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ABSTRACT
Twelve years have passed since VMware engineers first virtu-
alized the x86 architecture. This technological breakthrough
kicked off a transformation of an entire industry, and virtu-
alization is now (once again) a thriving business with a wide
range of solutions being deployed, developed and proposed.
But at the base of it all, the fundamental quest is still the
same: running virtual machines as well as we possibly can
on top of a virtual machine monitor.

We review how the x86 architecture was originally virtual-
ized in the days of the Pentium II (1998), and follow the
evolution of the virtual machine monitor forward through
the introduction of virtual SMP, 64 bit (x64), and hard-
ware support for virtualization to finish with a contempo-
rary challenge, nested virtualization.

Categories and Subject Descriptors
C.0 [General]: Hardware/software interface; C.4 [Perfor-

mance of systems]: Performance attributes; D.4.7 [Ope-

rating Systems]: Organization and design

General Terms
Performance, Design

Keywords
Virtualization, Virtual Machine Monitor, Dynamic Binary
Translation, x86, vSMP, VT, SVM, MMU, TLB, Nested
Paging.

1. INTRODUCTION
In 1970, engineers at Intel designed the world’s first inte-
grated microprocessor, the 4 bit 4004, with 2124 transistors
running at 100 kHz [20]. 40 years later, over classics such as
the 8008, 8080, 8088, 8086, 80286, 80386, 80486, and Pen-
tium, this 4 bit architecture has evolved into a powerful 64
bit multicore CISC architecture (“x86”), with implementa-
tions containing 1+ billion transistors running at 3+ GHz.
Amazingly, after this fantastic evolution, modern x86 pro-
cessors still retain the ability to run ancient code directly.

As the x86 architecture evolved, it came to support a vast
diversity of operating systems and applications. Its use ex-
panded into almost every segment of the computing indus-
try, from embedded systems and handheld devices to per-
sonal computers and servers, and from information process-
ing to web services to high performance computing.

While trap-and-emulate virtualization on mainframes was
well understood at the time, it was – unsurprisingly – not a
design goal for the 4004, whose first application was in fact
a Busicom calculator [7]. However, as x86 CPUs expanded
their reach, the case for virtualization gradually emerged.
There was just one problem, seemingly fundamental: the
generally accepted wisdom held that x86 virtualization was
impossible, or at best merely impractical, due to inherited
architectural quirks and a requirement to retain compatibil-
ity with legacy code.

This impasse was broken twelve years ago when VMware
engineers first virtualized the x86 architecture entirely in
software. By basing the virtual machine monitor (VMM)
on binary translation, the architectural features that pre-
vented trap-and-emulate virtualization of the x86 architec-
ture could be handled precisely and efficiently [1]. This
technological breakthrough kicked off a transformation of
an entire industry: five years ago, Intel started shipping
CPUs with hardware support for instruction set virtualiza-
tion (VT-x), three years ago AMD started shipping CPUs
with hardware support for memory virtualization (RVI), and
virtualization is now one of the most important ways to
utilize the increasing number of cores per socket delivered
by the continued run of Moore’s law. Today, virtualiza-
tion provides server consolidation, fault tolerance, security
and resource management, and facilitates test, development
and deployment across a multitude of operating systems and
versions. Moreover, virtualization is the foundation of the
ongoing shift towards cloud computing.

Still, and common to all these use cases, the fundamental
quest remains the same: running virtual machines (VMs) as
well as we possibly can on top of a VMM.

Previous publications have described specific technical as-
pects of VMware’s x86 VMM, including device virtualization
[17], binary translation [2], and a comparison between soft-
ware and hardware approaches [1]. The present paper takes
a historical approach, looking back over the past decade in
approximate chronological order. We first distinguish be-
tween hypervisor and VMM to establish a context for the
remainder of the paper (Section 2). Then we go back to 1998
to review how the x86 architecture was virtualized using bi-
nary translation in the Pentium II era (Section 3). Our next
stop is 2003, where we introduce virtual SMP (Section 4).
By 2004 the new feature is x64, AMD’s 64 bit extension
of the x86 architecture (Section 5). A year later, in 2005,
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hardware support for virtualization emerged with further
support arriving in 2007-8 (Section 6). Finally, we review
a contemporary challenge, nested virtualization (Section 7),
briefly list other topics that space limitations do not per-
mit us to discuss in detail (Section 8), and then offer our
concluding remarks (Section 9).

