillance (Group 2, 
2002), Where’s the Ball? (Group 2, 2004), and Lights, Camera…Action! (Group 12, 
2004). However, none of these projects required the use of correlation filters, since 
most were dealing with human faces, in which blob coloring, frame differencing, and 
optical flow are more reliable and simpler to implement. Since we are dealing with 
both rotation and scale changes in a highly variable environment (the lab has 
significant noise due to the lighting, number of other objects, etc), none of these 
three methods would be appropriate or successful for our solution. Thus, we must use 
correlation filters to more accurately render the position and identity of our targets. 
We also use Hidden Markov Models to help predict future detections, using a Gaussian 
probability to reliably track the targets. 

Because we are introducing new algorithms to solve an expanded problem that 
integrates tracking and identification/detection, our project is certainly unique. 

Section 3. Data Sets 
For our project we acquired five radio-controlled (RC) models to attempt to detect, 
identify, and track. Taking into consideration the real-world application of our 
project for both the military and civilian applications we decided to acquire both 
military and civilian related RC models. Military related models included an M1A2 
Abrams battle tank, a German Leopard tank, and a “Nerf” tank. The civilian models 
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included a Smart Coupe and a Mitsubishi Lancer. Respectively we designated these 
classes as Classes 1 through 5. 

Section 3.1 Training Data 

Our primary concern in assembling our training set was to gather a set of data that 
sufficiently generalized all rotations and a range of scales for each of the targets. The 
primary problem with this requirement is that there naturally exist an infinite number 
of rotations. The same is true even for a limited range of scales. However, we cannot 
possibly hope to capture such a set of data accurately. Also, it is an unrealistic 
expectation that we will be provided such of data; particularly in our application 
where our tool is designed to potentially track the vehicles of enemy forces. 
Therefore, we must limit the size of our training set to the bare minimum that meets 
some specified threshold of performance. For this we must establish this threshold 
based on performance expectations w.r.t. our detection scheme (expected 
probability of detection/miss rate) and w.r.t to our identifications scheme 
(probability of correct identification). 
 We first considered the five potential targets we had. The targets psycho-
visually (to the human eye) are fairly different to each other except in one case. The 
models of the M1A2 tank and the German Leopard Tank present similar profiles but do 
have different coloring schemes and camouflage patterns. The difference in coloring 
schemes is greatly reduced when compared in the grayscale range but still exists to 
some degree. The difference in camouflage patterns is far more significant since 
regardless of colormap it is still present and significantly contributes to frequency-
domain profile of each target. With these things in mind, we started our training data 
collection. 
 Our training set capture setup consisted of the USB Logitech QuickCam Pro 
4000 connected to an IBM G41. We used a camera capture tool for Matlab called 
vcapg2.dll [1]. This is a Matlab community developed tool that can be found on the 
Mathworks Central File Exchange. This tool allowed us to capture imagery from a USB 
enabled capture device directly into the Matlab workspace. Other features of this tool 
include the ability to specify the colorspace, resolution, zoom, pan, and tilt of the 
camera where available. In our setup we used the YUV colorspace, a resolution of 320 
× 240 pixels, and default zoom/pan/tilt parameters. Once in the Matlab workspace, 
we could convert the YUV colorspace images into grayscale images. 
 Our initial training set consisted of twenty-four angular views of the targets at 
close range (approximately one yard along line of sight), constant elevation, and 
depression angle. This resulted in images being taken at every fifteen degree 
increment views. In order to maximize the profile of the targets, we placed them on 
white poster board (non-reflective side). This would aid us in the pre-processing of 
the training data that will be discussed later on. We made sure to note the time of 
day and place at which the data was take which was between the hours of 7:30 and 
9:00 PM and in the 18-551 lab. The importance of this is reflected in the fact that the 
lighting conditions of the environment strongly dictate in which lighting conditions 
tools trained with such data will perform reasonably in. Figure 1 are example images 
demonstrating the setup under which our grayscale training data was generated under 
both gray and jet colormaps found in Matlab. The jet colormap image is used to 
demonstrate the isolation/difference of the target from the background. It is also 
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important to note that this image is unprocessed except for conversion from YUV to 
grayscale. 
 

 
Figure 1: Example on unprocessed grayscale M1A2 training data image (Left) Grayscale colormap 

(Right) Jet colormap 
 

Once all twenty-four images of each of the targets were acquired, they underwent a 
set of pre-processing to massage the data into a usable form. Pre-processing of the 
data began with cropping of the data down to a constant size and positioned bounding 
box among all the data. This was dictated by the largest horizontal and vertical views 
of any of the target i.e., the size of both the M1A2 and the German Leopard when 
they presented forward, backwards, and side profiles. The dimension of this bounding 
box was determined upon visual inspection to be 205 × 120 pixels. At this point, the 
targets were now surrounded by only white pixels which are relatively high-valued; 
grayscale pixel values run from 0 (pure black) to 255 (pure white). 
 It would have been possible to train on this set of data, but there is a 
significant problem with doing this. This problem is that difference between the white 
background and the relatively dark colored targets creates numerous high frequency 
components in the training data’s frequency profile. Our goal in creating this training 
set is to accurately represent our target’s profiles in the spatial and frequency 
domains. If we introduce previously unrepresented high-frequency components we are 
artificially changing the data. The best solution to this was to replace the surrounding 
background with the mean pixel value of only the target. By doing this, we are only 
contributing to the DC frequency component of the data. The significance of this will 
be detailed later in the Algorithms section. In order to isolate only the target, we first 
raised the value of each pixel to a power of 5. This exaggerated the difference 
between the target and the background. From this we were able to derive a binary 
mask for the target by first applying a threshold where all pixels above a certain value 
where marked. These marked pixels made up the 0 values in our mask while the non-
marked pixels made up the 1’s. Following this masking, a series of erosions and 
dilations were applied using block-shaped structuring elements. The result of this 
filled in any accidentally removed pixels from the target itself and any outlier pixels.  
 At this point we had an image which consisted of mostly 0’s except within a 
tightly bound area around the target only. The mean of the non-zero values (i.e. the 
target) was calculated and used to replace all the 0 values. The image was also 
padded up to a square size using the mean value. Figure 2 is the result of all this pre-
processing on the image shown above in Figure 1. This pre-processing was applied to 
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all twenty-four images of each target’s training set. Figure 3 shows the result of 
applying this pre-processing to the training set of the M1A2. 
 

 
Figure 2: Result of pre-processing on image in Figure(1) (Left) Grayscale colormap (Right) Jet colormap 
 

 
Figure 3: Pre-processed training data for M1A2 

Section 3.2 Test Data 

Testing data was captured in the same setup as the training data. The first set of 
testing data was comprised of one-degree increment angular views of the targets 
taken at the same range and depression angle as the training data. As a result, each 
class had a testing set consisting of 360 images taken in constant conditions. This 
testing set would be used to test the identification capabilities of the correlation 
filters that will be detailed later. The second set of testing data consisted of 
approximately two minute long video sequences. For each class/target we captured 
two sequences that consisted of only that target moving throughout the scene 
performing different maneuvers. This data was used in our Matlab simulations to test 
the effectiveness of out algorithm. We also captured an additional fifteen sequences 
that consisted of multiple targets moving throughout the scenes. This data was used 
to test the multiple target tracking capabilities of our algorithm. We focused the 
content of this data to contain combinations of classes that presented the strongest 
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confusers for the algorithm. This meant placing both the M1A2 and the German 
Leopard in a set of sequences together, and in other sequences placing the Smart 
Coupe and the Mitsubishi Lancer together. The Nerf Tank did not prove to be a 
significant confuser to any of the classes and was thus included sparsely. We 
intentionally maneuvered the targets in these sequences to cross each others paths in 
order to present the possibility of occlusion and target loss. These sets of testing data 
aided us immensely in assessing the effectiveness of our approach. 

Section 4. Algorithms 
As stated before, our algorithm is strongly based on work done by Ryan Kerekes, 
Balakrishnan Narayanaswamy, and Mike Beattie [2]. The primary difference between 
our approach and theirs is in implementation. When compared to the power and 
precision of PC using Matlab, the C67 EVM is a severely limited piece of hardware. 
Incapable of doing two-dimensional FFT’s of significant size in floating-point double 
precision as can be done in Matlab, the EVM forces us to carefully consider many 
factors when it comes to both precision and as a direct consequence size of data. 
Such considerations strongly influence how directly we can implement previously done 
work without introducing new aspects. Since our task is to implement a tracking and 
identification algorithm, we must consider three tasks. The first task being detection 
of potential targets, followed by identification of these detected targets, and then 
tracking of these targets. We will detail each task separately. However, before we 
can do that we must first go into some detail above certain tools/algorithms we use in 
our overall approach. 

Section 4.1 Correlation Filters 

 
Correlation filters [3] are template-based classifiers that when correlated with an 
image result in a correlation plane. The correlation plane C measures the correlation 
between the filter and the image. Correlation of a class-specific filter with authentic 
and imposter data yield very different correlation planes. Figure 4 demonstrates this 
difference. 

 

 
Figure 4: (Left) correlation plane for authentic sample (Right) Correlation plane for imposter sample 

 

To quantify the difference between the two types of correlation planes, we define a 
measure of recognition called Peak to Sidelobe Ratio (PSR) [4]. This will measure the 
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sharpness of the largest peak in the correlation plane with respect to the immediate 
area around the peak. PSR is an effective measure of correlation when we expect 
multiple peaks to be present in one correlation plane or in other words multiple 
authentic targets.  
 

..devstd
meanpeak

PSR
−=      (1) 

 
There are various types of correlation filters a set of which we considered for use in 
our algorithm. We will now describe these filters. 
 The Minimum Average Correlation Energy (MACE) Filter [5] is designed to 
minimize the average energy E in the correlation plane or Average Correlation Energy 
(ACE). In the filter we also constrain the value of the correlation peak to be 1. To 
achieve this we analyze the spectral power density which is placed on the diagonal of 
the matrix D. Our goal is to minimize E which is defined as: 
 

DhhE +=       (2) 
 

where + denotes the conjugate transpose. The constrained minimization of Eq. 2 
results in the MACE filter hMAC2E: 
 

( ) uXDXXDhMACE
111 −−+−=             (3) 

 
where u is the constrained peak values (vector of ones). 
 The Unconstrained MACE (UMACE) Filter [6] removes the constraint on the peak 
value. By removing this constraint, more solutions to the minimization problem are 
available. We also try to maximize the average value of the peaks or Average 
Correlation Height (ACH). The closed form solution to the UMACE filter hUMACE: 
 

mDhMACE
1−=                   (4) 

 
where m is the average of the columns of X. 
 We will consider generalizations of the MACE and UMACE filters called the 
Optimal Tradeoff Synthetic Discriminant Function (OTSDF) filter [7] and the 
Unconstrained OTSDF (UOTSDF) filter respectively. These generalized filters offer 
sharp correlation peaks and noise tolerance which are related to the ACE and Output 
Noise Variance (ONV) of the filter respectively. However, these two qualities are 
inversely proportional to each other by a constant α. Given a desired proportion of 
peak sharpness to noise tolerance, the filter designs hOTSDF and hUOTSDF are: 
   

( ) uXTXXThOTSDF
111 −−+−=     (5) 

mThUOTSDF
1−=      (6) 

 
where T is defined as: 
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10 given        1 2 ≤≤−+= αααααααααααα CDT    (7) 

 
where C is the Gaussian white noise matrix (identity matrix). The primary difference 
between MACE and OTSDF is the replacement of D with T.  
 We analyzed each of these four correlation filter designs to determine which 
one was best suited to our approach. First we built filters using each design on the 
training data described above. The first test was to determine which filter was best at 
identification. Using the testing data that comprised of one-degree increment angular 
views we tested the identification abilities of each filter. This meant correlating each 
filter with both authentic and imposter data. The filter that yielded the highest PSR 
value extracted from the maximum peak within the correlation planes was marked as 
the determined class. The confusion matrices for each filter build are shown in Table 
1, Table 2, Table 3, and Table 4. The alpha parameter for both the OTSDF and 
UOTSDF filters are chose essentially arbitrarily, but are based on past experience with 
these filters in non-ATR related situations. 
 

Table 1: Mace filter confusion matrix 

Determined Class 

MACE Class 1 Class 2 Class 3 Class 4 Class 5 

Class 1 285 56 15 0 4 

Class 2 62 296 2 0 0 

Class 3 21 26 302 6 5 

Class 4 0 0 15 312 33 

Testing Class 

Class 5 2 0 20 34 304 

 
Table 2: UMCAE filter confusion matrix 

Determined Class 

UMACE Class 1 Class 2 Class 3 Class 4 Class 5 

Class 1 263 75 5 4 2 

Class 2 71 273 10 6 0 

Class 3 14 12 314 8 12 

Class 4 4 13 21 287 35 

Testing Class 

Class 5 6 3 5 52 292 

 
Table 3: OTSDF filter confusion matrix, alpha = 0.99 

Determined Class 

OTSDF Class 1 Class 2 Class 3 Class 4 Class 5 

Class 1 312 46 2 0 0 

Class 2 34 323 2 0 1 

Class 3 2 6 322 12 18 

Class 4 0 0 3 336 21 

Testing Class 

Class 5 3 4 10 12 331 
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Table 4: UOTSDF filter confusion matrix, alpha = 0.99 

Determined Class 

UOTSDF Class 1 Class 2 Class 3 Class 4 Class 5 

Class 1 300 40 11 1 8 

Class 2 51 298 2 0 9 

Class 3 16 11 304 8 11 

Class 4 3 1 15 308 33 

Testing Class 

Class 5 1 1 1 36 321 

  
These results demonstrate that the OTSDF filter is the best filter for identification. 
However, we are also interested in how well these filters separate the classes. During 
the previously described test of identification capabilities we also made sure to store 
all calculated PSR values. 
 

Table 5: Mace filter average PSR values 

Determined Class 

MACE Class 1 Class 2 Class 3 Class 4 Class 5 

Class 1 10.0406 8.7621 1.4325 1.2167 1.1452 

Class 2 9.2912 11.2451 1.8742 1.3542 1.6562 

Class 3 1.2201 1.8641 10.5632 0.9238 1.0023 

Class 4 1.8342 1.9451 1.0342 10.9823 0.7542 

Testing Class 

Class 5 1.4231 1.1374 1.1045 1.8652 10.1284 

 
Table 6: UMCAE filter average PSR values 

Determined Class 

UMACE Class 1 Class 2 Class 3 Class 4 Class 5 

Class 1 9.8417 8.8650 1.7221 1.7214 1.2179 

Class 2 8.5963 10.1727 1.3622 1.2511 1.2410 

Class 3 1.1211 1.7724 9.3671 1.1131 1.2125 

Class 4 1.6211 1.6312 1.6453 9.1244 1.5532 

Testing Class 

Class 5 1.8532 1.2321 1.4111 1.2253 8.1317 

 
Table 7: OTSDF filter PSR values, alpha = 0.99 

Determined Class 

OTSDF Class 1 Class 2 Class 3 Class 4 Class 5 

Class 1 11.9422 9.1632 1.6225 1.1244 1.3342 

Class 2 9.2934 12.6724 1.1922 1.3872 1.4263 

Class 3 1.1154 1.4426 10.7121 1.0227 1.0023 

Class 4 1.7611 1.5112 1.1231 10.7114 0.9113 

Testing Class 

Class 5 1.2117 1.0311 1.0765 1.1289 10.7128 
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Table 8: UOTSDF filter PSR values, alpha = 0.99 

Determined Class 

UOTSDF Class 1 Class 2 Class 3 Class 4 Class 5 

Class 1 10.5221 8.7122 1.5127 1.3281 1.2117 

Class 2 9.3325 11.1178 1.7653 1.4123 1.4667 

Class 3 1.5612 1.8641 10.8141 1.0041 1.0157 

Class 4 1.9115 1.8672 1.0342 10.1241 0.9213 

Testing Class 

Class 5 1.5112 1.5216 1.2217 0.9913 9.9813 

 
These table demonstrate that the OTSDF filter provides the best separation, but also 
shows that the two tanks (Class 1 and Class 2/M1A2 and German Leopard) are strongly 
correlated compared to the other classes. However, taking into account our overall 
algorithm, we felt confident that we would be able to further increase the effective 
separation of these classes. 
 These tests of both identification capabilities and effective separation 
indicated to us that the OTSDF filter was the best suited filter. However, we could 
have performed further tests to determine what alpha parameter in the OTSDF filter 
build would have yielded the best performance. However, considering the range of 
possible alpha values such testing would have occupied too much time with respect to 
the overall project schedule. As such, we settled on the OTSDF filter built with alpha 
equal to 0.99. 

Section 4.2 Overlap-Save Convolution/Correlation 

Due to memory issues on the EVM, which will be detailed in later sections, we were 
forced to use a technique called overlap-save which we will not detail but provide a 
reference to, [8]. Using overlap-save we can perform the correlation of a 320 × 240 
image by breaking it up into smaller blocks. This will also allow us to perform linear 
correlation as opposed to circular correlation. It is important to note that we will only 
perform linear correlation that results in the correlations being generated as a result 
of the center of the filter being above a valid portion of the image. 

Section 4.3 Central Slice Theorem 

The Central Slice Theorem (CST) [9] in two dimensions states that the Fourier 
transform of the projection of a two-dimensional function f(r) onto a line is equal to a 
slice through the origin of the two-dimensional Fourier transform of that function 
which is parallel to the projection line. The usefulness of the CST is in the fact that if 
we cane project an image, or in our case a frame of a video sequence, onto a pair of 
dimensions and do the same for our correlation filters and still retain their identities 
w.r.t. to the axes upon which they were projected. If we apply our projected one-
dimensional correlation filters to the respective one-dimensional projections of the 
frame, we should still see distinct peaks in each resulting one-dimensional 
correlations. Suppose we only apply projections along two axes, x and y for simplicity, 
If we have only one target in our frame, then we should only see one peak in each 
correlation. By combining the positions of those peaks we will be able to isolate 
where the target is in the frame. The advantage of this approach is that we are now 
performing a pair of one-dimensional correlations rather than a fill two-dimensional 
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correlation. This is a huge advantage is speed but comes at the cost of decreased 
accuracy. If we want to detect more than one target using only two projections we 
will not be able to exactly isolate the target. Instead, we will get a set of peaks in 
each one-dimensional correlation where the relation between the peaks in each 
correlation is not clear. Rather, if we get a set of N peaks in each one-dimensional 
correlation we will only be able to say that we have N × N possible positions for N 
potential targets. If we increase the number of projections we can reduce the number 
of possible positions for the N targets. However, using two-dimensional discrete data 
as is the case with images, it is not easy to compute projections along varying axes 
other than multiples of forty-five degrees. Due to this difficulty, we will consign 
ourselves to using only two or three projections and being satisfied with the relative 
isolation of detections. We tested the effectiveness of the filters by taking frames 
from our testing sequences and calculated probability of detection and miss rate for 
those frames. We tested a total of 50 frames for each target and each range with 
Range1 being the closest and Range3 being the farthest and using a threshold of 0.9 × 
the maximum peak value. These results, show in Table 9, are adequate for our 
purposes since the overall miss rate is at low enough percentages. 
 

Table 9: Central Slice Theorem analysis results 

Class 
(Range1/Range2/Range3) 

Class 1 Class 2 Class 3 Class 4 Class 5 

# of Correct Detections 41/36/38 40/37/37 36/33/34 46/44/40 47/45/44 

# of False Detections 5/6/9 5/5/5 8/12/9 2/4/7 0/2/5 

Probability of Detection .82/.72/.76 .80/.74/.74 .72/.66/.68 .92/.88/.80 .94/.90/.92 

Miss Rate .08/.16/.06 .10/.10/.10 .12/.10/.14 .04/.04/.14 .06/.04/.10 

Section 4.4 Detection 

Detection is a difficult task in that it requires us to discriminate a target from its 
background. In real work applications, the background is often filled with what is 
collectively called “clutter”. Clutter is unpredictable and cannot be easily modeled 
statistically. This does not mean that there are not techniques/algorithms designed to 
identify and isolate clutter. However, such algorithms are well beyond the 
capabilities of the EVM and the scope of this class. As such, we cannot expect to 
identify things as being clutter and mark them as such. A more intuitive solution is to 
mark the object that could be targets. 
 For this purpose we use the CST as described above to provide us a set of 
possible detections. Around each of these detections we will place a window of 
varying size. The size of the window is dictated by the position of the detection 
relative to the depth of the image. The further back into the scene the detection is, 
the smaller the window which logically follows from the fact that targets farther away 
will appear smaller. The closer the detection is the larger the window used will be. 
The size of the window used is reflective of the maximum target size at those ranges. 
As stated above, our hope is that the limited number of available targets will created 
a limited number of possible detections and as a direct result a limited number of 
windows. We are sure to enforce a minimum distance between potential detections to 
insure that we do not have overlapping detections. This minimum distance is the 
maximum size of a target. This may detriment performance by causing us to throw 
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out correct detections, but it is preferable to trying to perform identification and 
tracking on obscured and overlapping targets. The number and sizes of these windows 
will directly impact the speed and performance of the identification stage. The end 
results of the detection stage are a set of windows of varying sizes each centered on 
the location of a potential detection which are then input into the identification 
stage. 