2. CONTEXT
Before describing details of the x86 VMM, let us differ-
entiate between hypervisor and VMM. Existing literature
mostly treats these terms as synonyms, but for the purposes
of this paper it is beneficial to ascribe a narrower role to the
VMM. In our vocabulary, a VMM is an entity specifically
responsible for virtualizing a given architecture, including
the instruction set, memory, interrupts, and basic I/O op-
erations. A hypervisor combines an operating system (OS)
with a VMM. The OS may be a general-purpose one, such as
Linux or Windows, or it may be one developed specifically
for the purpose of running VMs.

For example, VMware’s vSphere ESX hypervisor is com-
prised of the vmkernel and a VMM. The vmkernel contains
a boot loader, an x86 hardware abstraction layer, I/O stacks
for storage and networking, as well as memory and CPU
schedulers. To run a VM, the vmkernel loads the VMM,
which encapsulates the details of virtualizing the x86 archi-
tecture, including all 16 and 32 bit legacy modes as well
as 64 bit long mode. The VM executes directly on top of
the VMM, touching the hypervisor only through the VMM
surface area.

VMware’s products create a separate instance of the VMM
for each running VM (“guest”) rather than using a single
VMM to run all VMs on the “host”; see Figure 1. This ap-
proach simplifies the overall system by providing a clear sep-
aration of concerns: the vmkernel manages host-wide tasks
such as scheduling, while VMMs manage per-VM tasks. More-
over, it leads to a natural separation of mechanism, mostly
implemented in the VMM, and policy, mostly implemented
in the vmkernel, using knowledge of all the VMs running on
the host. Finally, with multi-tenancy, where separate cus-
tomers buy VM execution time on the same host, the use
of a separate VMM for each VM greatly simplifies reason-
ing about isolation, although it does not enforce isolation as
the VMM is a privileged program. (Resource management,
and quality of service properties still remain to be satisfied
globally by the vmkernel.)

While we have described this architecture in the context of
VMware’s ESX hypervisor, the same general idea extends
to our hosted products such as VMware Workstation and
Fusion: here, the VMM runs alongside the host OS, again
with one VMM instance per virtual machine. In fact, other
than a “shim” platform layer, the same VMM is used in all
of VMware’s products.

3. VIRTUALIZING 32-BIT x86
In 1998, the x86 architecture had no hardware support for
virtualization and was generally considered to be unvirtual-
izable [15]. At that time virtual machines were typically run
using an approach known as trap-and-emulate [13, 14]. In a
trap-and-emulate style VMM, the guest code runs directly
on the CPU, but with reduced privilege. When the guest
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Figure 1: The ESX hypervisor: one vmkernel per host,

and one VMM per virtual machine.

attempts to read or modify privileged state, the processor
generates a trap that transfers control to the VMM. The
VMM then emulates the instruction using an interpreter and
resumes direct execution of the guest at the next instruction.

The x86 architecture was considered non-virtualizable be-
cause the processor could not be configured to generate the
required traps1. One example is the popf instruction which
loads a set of flags from the stack into the %eflags regis-
ter. When executed in privileged mode, popf loads all flags,
which include a mix of ALU flags (zero flag, carry flag, etc.)
and system flags (interrupt flag, I/O privilege level, etc.).
When executed in user mode, system flags remain unmodi-
fied regardless of the contents of the stack. Instructions like
popf thwart any attempt to build a trap-and-emulate VMM
for x86. If a deprivileged guest kernel attempts to clear the
interrupt flag using popf, no trap is generated and the VMM
has no way of knowing it should not deliver interrupts to the
guest.

One could certainly avoid the reliance on traps by running
the guest on an interpreter, but this introduces too much
overhead to allow virtual machines to be used widely. Bi-
nary translation (BT), however, offers the ability to inter-
cept any guest instruction and modify its execution with
just as much flexibility as full interpretation, but with much
lower overheads. To further improve performance, BT can
be limited to guest kernel mode code. Guest user mode
code can run directly on the CPU in “direct execution,” as
would be done in a trap-and-emulate VMM, since it already
expects to run with user mode semantics such as ignoring
attempted changes to the interrupt flag. Combining BT and
direct execution limits translator overheads to the time the
guest spends running kernel code, which is typically a mi-
nority of total execution time.

The following sections provide a more detailed description
of how a BT-based VMM runs a guest. Section 3.1 de-
scribes a simple, yet highly efficient dynamic translator for
unrestricted x86 code. Sections 3.2 and 3.3 show how to
use paging and segmentation to establish an environment in
which the translated code can execute. Finally, Section 3.4
outlines an adaptive feedback-based optimization that cus-

1
The x86 architecture distinguishes between faults, which abort

execution of an instruction prior to committing any state change,
and traps, which happen after an instruction completes. Tech-
nically, an x86 VMM would need to use faults. However, for
consistency with classical literature, we prefer the term “trap-
and-emulate,” even though the precise x86 term should be “fault-
and-emulate.”
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tomizes translations to observed guest behavior.

3.1 Binary Translation
To build a VMM that can run every possible guest requires
a binary translator that can handle the entire x86 instruc-
tion set. The translator provides the ability to intercept
precisely the virtualization sensitive instructions without re-
quiring trap semantics. Since we cannot patch instructions
in the guest’s own image (such patching would be visible
to the guest), we must translate all guest kernel code and
always execute from a guest-invisible translation cache. For-
tunately, our input and output are both x86, so the instruc-
tions that do not need interception can be translated with
little or no modification.

Our translator has these properties:

• Binary. Input is binary x86 code, not source code.

• Dynamic. Translation happens at runtime, interleaved
with execution of the generated code.

• On demand. Code is translated only when it is about
to execute. This laziness side-steps the problem of dis-
tinguishing code from data.

• System level. The translator makes no assumptions
about the guest code. Rules are set by the x86 ISA, not
by a higher-level ABI. In contrast, an application-level
translator like Dynamo [4] might assume that “return
addresses are always produced by calls” to generate
faster code. The VMM does not: it must run a buffer
overflow that clobbers a return address precisely as it
would have run natively (producing the same hexadec-
imal numbers in the resulting error message).

• Subsetting. The translator’s input is the full x86 in-
struction set, including all privileged instructions; out-
put is a subset (mostly user-mode instructions).

To explain how the translator operates, we work through a
short example, a spin lock function that acquires a lock and
returns to the caller with interrupts disabled. (Such “irq
locks” may protect kernel data structures that are accessed
both from normal and interrupt handling contexts.)

void SP_LockIRQ(SPLock *lock) {
DisableInterrupts();
while (CompareExchange(lock, 0, 1) != 0) {

EnableInterrupts();
Pause();
DisableInterrupts();

}
}

We compiled the C code into this 32-bit binary:

push %ebx ; callee saved
mov %eax,%edx ; %edx = %eax = lock
cli ; disable interrupts
mov $1,%ecx ; %ecx = 1
xor %ebx,%ebx ; %ebx = 0

jmp doTest
spin: sti ; enable interrupts

pause ; yield hardware thread
cli ; disable interrupts

doTest: mov %ebx,%eax
lock ; If %eax==(%edx) write
cmpxchg %eax,%ecx,(%edx); %(edx) = %ecx else

; %eax = (%edx)
test %eax,%eax ; Set flags from %eax
jnz spin ; Jump if not zero

done: pop %ebx
ret

We invoked this code in a virtual machine, logging all code
translated. The above code is not the input to the translator;
rather, its binary (“hex”) representation is input:

53 89 c2 fa b9 01 00 00 00 31 db ...