Section 4.5 Identification 

In the windows provided by the detection stage there may possibly be a target of 
interest. At this point we are interested in not only confirming the presence of a 
target, but also the identity of the target. Assuming that the user of the system has 
specified a set of targets that they are interested in tracking, we proceed to apply 
the correlation filters created to identify those classes. Let us now consider one 
window containing one potential target. The user has chosen M classes of targets and 
we proceed to apply the corresponding M correlation filters. From those M 
correlations, we get M correlation planes in which we isolate the peak and calculate 
the PSR for. At this point we have M PSR values for a single window, each one 
corresponding to a particular class’s correlation filter. The class’s correlation filter 
which yields the highest PSR value is designated the class from which the target 
belongs to. We also consider the possibility that no target or an object that is not 
actually a target is contained in the window. If this is the case we expect to get a 
relatively low PSR value. What is considered to be a low PSR value is the result of 
analysis that we will detail later. We threshold our maximum PSR value to this 
threshold to limit the number of false identifications. Once we have either confirmed 
or denied the presence of a target and its identity, we make sure to not the position 
at which the peak was detected. The position of the peak tells us the suspected 
location of the target. At the end of this stage we have hopefully detected and 
identified all targets within a single frame. However, there is a possibility that we 
have either missed targets or detected objects that are not targets (miss rate and 
false alarm rate respectively). We now proceed to the tracking stage. 

Section 4.6 Tracking 

It is important to note that the previous two stages of detection and identification are 
performed consecutively and sparsely. In other words, we do not perform these stages 
on each frame. This is due to limitations of the EVM in terms of processing speed and 
storage capacity. However, if we do not perform these stages, how do we perform 
tracking? The solution to this is the algorithm proposed in [2]. We relate the 
processing of consecutive frames in a Markovian sense which will lead us to call the 
tracking algorithm a Hidden Markov Model [10]. 
 Taking the results from the identification stage we now apply a probabilistic 
model. We create a probability plane the same size as a single frame, in our case 320 
× 240. The probability at each position represents the probability that a target is at 
that position. Immediately following the identification stage we have a series of 
target locations that as far as the algorithm is concerned are correct. Therefore, at 
each of these “confirmed and identified” target positions we have a probability of 1. 
Expressed formally the probability of pi target ti being at pixel x in frame F is 
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( )Fxpi       (8) 

 
Since we assume fill confidence in our initial set of detections and identifications, pi 
is equal to 1 for all targets. Thus, our probability plane sums to the total number of 
detections. This may seem counterintuitive to the notion of a probability distribution 
function (pdf), but the probability plane is not a pdf. It is a collection of pdf’s 
centered on target positions. Therefore, the total probability or sum of values within 
the probability should be the sum of all the pdf’s present.  
 Now the question is how do we track these targets across frames? If we assume 
that pi is independent across frames the solution is to relate the frames 
probabilistically using two-dimensional Gaussian distributions that represent the 
probability of a target moving from one position to another. This distribution should 
be representative of the speed and direction at which the target is expected to move 
across the span of a frame during a video sequence. If we expect the target to move 
slowly and downwards across the frame, we will model that as a non-circular Gaussian 
with low standard deviation. This will result in the higher probabilities being 
concentrated around the origin and downwards. However, since in our case we do not 
expect any predictable movement from our targets we will model our distributions as 
circular ones. Therefore, we can express the probability of a target moving from pixel 
x1 to x2 in terms of displacement and not position. Thus given a Gaussian distribution 
G(d) where d is the displacement or distance from a the mean or center of the 
distribution, we can say that the probability of pt of a target ti moving from pixel x1 in 
frame F1 to pixel x2 in frame F2 is 
 

( ) ( )212121 ,, xxGFFxxpt −=     (9) 

  
Also, we will assume the target does not move exceedingly far between frames. To 
this end we can specify the sigma parameter our Gaussians to reflect the expected 
movement of our circular Gaussians, the larger the expected movement, the larger 
the sigma parameter. We will call these Gaussians transition probability matrix (TPM). 
Figure 5 demonstrates the difference between sigma parameters. 
 

 
Figure 5: Transition probability matrix (Left) Sigma = 4 pixels (Right) Sigma = 1 pixel 

 



Page 17 

 Now that we have established what our TPM’s represent, how do they factor 
into our tracking scheme? Following the detection and identification stages, which 
span only one frame, we have a set of targets whose initial location and identities 
have been established. We then process the next frame by extracting windows 
centered on each target location. As was with the identification stage, the size of the 
window depends on the range of the target. However, these windows are larger than 
those in the identification stage to accommodate for target movement. In these 
windows we apply the correlation filter of the class to which the target belongs to. 
From the resulting correlation plane we extract PSR of the maximum peak. Now given 
that we have detected our peak in frame Ff at position/pixel xi, we compute the 
probability that it reached xi from previous positions. Let us suppose that f is 2, in 
other words we are processing the second frame assuming the first frame has been 
used in the detection and identification stages. At this point we are interested in 
determining the probability for each target that they have reached their respective 
pixels as determined by their correlation planes. Using our Markovian assumption and 
the independence of the frames, the probability for target ti being at pixel xi in frame 
Ff given we have calculated its PSR value is 
 

( ) ( ) ( )( ) ( ) 2f given  ** 11 =−= −− fiififiifii FxpFxFxGpsrFxp   (10) 

 
 
Let us now consider even more future frames or for values of i greater than 2. 
Therefore, the probability of target i being at position xi in frame Ff is 
 

( ) ( ) ( )( ) ( ) 1for   **
1

1
1 >−= ∏

−=

=
− fFxpFxFxGpsrFxp

fg

g
giififiifii   (11) 

 
Without any further operations, this equation implies that given that pi is a true pdf 
(maximum value is 1) then as we process frames pi will continue to decrease in value 
regardless of how strong a PSR value we achieve for each target in each frame. Also, 
the nature of the tracking problem necessitates the use of a threshold to insure that 
only true and actual targets are detected and followed. Unless we normalize the 
probabilities in each frame in a constant manner then any threshold we establish is 
arbitrary and unjustified. While there are many kinds of normalization, we choose to 
normalize all pi to the total number of targets detected, identified, and being 
tracked. After this normalization, each pi is now normalized to between 0 and 1. By 
using this normalization we can use a threshold for pi to track and identify our 
targets. Matlab simulations on our captured video sequences containing only one 
target with varying thresholds have yielded the false alarm/miss rates in Table 10. We 
make sure to note the false alarm rates because in our scheme a false alarm means a 
false target being tracked. 
 

Table 10: Matlab simulation false alarm/miss rates 

Threshold Class 1 Class 2 Class 3 Class 4 Class 5 

0.60 0.514/0.006 0.522/0.012 0.564/0.080 0.482/0.002 0.498/0.004 
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0.65 0.428/0.042 0.468/0.062 0.492/0.122 0.416/0.024 0.422/0.036 

0.70 0.324/0.094 0.346/0.084 0.386/0.172 0.286/0.054 0.298/0.064 

0.71 0.302/0.102 0.322/0.114 0.346/0.264 0.264/0.092 0.282/0.098 

0.72 0.286/0.122 0.264/0.182 0.338/0.298 0.242/0.100 0.258/0.106 

0.73 0.274/0.156 0.246/0.146 0.312/0.328 0.220/0.108 0.238/0.114 

0.74 0.268/0.188 0.238/0.174 0.306/0.364 0.212/0.132 0.228/0.154 

0.75 0.254/0.204 0.224/0.218 0.294/0.408 0.204/0.186 0.214/0.198 

0.76 0.245/0.216 0.220/0.242 0.286/0.426 0.196/0.202 0.202/0.208 

0.77 0.222/0.274 0.218/0.286 0.262/0.484 0.188/0.254 0.194/0.260 

0.78 0.216/0.328 0.214/0.334 0.254/0.592 0.182/0.316 0.188/0.322 

0.79 0.210/0.412 0.208/0.404 0.248/0.610 0.174/0.364 0.176/0.376 

0.80 0.182/0.472 0.186/0.448 0.224/0.632 0.148/0.422 0.156/0.438 

0.85 0.108/0.568 0.112/0.554 0.182/0.688 0.092/0.496 0.102/0.512 

0.90 0.052/0.640 0.086/0.626 0.128/0.740 0.012/0.522 0.038/0.546 

 

Section 4.7 Overall Algorithm 

In order to put all of these stages together with reference to the overall algorithm we 
will address the role and position of each stage. We have three distinct stages of 
which only the tracking stage is iterated through more than once. However, we also 
wish to detect new targets that may have entered the scene and as such we should 
apply the detection and identification stages again to detect those newly introduced 
targets. The frequency at which we apply the detection and identification stages can 
be though of as a “detection increment” in that we will only attempt to detect and 
identify targets when the frame being processed is the kth frame where k is the size of 
the increment. In this way, we can limit the processing load of detecting targets and 
still retain some chance of detecting new ones. An added bonus to the repetition of 
these stages is that it allows us to confirm or deny the presence and identity of 
already detected and identified targets. 
 This should be done because there is a chance that the filters have incorrectly 
identified the target for reasons of range and orientation. A common difficulty in ATR 
applications is the idea of pixels-on-target which describes the number of pixels that 
make up the target in the frame. This number in essence describes how much data is 
available for analysis. The less data the harder it will be to perform correct analysis. 
The most common reason for reduced pixels-on-target count is range. The farther 
away an object is the smaller its profile and the less pixels-on-target it presents. If 
we had initially identified a target at far range we say that we have less confidence 
on that identification. However, if the opportunity to identify that target at a closer 
range is available we would be more confident in the resulting identification. As such, 
we should try to reconfirm the identities of targets periodically to insure confidence 
in our identifications. We can only do this because we have confidence in the tracking 
algorithm which will follow even incorrectly identified targets from far range to close 
range. 
 Now that we have addressed the role and position of the detection and 
identification stages, we can address the tracking stage. The most thorough approach 
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to the problem of tracking would be to analyze all frames in a video sequence. 
However, we can say with some measure of confidence that the targets in our 
application will not be moving very far between frames assuming a certain frame 
rate. The standard frame rate for USB webcams is 30 fps. At such capture speeds, 
there is unlikely to be significant variation in target position from frame to frame. 
Thus, it would more efficient for us to analyze frames which are still ordered but now 
separated by a delay to insure some target movement. The delay or “tracking 
increment” d depends not only on the speed of the camera capture but also the speed 
of the target. As such, we would only apply the tracking stage to every dth frame. 
Considering that we are in full control of the targets, we will limit them to be 
relatively slow moving in a scene that is being captured at 30 fps. Taking into account 
the digital controls of most of the RC models (models move in fixed increments) we 
have found through simulation that a tracking increment of five frames works for 
most cases. 
 The following is the overall algorithm with respect to the implementation of a 
GUI: 
 

1. User chooses class(es) of target(s) that he wishes to detect, identify, and track 
2. Appropriate filters are loaded 
3. User chooses video sequence to analyze/track targets through 
4. Detection and identification stages are applied to first frame 
5. Tracking stage is applied to every dth frame following 
6. Detection and identification stages are applied to every kth frame following 

Section 5. Signal Flow 
Our DSP system began with a very ambitious signal flow which incorporated a large 
portion of the ATR solution on the EVM. In this original signal flow, the PC was 
responsible primarily for capturing each time frame, pre-processing the current frame 
into windows using the Central Slice Theorem (CST), and displaying the results from 
the EVM on the Graphical User Interface (GUI), showing the position and identity of all 
tracked targets. 