The translator reads the guest’s memory at the address in-
dicated by the guest program counter (%eip), classifying the
bytes as prefixes, opcodes or operands to produce interme-
diate representation (IR) objects. Each IR object represents
one guest instruction.

The translator accumulates IR objects into a translation
unit (TU), stopping at 12 instructions or a terminating in-
struction (usually control flow). The fixed-size cap allows
stack allocation of all data structures without risking over-
flow; in practice the cap is rarely reached since control flow
tends to terminate TUs sooner. Thus, in the common case
a TU is a basic block. The first TU in our example is:

push %ebx
mov %eax,%edx
cli
mov $1,%ecx
xor %ebx,%ebx
jmp doTest

Translating from x86 to x86 subset, most code can be trans-
lated IDENT (for “identically”). The push, movs, and xor

all fall in this category.

Since cli is a privileged instruction, it must be handled spe-
cially by the VMM. Unlike popf, cli can generate a trap,
but it is more efficient to avoid the trap by translating it
non-identically. The cli translation must clear the virtual
interrupt flag, which exists as part of an in-memory image
of the guest’s virtual CPU (VCPU), so we use an and in-
struction:

and $0xfd,%gs:vcpu.flags

Since the translator does not preserve code layout, all control
flow instructions must use non-IDENT translations. In this
example the jmp becomes a translator-invoking continuation
(indicated by square brackets). Putting this together, the
resulting translation from the first TU of our example is:
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push %ebx
mov %eax,%edx
and $0xfd,%gs:vcpu.flags
mov $1,%ecx
xor %ebx,%ebx
jmp [doTest]

Each translator invocation consumes one TU and produces
one compiled code fragment (CCF). Although we show CCFs
in textual form with labels like vcpu.flags, in reality the
translator produces binary code directly.

After producing the above CCF, the VMM will execute the
code which ends with a call to the translator to produce the
translation for doTest. This second TU is all IDENT except
for the final conditional jnz branch for which the translator
emits two continuations (one for each successor):

jnz [spin]
jmp [done]

To speed up inter-CCF transfers, our translator, like pre-
vious ones [9], employs a “chaining” optimization, allowing
one CCF to jump directly to another without calling out of
the translation cache (TC). These chaining jumps replace
the continuation jumps, which therefore are “execute once.”
Moreover, it is often possible to elide chaining jumps and
fall through from one CCF into the next.

For conditional branches, at most one of the two successors
can use fall through. The other must remain in the trans-
lated code as a conditional branch, initially invoking the
continuation, but, once the translated target is produced,
redirected to this target. (Sometimes, to avoid code dupli-
cation, no successor can use fall-through, so the final transla-
tion uses a jcc/jmp pair of instructions to connect to each of
the successors.) Since translation and execution interleave,
the first of the two continuations to execute is most likely
to receive the beneficial fall-through treatment. If the first
and subsequent executions follow similar paths, this tends
to straighten code for good i-cache performance. In effect,
the translator builds execution traces in the TC, even as it
works through guest code in smaller TU chunks.

This interleaving of translation and execution continues for
as long as the guest runs kernel code, with a decreasing
proportion of translation as the TC gradually captures the
guest’s working set. For the spin lock example the transla-
tion, after one spin-free acquisition, results in this code in
the TC:

* push %ebx ; IDENT
mov %eax,%edx
and $0xfd,%gs:vcpu.flags ; PRIV
mov $1,%ecx ; IDENT
xor %ebx,%ebx

* mov %ebx,%eax ; IDENT
lock
cmpxchg %eax,%ecx,(%edx)
test %eax,%eax
jnz [spin] ; JCC

* pop %ebx ; IDENT
* mov %eax,%gs:scratchEAX ; RET_LAUNCH

mov %ecx,%gs:scratchECX
pop %eax
movzx %al,%ecx
jmp %gs:rtc(4*%ecx)

Above, there are four CCFs with the leading instruction
in each one marked with an asterisk. The continuation to
the spin label remains untranslated as it has not executed
yet. The code that was executed now sits in a straight line
without jumping about as the original code did.

The last CCF above terminates with a“launch” sequence for
a return translation, the details of which have been described
previously [2].

For a bigger example than the spin lock, but nevertheless one
that runs in exactly the same manner, booting Windows XP
Professional and then immediately shutting it down trans-
lates 933,444 32-bit TUs and 28,339 16-bit TUs. While this
may seem like a lot, translating each unit takes just 3 mi-
croseconds for a total translation time of about 3 seconds.
Against a background of a one minute boot/halt, and keep-
ing in mind that a boot workload has an unusually high
proportion of cold code, the cost of running the translator
is acceptable.

The translator does not attempt to “improve” the translated
code. We assume that if guest code is performance critical,
the OS developers have optimized it and a simple binary
translator would find few remaining opportunities. Thus,
instead of applying deep analysis to support manipulation
of guest code, we disturb it minimally.

Most virtual registers bind to their physical counterparts
during execution of TC code to facilitate IDENT transla-
tion. One exception is the segment register %gs. It provides
an escape into VMM-level data structures; see Section 3.3.
The ret translation above uses %gs overrides to spill %eax
and %ecx into VMM memory so that they can be used as
working registers in the translation of ret. Later, of course,
the guest’s %eax and %ecx values must be reloaded into the
hardware registers.

As with registers, the translator binds guest ALU-flags (CF,
PF, AF, ZF, SF, OF) to their physical counterparts. Since
many x86 ALU instructions modify flags, nontrivial trans-
lations often must save and restore guest flags around flags-
clobbering operations. For example, this applies to the cli

translation, where the use of and clobbers guest flags. How-
ever, in the above example, the translator avoided flags
save/restore code by looking ahead to see that the guest
soon will execute an xor, which (re)defines all flags. To en-
sure that even the guest’s interrupt handler has a consistent
view of flags, the VMM defers virtual interrupts until the
xor that terminates the flags-optimized region.

3.2 Virtualized Memory: Shadow Page Tables
The x86 architecture has supported virtual memory since
the 80386 with an MMU consisting of a TLB and a hardware
page table walker. The walker fills the TLB by traversing hi-
erarchical page tables in physical memory. Originally, these
page tables were two levels deep but were extended to three
and later four levels (see Section 5). The walker may spec-
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ulate ahead and cache mappings whenever it pleases, and is
allowed to keep those mappings in the TLB until software
explicitly flushes the TLB entry with an invlpg instruction
or by switching contexts (assigning to the page table root
control register %cr3). Additionally, the TLB is allowed to
evict entries unpredictably, at any time.

The VMM’s MMU serves two purposes. It maintains isola-
tion of the VMM by ensuring that the guest cannot access
memory belonging to the hypervisor, the host, or another
VM. It also ensures that the virtual address space visible
to the guest reflects what the guest expressed via its in-
memory page tables. These concerns can be viewed as two
separate layers of indirection stacked on top of one another:
(1) the guest creates page tables to describe how to map
guest virtual addresses (gVAs) to guest physical addresses
(gPAs), and (2) the VMM creates mappings from gPAs to
host physical addresses (hPAs).

To provide native-speed memory access for direct execution
and IDENT translations (see Section 3.1), the composite
mapping from gVA to hPA ultimately must reside in the
hardware TLB. This can be achieved by pointing %cr3 at a
“shadow page table” that stores the composite mappings.

The cost paid by the first access is, however, considerably
more than a traditional TLB miss cost. To understand this,
we must examine what happens when the guest accesses
a particular gVA. First, the memory access causes a page
fault (several hundred cycles in the circa 2002 processors).
Then, the VMM walks the guest’s page tables in software to
determine the gPA backing that gVA (again costing a few
hundred cycles). Next, the VMM determines the hPA that
backs that gPA. Often, this step is fast, but upon first touch
it requires the host OS to allocate a backing page. Finally,
the VMM allocates a shadow page table for the mapping
and wires it into the shadow page table tree. The page fault
and the subsequent shadow page table update are analogous
to a normal TLB fill in that they are invisible to the guest,
so they have been called “hidden page faults.” Hidden faults
can have a 1000-fold increase in cost over a TLB fill, but
tend to be less frequent due to higher virtual TLB capacity
(i.e., higher shadow page table capacity).