On the EVM side, the C67 processor unit was responsible for receiving the 
properly arranged windows, correlating them with specific filters using two-
dimensional Fast Fourier Transforms (FFTs) and Inverse FFTs (IFFTs), and then finding 
the correct position and identity of each target in the window using Peak-to-Sidelobe 
Ratios (PSRs) and Hidden Markov Models (HMMs). 

However, it was quickly realized that not all of this data could possibly fit on 
the EVM, due to memory constraints. Because of this, only the FFT and IFFT would 
occur on the EVM, with the peak detection and HMM modeling done on the PC side. 
Thus, the signal was captured by the camera and arranged on the PC into appropriate 
windows, which were then sent to the EVM. On the EVM, the windows were correlated 
with a specific filter (which had been loaded onto the EVM during the initial start-up), 
which was then sent back to the PC to form part of the frame’s correlation plane. By 
using priority queues to determine the peak and PSR calculations to determine the 
best correlation (and the identity), a set of positions and identities for the entire 
frame was generated. 
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Figure 6:  Complete signal flow between GUI, PC side, and EVM. 

IFFT FFT 

Stored 
Correlation 
Filter Bank 

Overlap-Save 
Blocks 

Correlated 
Blocks 

EVM 
HPI  

Transfer 
HPI  

Transfer 

Block Assembly 

Position 
And 

Identity 

Dynamic 
Tracking (HMM) 

Central Slice 
Theorem 

Overlap-Save 
Block Creation 

PSR windows 

PC RGB to 
grayscale 

Frame Sensor 

From EVM   Loaded in EVM at start-up         To EVM 

             Frames from the camera 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To PC each frame       From PC each frame 



Page 21 

From this set, later targets were tracked by taking the windows as found by the 
CST and applying only the filters of the identity determined in the previous detection 
stage. These correlation planes were then multiplied by the HMM probabilistic 
distribution to determine the likely position of each target in the current tracking 
frame.   

Section 6. What was done on EVM 
 
Originally we expected the EVM to compute the correlation plane of a set of blocks 
and only return back to the PC the location and value of the highest peaks from the 
correlation peak.  However, that proved to be unfeasible do to memory constraints.  
As described in the algorithm, finding a peak involves finding the PSR value as well as 
making sure that the peak is not adjacent to another peak (suggesting, multiple 
detections for the same object).  We realized that if a detection was found close to 
the edge of a block, in order to accomplish this task correctly, it will require 
knowledge about the correlation values in adjacent blocks.  Thus, we had to move 
PSR calculations to the PC where the correlation plane of the image is reassembled. 
For that reason, the function of the EVM has been reduced to computing the 
correlation plane of the specified window and returning the entire correlation plane 
for further processing on the PC. 

Section 7. Speed Issues 
The rate of data transfers and processing that are required for the project begin with 
the maximum speed of our targets and continues through to the processing time on 
the EVM.  Originally, we had hoped to do the tracking in real-time however, this was 
unrealizable due the speed limitations of our devices.  The following explains in detail 
the derivation of the different processing rates necessary to realize this project in 
real-time.  Lastly, we will explain what we decided implement in our design.  

Section 7.1 Target Movement Rate (pixels/second) 

The maximum speed of the target in terms of pixels changes based on the distance 
from the camera.  The small cars, take between 1 seconds and 3 seconds to go across 
320 pixels on at the closer scale and the larger scale, respectively.  However, our plan 
was to drive them slowly to avoid blurring images.  The tanks on the other hand, are 
much slower than the cars.  They generally take about 3 and 10 seconds to cross 320 
pixels at a closer and further scale, respectively.   

Section 7.2 Frame Capture Rate (frames/second) 

As a result of the analysis we thought that 30fps would be a good frame capture rate 
for testing purposes.  However, a frame rate of 10fps would be a feasible capture rate 
for this project.  10 fps would limit the movement of the targets to a maximum of 32 
pixels between frames at the largest scale.   

Section 7.3 Frame Processing Rate (frames/second) 

In order to get real-time results, the frame must be processed at less than 10fps.  
Frame processing includes several complex steps as is explained above.  During each 
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frame, the amount of processing changes based on several factors.  The number of 
targets determines how many windows within the frame we need to look for the 
targets within.  The position of the target determines the size of the window and size 
of the filters needed for processing. 
 Some rough calculations of the processing time using the timer given in the 
timer.h gave the following results: HPI transfer PC� EVM: 3.5 ms/block, HPI transfer 
EVM �PC: 7 ms/block, 2D Correlation on EVM: 25 ms/block 

Section 8. Video Interface 
The source of our video stream comes from two sources.  Our primary source is a live 
webcam feed.  Our secondary source is a video file in AVI format.  In order for the 
video to be compatible with the targeting process, the video needs to be broken into 
individual frames.  Each frame is a 320 x 240 grayscale image saved in RAW format.  
The RAW format is similar to format used in Lab 3 except that each pixel is stored as 
a 1-byte char rather than a 4-byte int.  The webcam capture library we are using is 
the DirectX SDK.   

Section 8.1 GUI 

The graphical user interface (GUI) has two modes, a tracking mode and a testing 
mode.  The tracking mode captures a live feed from a webcam attached to the 
computer as the source of the tracking procedures.  The test mode uses a 
prerecorded set of images for the tracking procedures.  The user has the option of 
selecting a directory and a filename for testing and tracking modes.  
 

 
Figure 7:  Screen shot of GUI tracking two different objects.  Notice how the bounding boxes around 
the two targets are of different.  The size of the bounding box denotes the scale and color represent 
the identity.  
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Section 8.2 Grayscale 

Using the Microsoft DirectX SDK, it captures images as 24-bit RBG Bitmaps.  In order to 
convert it to grayscale, we used the following conversion formula: 
 
 )BLUE11.0()GREEN59.0()RED3.0(VALUE GRAYSCALE ×+×+×=        (12)[13]  

 

Section 8.3 Cast to float for processing 

Since the saved capture frames are saved as 1-byte pixels and the rest of the 
processing is done in float, the images are cast as float when they are read into the 
program that controls the EVM. 

Section 9. Synchronization 
Synchronizing the GUI with the EVM in one application was a difficult problem due to 
our lack of experience with Windows Messaging.  Therefore, we decided to break the 
problem into two stages, GUI to PC side, and PC side to EVM.  The two sections 
communicate to each other through files created in a shared directory. 

Section 9.1 Naming Standards 

As mentioned prior, synchronization is done through files created within a specified 
directory.  Therefore, it is important to be able to distinguish between different file 
types.  There are three different file types we deal with, .exp, .raw, and .track files.  
Below is a discussion of the format or each file.  Before that, a quick word needs to 
be mentioned about the general naming scheme.  Every file related to a particular 
experiment can be distinguished by the same initial part of the file name.  
Additionally, information specific to particular frames are related by the same the 
four-digit number following the filename.  This number is zero padded to four digits 
for consistency.   
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[experiment name].exp – experiment setup file 
 

 
Figure 8:  An experiment setup file encodes the targets to look for in the current experiment.  Each bit 
is mapped to a target as the specified in the figure above. 

 
The setup file is a 1-byte file that tells the PC side which targets to track.   It is 
bitmapped for each separate target.  If a bit is 1, it means that we are tracking that 
target and if the bit is 0 then we are ignoring it.  Since we track up to five objects, 
the 5 LSBs are used the represent the target selection and the 3 MSBs are unused.  
The figure above shows the mapping for our particular case. 

 
[experiment name][####].track – tracking information 

 

 
Figure 9:  The diagram on the left shows the format of the tracking file with two targets.  The diagram 
on the right shows a tracking file if there are no targets in the window. 

 
The size of the tracking file changes with the number of targets identified by the PC 
side application.  The information for a target is encoded in 4 integer values that are 
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written to the file.  For each target, another 4 integer values are appended to the 
file.  The 4 integer values encode for the position of the target in a row index and 
column index, the scale of the object, and the identity of the object. 

 
[experiment name][####].raw – grayscale image of a frame 

 
This file is setup as explained in Section 8 (Video Interface).  There is no header or 
footer for the file; it is just raw data.  We are able to get away with this since all of 
our images are of the same dimensions and types.  

Section 9.2 GUI and PC side 

The GUI provides the PC side with an experiment setup file and all of the frames to 
process.  As mentioned above, the images are converted into 320 x 240 chars and 
saved to a .RAW file.  These files are saved to the same directory.  The first file is 
saved as [experiment name]0000.raw.  In each frame captured the number 
increments by one.  This number is what we use to properly sync captured frames 
with the resulting targeting information.   
 

 
Figure 10:  Overall communication scheme between the GUI, PC side, and EVM modules. 

 
Once these images are created, they are ready for processing by the PC side 

application.  The PC side application keeps reading in frames with incrementing 
filenames starting with [experiment name]0000.raw.  When a file is not found, the 
experiment ends.  This works because, the frame capture rate is greater than the 
frame processing rate.  After each frame is processed, a track file is created in the 
same directory.     
While the PC side is processing a frame, the GUI polls every 200 milliseconds for a 
newly processed tracking file from the PC side.  When a tracking file is found, it the 
GUI loads the corresponding frame from the saved .raw file and uses the information 
from the tracking file to overlay a box around the target.  After this process is 
complete, the GUI waits for the next track file that is create by the PC side process 
until the tracking index on the tracking file matches the last captured frame. 

 
 

GUI 

 
 

PC Side 

 
 

EVM 

webcam 

experiment setup 
(objects to track) 

User 

frames  

tracking files 

preload filters 

filter number 

window 

correlation plane 

setup file 



Page 26 

Section 9.3 PC side and EVM 

On the other end of the PC side, it communicates with the EVM to compute the 
correlation plane.  On initialization, the PC side loads the filters needed for the 
current experiment based on which target is being tracked.  Additionally, the EVM 
allocates space for the blocks that are to be sent into the EVM.  After this initial load, 
the communication protocol between the EVM and the PC side is detailed below.  As 
you can see below, among the things we had to add several wait stages in order to 
synchronize the two sides and reduce the risk for error. 

 
Table 11: PC Side �� EVM Communication Protocol. 

Initialization – Runs only once on initialization 

1. The PC side waits until the EVM is initialized and makes a request 
through a PCI mailbox message. 

2. A mailbox PCI transfer is sent to the EVM with an integer value that 
represents the maximum number of blocks that will be transferred to 
the EVM.  This is used to allocate enough space in the external memory 
to store future data transfers. 

3. The PC side waits until the EVM makes a request through a PCI mailbox 
message. 

4. A mailbox PCI transfer is sent to the EVM with an integer value that 
represents the total number of filters to store in external memory.  This 
is used to allocate enough space in the external memory to store all of 
the filters needed for the particular experiment in external memory. 