Once the guest has established its working set in the shadow
page table, memory accesses run at native speed until the
guest switches to a different address space. TLB semantics
on x86 require that context switches flush the TLB, so a
naive MMU must throw away the shadow page table and
start over. We say such an MMU is “noncaching.”

The only way to avoid the cost of rebuilding the shadow page
table after each address space switch is to keep around copies
of multiple shadow page tables, one for each address space.
Here, the x86 semantics of implicit TLB flushes on context
switches gets in the way. If a guest changes a mapping in
its page tables after a shadow entry has been created, then
switches to a new address space, and then switches back
to the first address space, the guest can expect the new
mapping to be visible because of the implicit TLB flush.

To solve this problem, the MMU needs a way of detecting
when the guest modifies a primary page table entry which

has been used to create a shadow page table entry. This
is solved with a general purpose mechanism in the VMM
known as traces, which mediate access to guest memory by
the guest or by the VMM. Traces provide clients with no-
tification upon access to pages of interest. The MMU uses
traces for shadow page table consistency, but it is also par-
tially responsible for implementing traces. A traced access
may be detected when it results in a page fault caused by
an attempted access, whether by guest or VMM. The page-
fault handler then notifies the trace clients before resuming
execution. Alternatively, traces may be “fired” on memory-
accesses through adaptive techniques like those described in
Section 3.4, or through explicit checks in the VMM itself.

With traces, it is possible to avoid throwing away the shadow
page table when switching to a new address space. Instead,
the MMU can selectively invalidate shadow page table en-
tries when they are modified. Even then, the cost of hidden
faults is one of the top virtualization overheads.

To further reduce the number of hidden faults, the MMU
can combine the trace processing and the (re)validation of
the shadow page table into a single step, using a technique
called “eager validate.” When the MMU receives a notifi-
cation that the guest has modified a page table, instead of
invalidating the shadow, the MMU immediately populates
it with an updated entry. Now the guest can access the
memory addresses mapped by the page table, without in-
curring a hidden fault. Although physical CPUs generally
would continue using the old mapping until the next TLB
flush, they are allowed to evict the mapping and refetch from
page tables any time. So a VCPU using eager validate ap-
pears to have a TLB that always drops and reloads entries
immediately when the in-memory page table is modified.

Eager validate has its own costs since it requires receiving
a notification whenever a page changes. Page table entries
might be modified, but never used, or a piece of memory
that was once a page table might be used for other purposes.
Either way, there is a pressure on the MMU to remove the
trace if it is not helping to reduce page faults.

This leads to a tension between three paths that all MMU
tuning revolves around:

• The hidden page fault that occurs when the guest ac-
cesses a page not mapped by the shadow page table.

• Switching from one address space to another (on behalf
of the guest) and making sure the new shadow page
table space is in sync with the guest page table.

• Guest writes to page table entries that the VMM is
monitoring with a trace.

The overheads of these three operations all trade against
one another. For instance, it is possible to eliminate all
costs when the guest modifies a page table by not tracing the
page, but this incurs more hidden page faults. Alternatively,
hidden faults can be eliminated by eagerly shadowing entire
address spaces, but this increases costs to switch address
spaces. Finally, it is easy to make context switches quick,
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but only when the shadow page table is in sync with the
guest’s page table.

Finding the right balance between the three is very difficult
and varies from workload to workload.

In addition to this three-way cycle trade-off, the MMU must
factor in shadow page table memory usage. Some workloads,
like Windows Remote Desktop Services, have working sets
so large that they overwhelm any reasonable fixed allocation
for shadow page tables, causing shadow page table eviction,
i.e., thrashing. To counter this problem, the MMU must op-
timize shadow eviction, applying an LRU-like reclamation
strategy. Moreover, the MMU must dynamically size the
shadow page table cache according to measured needs, bal-
ancing the memory consumption against the utility of other
possible uses.