5. The PC side waits until the EVM makes a request through a PCI mailbox 
message. 

6. An HPI transfer is initiated to transfer the entire bank of filters to the 
EVM. 

 

Main Routine – Repeats until the end of the experiment 

7. The PC side waits until the EVM is done processing and sends a message 
through a PCI mailbox message that it is ready to receive a new set of 
blocks to process. 

8. A mailbox PCI transfer is sent to the EVM with an integer value that 
represents which of the preloaded filters to use on the current blocks. 

9. PC waits until the mailbox has been read. 
10. A second mailbox PCI transfer is sent to the EVM denoting the number of 

blocks to use this filer on. 
11. PC waits until the mailbox has been read. 
12. The window that we want a correlation plane for is sent to the EVM in 

blocks of 64 by 64 pixels through an HPI transfer.   
13. After the EVM processes each block, the results are returned to the PC 

sided through another HPI transfer. 
14. PC waits until the HPI transfer completes. 

 



Page 27 

Section 10. PC side 
Taking into account the complexity of our algorithm, we soon realized that it was 
unfeasible to implement a significant number of the operations on the EVM. As such, 
the PC implemented most of our algorithm. Here we will briefly describe what the PC 
was responsible with respect to pre-processing and algorithm implementation. 

Section 10.1 Algorithm functions 

The PC was responsible for all of the algorithm functions except for the correlation of 
the individual blocks used in the overlap-save correlation as described above. As a 
result, the first part of algorithm addressed by the PC was the detection stage. In this 
step, the PC not only projected the frame being processed onto the axes being used 
but also performed a time-domain correlation of the frame projections with the 
detection filter projections. We chose to use a time-domain correlation for two 
reasons. The first was to insure that we performed a linear correlation as opposed to 
a circular correlation. The second was to prevent a circumvention of the EVM 
responsibilities. To implement a FFT on the PC would undermine the use of the EVM 
at all. 
 After detection of potential targets is complete, the next step would be to use 
the correlation filters to determine the identities of PC uses the locations of these 
detections to position a window of the appropriate size around each size. In each 
window all available filters should be applied to determine the identity of the target. 
The correlation being performed by the EVM, the PC must prepare the blocks needed 
for overlap-save correlation. The specifics of the block preparation are discussed in 
following sections. Once the blocks are prepared they are transferred to the EVM. 
Once the EVM is finished performing the correlation the resulting correlated blocks 
are transferred back to the PC. The PC then takes these blocks and extracts the valid 
portions and assembles them into the correlation plane. Using priority queues, the PC 
extracts the five largest peaks in the correlation plane that not only meet a certain 
PSR threshold but are also separated from each other and the edges of the image by a 
certain distance to insure that only peaks are detected and not the sidelobes of 
peaks. The peak yielding the highest PSR is determined to be the location of the 
target. This process of maximum PSR extraction is repeated for each filter application 
and the class of the filter yielding the highest PSR value is labeled as the target’s 
class. This process is repeated for all detections following which we enter the tracking 
stage. 
 Using the detection and identification results, in subsequent frames we applied 
appropriate correlation filters to windows centered on the detections and current 
tracking positions. Using the probabilistic model described above, we tracked the 
targets through the sequence while applying the detection and identification stages at 
appropriate frames to confirm the identities and presence of existing targets and to 
detect new targets. 

Section 10.2 EVM communication 

EVM communication was primarily concerned with correct transfer of overlap-save 
blocks to and from the EVM. This was achieved via HPI and PCI transfers. HPI transfers 
were used for the blocks themselves while PCI was used to inform the EVM of 
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parameter information concerning the number of blocks, filters to be used, and 
timing synchronization between the EVM and the PC.  
 However, before this could occur the filters that would be used first had to be 
transmitted. This meant notifying the EVM via PCI how many filters were to be used 
overall or in other words how many classes were going to be tested for. After 
receiving the filters via HPI, the EVM would be ready to perform overlap-save 
correlation. This first involved notification of the EVM via PCI about the number of 
blocks to receive and how filters to apply to a set of blocks. We are concerned with 
applying more than one filter to one set of blocks during the identification stage 
where we apply all filters to one window or set of blocks. Then the EVM was informed 
of which filters to apply for a certain set of blocks. Following the correlation of the 
blocks with a filter, the EVM notified the PC to be ready for reception of the 
correlated blocks. The correlated blocks would be sent back to the PC via HPI.  

Section 10.3 Filter preparation 

Preparation of the filters was done using the OTSDF filter with an alpha parameter of 
0.99. Due to the single precision native to the EVM, we built our filters using single 
precision. The Matlab code in later sections has the specific details of our filter build. 

Section 10.4 Block preparation 

Block preparation was done in the way detailed in [8] but in a two-dimensional sense. 
We made sure to zero-pad the original image in such a way that when blocks where 
extracted, their valid portions would contain correlation values resulting from 
correlation of the filter with the image when the filter’s center is above a valid 
portion of the image. This portion of the PC code occupied the vast majority of the 
processing time since it essentially required us to clone the image and separate it into 
the appropriately overlapping blocks necessary for overlap-save correlation.  

Section 10.5 EVM Emulation  

In order to expedite our debugging of our algorithm, we developed an EVM emulator 
in C to be used on the PC. This emulator included emulation of both HPI and PCI 
transfers to insure complete similarity of the emulator to the actual EVM. As such, no 
major changes to the PC code were necessitated except for the change in name of 
some basic function calls involving the EVM. One primary difference between the 
emulator and the actual EVM was the specific FFT being used. While the EVM utilized 
a radix-4 single precision FFT, the emulator utilized a mixed-radix FFT whose source 
is listed in the references. 

Section 11. EVM 
In the original draft of our project, the TMS320C6701 Evaluation Module (C67 EVM, or 
EVM, for short) was responsible for a whole host of processes relating to the 
integrated ATR system. In an effort to maximize utility and efficiency of our system, 
the EVM was going to compute a frequency domain correlation with a given 
identification filter.  This entailed performing a two-dimensional FFT of the current 
frame, multiplying this frame by a specific identification filter to create a correlation 
in the frequency domain, and finally compute the two-dimensional IFFT of this 
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correlated frame to compute the correlation plane in the time domain. The original 
plan then also called for peak detection and PSR calculations, which were computed 
by sorting the frame and finding the maximum correlation plane values. 

However, it soon became apparent that all of this data could not fit on the 
EVM. Since we planned on using Radix 4 FFTs over Radix 2 FFTs (due to the smaller 
number of cycles, meaning Radix 4 is faster), we needed to choose a row size and 
column size that were factors of 4. It became obvious that a 256 x 256 (44 x 44) block 
would be much too large for the EVM, and a 16 x 16 block (42 x 42) would be too small 
to correlate with our filters, which were 50 x 50 at the largest scale (meaning we 
would have to page in both the input and the filter, which was undesirable). We 
therefore decided on 64 x 64 (43 x 43) blocks to FFT and correlate on the EVM. 

Since we wanted to perform all of the additional operations on the EVM, we 
originally tried a fixed point iteration of the FFT on the EVM, requiring half as much 
memory as the floating point FFT. This soon proved untenable though, as we 
discovered that the fixed point representation was incompatible with the PC side, and 
the FFT was not reliably invertible. 

This lead to our final decision to use the floating point Radix 4 FFT on 64 x 64 
blocks, and to move all of the non-correlation functions to the PC side. 

Section 11.1 Data Memory and Code Size Needed 

The specific values for each of these sections of memory were extracted from the 
.map file that was created when the project was built. 

11.1.1 Internal Memory, on-chip 

ONCHIP_DATA:  0x0de06 used out of 0x10000 
ONCHIP_PROG:  0x0fc20 used out of 0x10000 

 
Table 12:  Internal Memory, on chip 

Data Element Size (bytes) Total  Location 

currentBlock 64 x 64 x 2 x4 32768 ONCHIP_DATA 

Filter 64 x 32 x 2 x 4 16384 ONCHIP_DATA 

rowTemp 64 x 2 x 4 512 ONCHIP_DATA 

currentNumFilters 4 4 ONCHIP_DATA 

currentNumBlocks 4 4 ONCHIP_DATA 

currentFilter 4 4 ONCHIP_DATA 

Twiddle 64 x 2 x 3 / 4 x 4 384 ONCHIP_DATA 

Revtable 64 x 4 256 ONCHIP_DATA 

rev_j 4 4 ONCHIP_DATA 

I 2 2 ONCHIP_DATA 

J 2 2 ONCHIP_DATA 



Page 30 

maxNumBlocks 4 4 ONCHIP_DATA, stack 

totalNumFilters 4 4 ONCHIP_DATA, stack 

Done 4 4 ONCHIP_DATA, stack 

Reinitialize 4 4 ONCHIP_DATA, stack 

Request 1 1 ONCHIP_DATA, stack 

Function variables <24 <24 ONCHIP_DATA, stack 

11.1.2 On-board Memory, off-chip 

SBSRAM_DATA: 0x00000 used out of 0x2c000 
SBSRAM_PROG: 0x001a0 used out of 0x14000 
 

Table 13: On-board Memory, off-chip  

Program Element Location 

Mkrevtable SBSRAM_PROG, “FAST” 

Fillwtable SBSRAM_PROG, “FAST” 

11.1.3 External Memory, off-board 

SDRAM0:  0x400000 used out of 0x400000 
SDRAM1:  0x320000 used out of 0x400000 
 

Table 14:  External Memory, off-board 

Data Element Size (bytes) Total Location 

filterBank <15 x 64 x 64 x 2 x 4 <491520 SDRAM0 

evmInput <128 x 64 x 64 x 2 x 4 <4194304 SDRAM0 

evmOutput 100 x 64 x 64 x 2 x 4 3276800 SDRAM1 

Section 11.2 Memory Allocation 

Originally, in the fixed point implementation of the FFT, we had implemented paging 
in each frame to compute the correlation over the entire frame, since there was no 
way that we could store a 320 x 240 image in the on-chip memory of the EVM. This 
was accomplished using DMA transfers from external memory, where the blocks had 
been HPI transferred from the PC side, which had properly arranged them according 
to their 64 x 64 block within the larger window. The hope was to ping-pong DMA 
transfer two blocks on the EVM at a time, similar to lab 3, greatly increasing our 
efficiency. 

Unfortunately, we were unable to fit this amount of data on the EVM using 
floating point without significantly reducing the processing ability of our system. With 
a 64 x 64 block, we would need two of these blocks at once for a ping-pong DMA 
transfer, which would require 64 kB of on-chip memory just for the blocks. Since 
other data needed to be stored in the on-chip memory (such as the twiddle and digit 
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reversal tables), this was not a possibility. The other option to use ping-pong DMA 
transfers on the blocks would be to make the blocks 16 x 16; however, this would be 
significantly inefficient both when correlating the filters and when paging in and out 
of the frame. Because of this, we abandoned the idea of ping-pong DMA transfers for 
the blocks, and merely planned on paging one block of 64 x 64 complex interleaved 
data points. 

11.2.1 Use Paging and parallelizing 

The aforementioned memory allocation issues forced us to do only minimal paging, 
rather than ping-pong DMA transfer paging. Unfortunately, one DMA channel was 
always idle because of this, and the other channel was idle during all of the 
correlation calculations. 

A solution to this problem was devised, however, when we thought about ping-
pong DMA transferring in the filter, since only half of it could be stored in on-chip 
memory as it was. Rather than waiting for the half filter to finish correlating with half 
of the frequency domain block, transferring in the second half, and completing the 
correlation, we would create a ping-pong DMA transfer that split the filter into 
quarters. While one quarter of the filter was calculating the correlation, the next 
quarter was being transferred into on-chip memory in preparation of the next portion 
of the correlation calculation. Although this was never implemented, we are 
confident that it would represent a significant speed improvement in the overall 
system and would be an easy correction. 

Section 11.3 Table of profile results  
Table 15.  Table of Profile Results 

Avg. Cycles Time
1D FFT 1,506 0.06 ms
2D FFT 2.45 million 98.00 ms
Complex matrix transpose 101,840 4.07 ms
Filter multiplication 97,365 3.89 ms
2D correlation/block 12.1 million 484.00 ms  

Section 12. Comparisons of Data and Results 
Unfortunately, we are not able to show the results of our final running design because 
we were not able to fully debug our PC side code.  However, there is extensive data 
shown in the algorithms section of our report. 

Section 13. Analysis of Results/Future Improvements 
Unfortunately, due to the complexity of our project we were unable to produce 
results for our EVM implementation. However, results using Matlab are detailed in the 
Algorithms section. Analysis of these results demonstrates a relatively acceptable 
level of performance among all classes but could be vastly improved on. False alarm 
and miss rates for the M1A2 and German Leopard tanks are strongly dependent on the 
separation achieved by the correlation filters. While there exists some separation, the 
current filter design and build lead to the system being consistently confused when 
presented with both tanks. 
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 The alpha parameter of 0.99 chosen for the OTSDF filter did not prove to be a 
significant value in the sense that it provided markedly profound results. As such, 
there remains much analysis into the exact relationship between the alpha parameter 
and the performance of the algorithm. Perhaps more noise tolerance would benefit 
the algorithm in the presence of few pixels-on-target or the poor lighting conditions 
of the lab. The speculars presented by some of the models could be adapted for by 
modeling them as Gaussian white noise. 
 The parameters of the Gaussian distributions used in the Matlab simulations 
were chosen as a direct result of observation of maximum possible position 
displacement of each class. However, this in no way suffices for a scientific analysis 
and as such leaves room for more work. Closer analysis of the nature of the target 
classes will yield a better modeling of their movement via these Gaussian 
distributions. These distributions could and should be adaptable to target range. 
 

Section 14. Problems encountered 
During our exploration of methods to efficiently and effectively perform large size 
correlations on the EVM we considered the use of fixed point precision and associated 
functions such fixed point FFT’s.  

Section 14.1 Fixed point precision 

Fixed point precision offers many advantages such as reduced data size and improved 
processing speed due to smaller data size. However, it comes at the cost reduced 
precision. Taking this into account we considered the use of DSP functions from the 
C62x library [11] which included a radix-4 fixed point FFT. This function necessitated 
the use of 16-bit data in Q15 format. Q15 format [12] refers to the use of 16 bits to 
represent numbers between -1 and 1. This meant that the most significant bit (MSB) 
represented the sign bit while the remaining fifteen bits represented fractional bits. 
Such a format requires conversion from standard floating point formats to Q15. In 
essence this meant that all of our floating point numbers should be between -1 and 1 
to insure that they would be properly represented in Q15. However, conversion 
between these two formats is not intuitive although we eventually determined a 
reliable conversion. Still, such a conversion caused quantization error in terms of both 
the FFT and the application of the filter which we found to be unacceptable. 
 Another issue concerning fixed point precision is whether the C67x DSP is 
capable of performing proper fixed point operations. Specifically we were concerned 
with the multiplication of Q15 numbers. In typical integer multiplication, the 
necessary bit growth does no affect the value that the least significant bits (LSB) 
represent since the bit growth grows from the MSB. However, in Q15 or fractional 
multiplication the bit growth occurs from the LSB and does change the values that the 
other bits represent. This was not an issue on the C62x DSP which is a fixed point 
processor designed for Q15 format and as such is designed to accommodate for 
fractional bit growth. Our concern with multiplication mainly addressed the 
application of our correlation filters to the resulting FFT of a block. This could be 
addressed by conversion of Q15 numbers into float and allowing the EVM to properly 
grow the resulting product. However, this does not address the internal working of 
the fixed point FFT being used from the C62x DSP library. Since the fixed point FFT 
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was designed to work on the fixed point processor of the C62x DSP, we could not be 
sure of its proper functioning on the C67x DSP considering the integral part that 
multiplication plays in calculation of the FFT. 
 Repeated attempts at solving these problems yielded much insight into the 
nature of finite precision and quantization effects along with some innovative 
solutions to some of these problems. However, we were not able to achieve 
satisfactory results with respect to the FFT and application of the correlation filters. 
The end result of our attempts with finite precision was the conclusion that it was not 
a feasible option in our application concerning the precision required. After we 
reached this conclusion, we returned to using floating point functions which required 
us to rework our EVM implementation. 

Section 15. Code Referenced online 
We had references several sources online for different parts of our code.  The GUI was 
mainly done using the help pages in MSDN.  Other code that we implemented are a 
mixed-radix FFT in our EVM emulator, an FFT shift that works for odd as well as even 
sized blocks, and a priority queue from Visual C++ libraries.  

Section 15.1 Webcam 

The base code for the GUI was a sample program, StillCap, in the DirectX SDK in the 
Direct Show API.  Its original function was to capture feed from webcam in the form 
of a single 24bit RGB bitmap frame or to capture a stream in an AVI file.  [14] Some of 
the added benefits of this code were that it had a preview screen which continuously 
updated the view from the webcam and the fact that the application runs in a modal 
dialog box.  The advantage of running a modal dialog box is that the appearance and 
user control interfaces is easily changeable in Visual Studios using the resource editor. 
 
This code had to be adapted to include the additional controls we wanted to 
implement such as the ability to choose targets, starting and stopping experiments, 
and various other options.  Additionally, we added a frame to display the tracking 
resulting on the right side of the GUI.  

Section 15.2 FFT Shift and Mixed Radix FFT 

Originally we tried to create our own FFT shift code; however, it didn’t work for a 
correlation plane with odd dimensions.  We found an algorithm for the FFT shift 
online which worked correctly for both odd and even dimensions.  [15] 
 
For our EVM emulator, we needed to implement an FFT to do the correlation.  Since 
the code runs on the PC, we needed to find a good FFT online.  No changes were 
made to the code. [16] 
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Section 17. Code 

Section 17.1 MATLAB Scripts 
function H = otsdf(tr_set, alpha) 
 
% H = otsdf(tr_set, alpha) 
% 
% Author: Ramu Bhagavatula 
% Data Created: April 5, 2005 
% Last Modified: April 9, 2005 
% 
% Purpose: 
% Creates otsdf filter based on training set of images and alpha value 
% 
% Inputs: 
% 1. tr_set = Cell array of training images 
% 2. alpha = Number between 0 and 1 describing the ratio of noise tolerance 
% to peak sharpness in the otsdf and uotsdf filters.  
% 
% Outputs: 
% 1. H = ostdf filter that results from using the tr_set and alpha 
 
[d1,d2] = size(tr_set{1});  % Dimensions of training images 
N = length(tr_set);         % Number of training images 
d = d1*d2;                  % Total dimensionality of images 
 
X = zeros(d,N); % Initializes matrix whose columns are the FFTs of the training images 
 
for(i = 1:N)                    % Iterates through training images 
    img = single(tr_set{i});     
    buf = fft2(img); 
    X(:,i)=buf(:);              % Stores FFT of each training images as columns in X 
end 
 
D = zeros(d,1);     % Initializes average spectral power density matrix 
for(i = 1:N)        % Iterates through FFTs of training images 
    D = D+X(:,i).*conj(X(:,i));   % Calculates total spectral power density of training images as a column 
rather than a diagonal 
end 
D = D/N;    % Calculates average spectral power density matrix 
 
C = ones(d,1);                                % Noise covariance matrix 
beta = (alpha*D)+(sqrt(1-alpha^2)*C);         % Tradeoff between noise tolerance and peak sharpness 
u = ones(N,1)*d1*d2;                          % Normalizes output of correlation planes to be 1 
 
tmp = zeros(d,N);               % Initializes temp matrix for inv(T)*X 
for(i = 1:N)                    % Iterates through FFTs of training images 
    tmp(:,i) = X(:,i)./beta;    % Element by element division works as inverse because D is stored as a 
column 
end 
 
V = X'*tmp; 
h = tmp*inv(V)*u;       % Calculates otsdf filter 
H = reshape(h,d1,d2);   % Reshapes filter to match dimensions of training images 
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Section 17.2 EVM Code 
#include <stdio.h> 
#include <stdlib.h> 
#include <common.h> 
#include <board.h>          /* EVM library */ 
#include <pci.h>            /* PCI communication li brary */ 
#include <dma.h> 
#include <mathf.h> 
 
typedef float T; 
 
#define N_POINTS 64 
#define HALF_BLOCK N_POINTS*N_POINTS 
#define FULL_BLOCK N_POINTS*N_POINTS*2 
#define ROW_SIZE N_POINTS*2 
#define ROW_BYTES ROW_SIZE*sizeof(T) 
#define HALF_SIZE_BYTES HALF_BLOCK*sizeof(T) 
#define BLK_SIZE_BYTES FULL_BLOCK*sizeof(T) 
 
//#pragma CODE_SECTION(loadFILTER, "FAST"); // prob ably don't want, the other three we 
probably do 
#pragma CODE_SECTION(fillwtable, "FAST"); 
#pragma CODE_SECTION(mkrevtable, "FAST"); 
#pragma DATA_SECTION(evmOutput, "NOTFAST"); 
 
unsigned short int i, j; 
unsigned int currentNumFilters, currentNumBlocks, c urrentFilter; 
  
// FFT CODE 
T twiddle[N_POINTS*3/2]; 
int revtable[N_POINTS];           // Look-up table for digit-reversing  
int rev_j; 
int count = 0; 
 
// I/O blocks, evmOutput was corrBlocks, evmInput w as blocks 
T evmOutput[FULL_BLOCK*100];  // arbitrary big leng th, to hold max number of blocks per 
'frame', can be up to 128 
T *evmInput; 
T *filterBank; 
 
// manipulation blocks 
T rowTemp[ROW_SIZE]; 
T currentBlock[FULL_BLOCK];       // full block 
T filter[HALF_BLOCK];           // half a full bloc k 
//T *fwdFilter = filter1(?);      // for future rol ling DMA filters? 
//T *transFilter = filter2(?); 
 
/* Function prototypes */ 
int requestTRANSFER(void *buf, int size, int comman d); 
int waitTRANSFER(); 
int dmaCopyBLOCK(void *src, void *dest, int numByte s, int chan); 
int waitBlockTRANSFER(); 
 
// FFT CODE 
void cfftr4_dif(float* x, float* w, short n); /* Pr ototype for FFT routine */ 
void Do2dCorrelationFloat(int numBlocks); 
void fillwtable(int n); 
void complexMatrixTranspose(float *x, int rows, int  cols); 
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void mkrevtable(int n); 
void loadFILTER(T *newFilter); 
void loadHalfFILTER(T *newFilter); 
 
/* 
 * DMA transfer a new Filter 
 *  Each filter is a 64 x 64 block of float numbers  
 *  SIZE_FILTER_BYTES = BLOCK_SIZE_BYTES = 64*64*si zeof(float) 
 */ 
 
int main(void) 
{                   
 int maxNumBlocks, totalNumFilters; 
 int done, reinitialize; 
 char request[1]; 
   
 evm_init();               /* Initialize the board */ 
 pci_driver_init();        /* Call before using any  PCI code */ 
     
 DMA_AUXCR = 0x00000010; /* Set priority of HPI ove r CPU to avoid crashing */ 
   
 fillwtable(N_POINTS); 
 mkrevtable(N_POINTS);   
 
 while(1) 
   { 
  printf("\nStart\n"); 
   
  // Poll PC for maximum number of blocks to expect  
    requestTRANSFER(request, 0, 0x01); 
    maxNumBlocks = waitTRANSFER(); 
     
  // Allocate evmOutput and evmInput in external me mory; evmOutput already 
allocated for 100 blocks   
  evmInput = (T *)malloc(maxNumBlocks*BLK_SIZE_BYTE S); 
//  evmOutput = (T *)malloc(maxNumBlocks*BLK_SIZE_B YTES); 
    
    if(evmInput == NULL || evmOutput == NULL) { 
     printf("\nError #1!\n"); 
     exit(1); 
    }                
    
    // Poll PC for total number of filters availabl e 
  requestTRANSFER(request, 0, 0x01); 
    totalNumFilters = waitTRANSFER();    
    
    // Allocate memory for filters 
  filterBank = (T *)malloc(totalNumFilters*BLK_SIZE _BYTES); 
  if(filterBank == NULL) { 
          printf("\nError #2!\n"); 
      exit(1); 
  } 
      
  // Ask PC to send filters 
  requestTRANSFER(filterBank, totalNumFilters*BLK_S IZE_BYTES, 0x02); 
    waitTRANSFER(); 
     
    // Poll PC as to whether or not process is done  
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  requestTRANSFER(request, 0, 0x05); 
  done = waitTRANSFER(); 
 
  while(!done) 
  { 
   // Poll PC about how many filters to apply to in coming set of blocks 
   requestTRANSFER(request, 0, 0x01); 
   currentNumFilters = waitTRANSFER(); 
 
   // Poll PC about how many blocks are being sent    
   requestTRANSFER(request, 0, 0x01); 
   currentNumBlocks = waitTRANSFER(); 
 
   // Ask PC to send block 
     requestTRANSFER(evmInput, currentNumBlocks*BLK _SIZE_BYTES, 0x03); 
     waitTRANSFER(); 
     
     // Iterate over each filter being applied to c urrent set of blocks 
   for(i = 0; i < currentNumFilters; i++) 
   { 
    //Poll PC as to which filter to apply currently  outt of total 
number to apply 
    requestTRANSFER(request, 0, 0x01); 
    currentFilter = waitTRANSFER(); 
     
      // Load specified filter 
    loadFILTER(filter); 
     
    // Perform 2D overlap-save correlation on curre nt set of blocks 
using current filter 
    Do2dCorrelationFloat(currentNumBlocks); 
 
    // Ask PC to retrieve correlated blocks using c urrent filter 
    
      requestTRANSFER(evmOutput, currentNumBlocks*B LK_SIZE_BYTES, 
0x04); 
    waitTRANSFER(); 
       } 
     } 
     // Poll PC if user wishes to start entire proc ess over again, reinitialize the tool 
     requestTRANSFER(request, 0, 0x06); 
  reinitialize = waitTRANSFER(); 
     
    if(!reinitialize) 
     break; 
   } 
   // Free allocated memory 
 free(evmInput); 
 free(filterBank); 
} 
 
/* Use mailbox 1 for address, 2 for size, and 3 for  command */ 
int requestTRANSFER(void *buf, int size, int comman d) { 
    amcc_mailbox_write(2, size); 
    amcc_mailbox_write(3, command); 
 pci_message_sync_send((unsigned int)buf, FALSE); 
 return(0); 
} 
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/* The PC will send a message when the transfer is complete.  Wait 
 for that to happen */ 
int waitTRANSFER() {    
 unsigned int value; 
  
 pci_message_sync_retrieve(&value); 
 return(value); 
} 
 
/* dma_copy_block: Copies numBytes from src to dest  using DMA channel 
 chan.  chan can be 0 or 1.  this function is ASYNC HRONOUS!  You must 
 poll DMA0_TRANSFER_COUNT (or DMA1_TRANSFER_COUNT) to see when the 
 transfer is complete */ 
/* Only valid for numBytes < 4 * 0xFFFF */ 
int dmaCopyBLOCK(void *src, void *dest, int numByte s, int chan) { 
   unsigned int dma_pri_ctrl=0; 
   unsigned int dma_tcnt=0; 
 
  /* Give DMA priority over CPU, and increment src and dest 
      after each element */ 
   dma_pri_ctrl = 0x01000050; 
                                         
  /* One frame, and we're using 4 byte elements */                                       
   dma_tcnt = 0x00010000 | (numBytes/4); 
   
  /* Write to DMA channel configuration registers * / 
   dma_init(chan, 
           dma_pri_ctrl, 
           0, 
           (unsigned int) src, 
           (unsigned int) dest, 
           dma_tcnt); 
 
   DMA_START(chan); 
  return(OK); 
} 
 
void loadFILTER(T *newFilter) { 
 // Start DMA transfer for new filter 
 dmaCopyBLOCK(&(filterBank[currentFilter*FULL_BLOCK ]), newFilter, HALF_SIZE_BYTES, 0); 
 while(DMA0_XFER_COUNTER); 
 // Done! 
} 
  
void loadHalfFILTER(T *newFilter) { 
 // Start DMA transfer for new filter 
 dmaCopyBLOCK( &(filterBank[currentFilter*FULL_BLOC K+HALF_BLOCK]), newFilter, 
HALF_SIZE_BYTES, 0); 
 while(DMA0_XFER_COUNTER); 
 // Done! 
} 
 
 
// Perform 2D overlap-save correlation using the cu rrent set of blocks and varying number of 
filters 
void Do2dCorrelationFloat(int numBlocks) 
{ 
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 int blockNum; 
 float temp; 
  
 // Iterate through current set of blocks  
 for (blockNum=0; blockNum<numBlocks; blockNum++) 
 { 
  // DMA copy in the current block from external me mory 
  dmaCopyBLOCK(&(evmInput[FULL_BLOCK*blockNum]), cu rrentBlock, BLK_SIZE_BYTES, 
0); 
  while(DMA0_XFER_COUNTER); 
  count++; 
   
  // Begin 2D FFT 
  // 1. FFT along rows 
  // 2. Digit Reverse 
  // 3. Transpose 
  // 4. FFT along rows (essentially columns of orig inal matrix) 
  // 5. Digit Reverse 
  // 6. Divide by N 
   
  // FFT along rows 
  for(i=0;i<N_POINTS;i++) 
   cfftr4_dif(&(currentBlock[i*ROW_SIZE]), twiddle,  N_POINTS); 
  
  // Digit reverse after first set of FFT's 
  for(i=0; i<N_POINTS; i++) 
  { 
   for(j=0;j<N_POINTS;j++) 
   {   
        rev_j = revtable[j];      // rev_j is now t he digit-reversal of 
j 
     
    rowTemp[2*j  ] = currentBlock[i*ROW_SIZE+2*rev_ j];  
    rowTemp[2*j+1] = currentBlock[i*ROW_SIZE+2*rev_ j + 1]; 
     } 
     memcpy(&(currentBlock[i*ROW_SIZE]),rowTemp,ROW _BYTES); 
    } 
    
  // Complex interleaved float transpose 
  complexMatrixTranspose(currentBlock,N_POINTS,N_PO INTS); 
    
    // FFT along rows (essentially FFT along column s of original matrix) 
  for(i=0;i<N_POINTS;i++) 
     cfftr4_dif(&(currentBlock[i*ROW_SIZE]), twiddl e, N_POINTS); 
   
  // Digit reverse after second set of FFT's 
  for(i=0; i<N_POINTS; i++) 
  { 
   for(j=0;j<N_POINTS;j++) 
   {   
        rev_j = revtable[j];      // rev_i is now t he digit-reversal of 
i  
    
    rowTemp[2*j  ] = currentBlock[i*ROW_SIZE+2*rev_ j];  
    rowTemp[2*j+1] = currentBlock[i*ROW_SIZE+2*rev_ j + 1]; 
     } 
     memcpy(&(currentBlock[i*ROW_SIZE]),rowTemp,ROW _BYTES); 
    } 
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    // Divide by N (premepts divide by N necessary later and also helps to prevent 
overflow) 
  for(i=0;i<N_POINTS;i++) 
  { 
   for(j=0;j<N_POINTS*2; j++) 
   { 
    currentBlock[i*ROW_SIZE+j] /= N_POINTS;  
   } 
  } 
   
  // Begin correlation 
  // 1. Load first/top half of filter 
  // 2. Apply first/top half of filter 
  // 3. Load second/bottom half of filter 
  // 4. Apply second/bottom half of filter 
   
  // Load first/top half of current filter 
  loadFILTER(filter); 
   
  // Apply first/top half of current filter to curr ent block 
  for (i=0; i<N_POINTS/2; i++) 
  { 
   for (j=0; j<2*N_POINTS; j+=2) 
   { 
    // Foil and conjugate for IFFT 
    temp                         = currentBlock[i*R OW_SIZE+j] * 
filter[i*ROW_SIZE+j  ] + currentBlock[i*ROW_SIZE+j+ 1] * filter[i*ROW_SIZE+j+1];  
    currentBlock[i*ROW_SIZE+j+1] = currentBlock[i*R OW_SIZE+j] * 
filter[i*ROW_SIZE+j+1] - currentBlock[i*ROW_SIZE+j+ 1] * filter[i*ROW_SIZE+j  ];  
    currentBlock[i*ROW_SIZE+j  ] = temp; 
   } 
  } 
   
  // Load second/bottom half of current filter 
  loadHalfFILTER(filter); 
 
  // Apply second/bottom half of current filter to current block 
  for (i=0; i<N_POINTS/2; i++) 
  { 
   for (j=0; j<2*N_POINTS; j+=2) 
   { 
    // Foil and conjugate for IFFT 
    temp                                    = 
currentBlock[i*ROW_SIZE+j+HALF_BLOCK] * filter[i*RO W_SIZE+j  ] + 
currentBlock[i*ROW_SIZE+j+1+HALF_BLOCK] * filter[i* ROW_SIZE+j+1];  
    currentBlock[i*ROW_SIZE+j+1+HALF_BLOCK] = 
currentBlock[i*ROW_SIZE+j+HALF_BLOCK] * filter[i*RO W_SIZE+j+1] - 
currentBlock[i*ROW_SIZE+j+1+HALF_BLOCK] * filter[i* ROW_SIZE+j  ];  
    currentBlock[i*ROW_SIZE+j+HALF_BLOCK  ] = temp;  
   } 
  } 
 
     
    // Begin 2D IFFT 
    // Note: Due to conjugation done in application  of the filter, it is unecessary 
to conjugate before applying FFT to achieve IFFT 
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  // 1. FFT (IFFT) along rows 
  // 2. Digit Reverse 
  // 3. Divide by N 
  // 4. Transpose 
  // 5. FFT along rows (essentially columns of orig inal matrix) 
  // 6. Digit Reverse 
   
  // FFT (IFFT) along rows 
  for(i=0;i<N_POINTS;i++) 
   cfftr4_dif(&(currentBlock[i*ROW_SIZE]), twiddle,  N_POINTS); 
    
  // Digit reverse after first set of FFT's (IFFT's ) 
  for(i=0; i<N_POINTS; i++) 
  { 
   for(j=0;j<N_POINTS;j++) 
   {   
        rev_j = revtable[j];      // rev_i is now t he digit-reversal of 
i  
     
    rowTemp[2*j  ] = currentBlock[i*ROW_SIZE+2*rev_ j];  
    rowTemp[2*j+1] = currentBlock[i*ROW_SIZE+2*rev_ j + 1]; 
     } 
     memcpy(&(currentBlock[i*ROW_SIZE]),rowTemp,ROW _BYTES); 
    }  
 
  // Divide by N 
  for(i=0;i<N_POINTS;i++) 
   for(j=0;j<N_POINTS*2; j++) 
    currentBlock[i*ROW_SIZE+j] /= N_POINTS; 
   
  // Complex interleaved float transpose 
  complexMatrixTranspose(currentBlock,N_POINTS,N_PO INTS); 
    
  // FFT (IFFT) along rows (essentially columns of original matrix) 
  for(i=0;i<N_POINTS;i++)  
   cfftr4_dif(&(currentBlock[i*ROW_SIZE]), twiddle,  N_POINTS); 
  
  // Digit reverse after second set of FFT's (IFFT' s) 
  for(i=0; i<N_POINTS; i++) 
  { 
   for(j=0;j<N_POINTS;j++) 
   {   
        rev_j = revtable[j];      /* rev_i is now t he digit-reversal of 
i */ 
    
    rowTemp[2*j  ] = currentBlock[i*ROW_SIZE+2*rev_ j];  
    rowTemp[2*j+1] = (currentBlock[i*ROW_SIZE+2*rev _j + 1]); 
     } 
     memcpy(&(currentBlock[i*ROW_SIZE]),rowTemp,ROW _BYTES); 
    } 
   
  // DMA copy the correlated block into external me mory 
    dmaCopyBLOCK(currentBlock, &(evmOutput[FULL_BLO CK*blockNum]), BLK_SIZE_BYTES, 
1); 
   while(DMA1_XFER_COUNTER); 
 } 
} 
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// Fill in twiddle table needed for FFT 
void fillwtable(int n) { 
 
 int k; 
 float constant=2.0*(float)PI/(float)n; 
  
 for (k=0; k<3*n/4; k++) 
 { 
  twiddle[2*k] = cosf(constant*(float)k); 
  twiddle[2*k+1] = sinf(constant*(float)k); 
 } 
} 
 
// Complex interleaved matrix float transpose 
void complexMatrixTranspose(float *x, int rows, int  cols) 
{ 
 float tempReal, tempImag; 
 int i, j; 
  
 // Iterate through rows 
 for(i=0;i<rows;i++) 
 { 
  // Iterate through columns 
  for(j=i+1;j<cols;j++) 
  { 
   // Store current complex value 
   tempReal=x[i*2*cols+2*j]; 
   tempImag=x[i*2*cols+2*j+1]; 
   // Transfer in transposed complex value into cur rent (row, column) 
   x[i*2*cols+2*j]=x[j*2*cols+2*i]; 
   x[i*2*cols+2*j+1]=x[j*2*cols+2*i+1]; 
   // Transfer out current complex value in transpo sed (row, column) 
   x[j*2*cols+2*i]=tempReal; 
   x[j*2*cols+2*i+1]=tempImag; 
  } 
 } 
} 
               
/* This function creates the lookup table for digit  reversing.  After 
   it is run, revtable[n] equals the pairwise digit -reversal of n.  
   n is the size of the FFT this table will be used  for.*/ 
void mkrevtable(int n) { 
  int bits, i, j, r, o; 
 
  bits= (31 - _lmbd(1, n))/2;  /* _lmbd(1,n) finds leftmost 1 bit in n */ 
  for(i=0; i<n; i++) { 
    r=0; o=i; 
    _nassert(bits>=3); 
    for(j=0; j<bits; j++) { 
      r <<= 2; 
      r |= o & 0x03; 
      o >>= 2; 
    } 
    revtable[i] = r; 
  } 
}   
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Section 17.3 PC algorithm 
int main(int argc, char* argv[]) 
{ 
 int programExit = 0; 
 int i = 0; 
 int done = 0; 
 int reinitialize = 0; 
 TS ts;     // why was this commented out? 

 colThresh = 4*100000000; 
 rowThresh = 4*100000000; 
 corrThresh = (float) 0.9; 

 totalNumTargetsDetected = 0; 
  
 initializeEVM(); 
  
 loadEXPERIMENT(); 

// loadGAUSSIANS(); 

 totalNumFilters = NUM_SCALES*totalNumClasses; 
 filterBank = (EVM_TYPE *) 
malloc(BLK_SIZE*2*totalNumFilters*sizeof(EVM_TYPE)) ; 
 filterDims = (unsigned int *) 
malloc(totalNumFilters*NUM_SCALES*sizeof(int)); 

  
 loadFILTERS(); 
  
 maxNumBlocks = ((((MAX_WINDOW_SIZE)/(BLK_DIM-
MAX_FILT_SIZE+1))*((MAX_WINDOW_SIZE)/(BLK_DIM-MAX_F ILT_SIZE+1)))+1); 
 blocks = (EVM_TYPE *) 
malloc(maxNumBlocks*2*BLK_SIZE*sizeof(EVM_TYPE));  
 corrBlocks = (EVM_TYPE *) 
malloc(maxNumBlocks*2*BLK_SIZE*sizeof(EVM_TYPE)); 
  
 waitREQUEST(&ts); 
 fprintf(stderr, "Transfer request: CMD %x, SIZE %i , ADDRESS %x\n", 
ts.command, ts.size, ts.buffer ); 
 if(!evm6x_send_message(hBd, (PULONG)&maxNumBlocks) ) // #1 
 { 
  fprintf(stderr, "Send message error!\n"); 
  exit(1); 
 } 

// PCItransfer(myEVM.maxNumBlocks , maxNumBlocks);  // EVM 
communication 
// EVM_malloc_blocks(&myEVM); 
  
 waitREQUEST(&ts); 
 fprintf(stderr, "Transfer request: CMD %x, SIZE %i , ADDRESS %x\n", 
ts.command, ts.size, ts.buffer); 
 if(!evm6x_send_message(hBd, (PULONG)&totalNumFilte rs)) // #2 
 { 
  fprintf(stderr, "Send message error!\n"); 
  exit(2); 
 } 
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// PCItransfer( myEVM.totalNumFilters , totalNumFil ters); 
// EVM_malloc_filter_bank(&myEVM); 

 waitREQUEST(&ts); 
 fprintf(stderr, "Transfer request: CMD %x, SIZE %i , ADDRESS %x\n", 
ts.command, ts.size, ts.buffer); 
 if(ts.command==0x02) 
 { 
  if(ts.size != (BLK_SIZE*2)*totalNumFilters*sizeof (EVM_TYPE))  

   fprintf(stderr, "Wrong size!!!\n");  
   
  START_TIMER; 
  sendDATA(&ts, &(filterBank[0])); 
  STOP_TIMER; 
  fprintf(stderr, "Elapsed Time for Send Filter Ban k: %f\n", 
elapsed_time());  
 } 

// HPItransfer(myEVM.filterBank, filterBank, 
(BLK_SIZE*2)*totalNumFilters*sizeof(EVM_TYPE)); 
 frameNum = 0; 

 while(1) 
 { 
  if(!loadFRAME()) 
   done = 1; 
  else 
   done = 0; 

  waitREQUEST(&ts); 
  fprintf(stderr, "Transfer request: CMD %x, SIZE % i, ADDRESS %x\n", 
ts.command, ts.size, ts.buffer); 
  if(!evm6x_send_message(hBd, (PULONG)&done))  
  { 
   fprintf(stderr, "Send message error!\n");  
   exit(19); 
  } 
   
//  PCItransfer( myEVM.done , done); 
//  EVM_check_done(&myEVM); 

  if(done) 
   break; 

  //if(frameNum%DETECT_STEP==0) 
  if((frameNum == 0) || (!targets)) 
  { 
   fprintf(stderr, "Entering Detection Stage...\n") ; 
   detectionSTAGE(); 
   //applyGAUSSIAN(); 
   writeFrameINFO(); 
  } 
  else if(frameNum%FRAME_STEP == 0) 
  { 
   fprintf(stderr, "Entering Tracking Stage\n"); 
   trackingSTAGE(); 
   //applyGAUSSIAN(); 
   writeFrameINFO(); 
  } 
  //writeFrameINFO(); 
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  frameNum++;  
 } 

 waitREQUEST(&ts); 
 fprintf(stderr, "Transfer request: CMD %x, SIZE %i , ADDRESS %x\n", 
ts.command, ts.size, ts.buffer); 
 if(!evm6x_send_message(hBd, (PULONG)&reinitialize) )  
 { 
  fprintf(stderr, "Send message error!\n");  
  exit(20); 
 } 

// PCItransfer( myEVM.reinitialize, reinitialize );  

 free(blocks); 
 free(corrBlocks); 
 free(filterBank); 
 free(filterDims); 
 if(targets) 
  freeTargets(targets); 
  
 fprintf(stderr, "Freeing allocated memory\n"); 

 /* Clean up and exit */ 
 if (!evm6x_hpi_close(hHpi)) 
 { 
  fprintf(stderr, "Error closing connection to EVM! \n");  
  exit(13); 
 } 
 if (!evm6x_close(hBd)) 
 { 

  fprintf(stderr, "Error closing connection to EVM! \n");  
  exit(14); 
 } 

 fprintf(stderr, "Closed connection to EVM\n"); 

 return(0); 
} 

 