3.3 Segmentation
The guest expects to use the full feature set of the x86 ar-
chitecture, including the entire virtual address space. This
presents a challenge to the VMM, which must simultane-
ously satisfy the guest’s expectation as well as provide for
its own needs. In particular, the translator must keep the
TC and auxiliary data structures mapped to permit execu-
tion of translated code. For example, when running a 32
bit guest on a 32 bit CPU, the guest and VMM must some-
how share the 4 GB address space in a manner that is both
efficient and invisible to the guest.

A common way of controlling accesses to memory is through
the use of page permissions. Abstractly, the VMM may set
up mappings in the shadow page tables to disallow guest ac-
cess to the VMM portion of the address space. For example,
the VMM could use supervisor-only mappings for the VMM
address range and user mappings for the (user mode part of
the) guest address range. This approach works well with a
trap-and-emulate style VMM; it is also the approach we use
when running guest user mode code in direct execution.

However, page-based separation requires that the guest and
the VMM run at different privilege levels so it does not
work well for running translated guest kernel code. When
running translated code, the TC itself must be accessible
(for execution), yet must remain invisible to guest data ac-
cesses. While execute-only mappings could accomplish this,
x86 page tables have no support for execute-only mappings.
In addition, an execute-only approach would not apply to
VMM-defined auxiliary data structures that must be acces-
sible to translated code yet inaccessible when referencing
memory on behalf of the guest.

Having ruled out paging as a way to protect the VMM
from guest memory references in translated code, which ap-
proaches remain? One possibility is to use the BT infras-
tructure itself to insert explicit bounds checks into the trans-
lation of guest instructions. However, using bounds checks
on every guest memory access causes significant overhead.

Fortunately, the x86 architecture has one more mechanism
that can be applied: segmentation. The segmentation sup-
port goes back to the 16 bit 80286 processor, predating even
paging. Over the years, segmentation was carried forward
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4 MB containing the VMM address-space.

into 32 bit processors, although modern operating systems
have largely discontinued reliance on segmentation, prefer-
ring the additional flexibility offered by paging. Segmenta-
tion gives us almost exactly what we need to enforce the
boundary between guest and VMM within a shared address
space: a fast bounds check on memory accesses.

In more detail, the x86 architecture provides six segment
registers: one is used by instruction fetches (%cs), one for
stack accesses (%ss), and the remaining four for other data
accesses (%ds, %es, %fs, %gs). Each segment register con-
tains a base and a limit and will generate a fault if used
with an address greater than the limit. By configuring the
data segments to allow access only to the guest portion of
the address space, but allowing the code segment %cs to ac-
cess the VMM space, we have achieved the code/data split
that a BT-based VMM needs to hide the TC. The VMM
can differentiate between guest data accesses and translator
accesses to runtime data the same way by restricting %ds,
%es and %fs to the guest range while reserving %gs for the
VMM range; see Figure 2. When the translator emits in-
structions that should read or write VMM data, it includes
a %gs prefix. When translating a guest memory access, the
translator makes sure to not use %gs. If a guest instruction
uses %gs, the translator must strip the prefix and replace
it with another segment prefix, say %fs (setting up %fs ac-
cording to what the guest expected to have in %gs). Alter-
natively, the translator can emit code to perform the virtual
%gs-segmentation“in software”without relying on a physical
segment register.

Using segmentation to isolate guest memory accesses from
the VMM solves one problem, but the VMM must also em-
ulate the guest’s use of the same segmentation functionality.
Most modern operating systems make little or no use of seg-
mentation. They generally define their segments to have
a base of zero and a maximal limit, a case we refer to as a
“flat”segment. Since flat segments are common, we place the
VMM at the top of the address space so that flat segments
can be precisely “truncated” to prevent access to the VMM
while allowing access to all remaining virtual addresses. His-
torically, VMware chose to allocate the top 4 MB of the vir-
tual address space to the VMM. A non-flat guest segment
may wrap around the top of the 4 GB address space. Trun-
cation then must cut away not just the part of the segment
that overlaps the VMM but also the wrap-around portion,
preventing direct guest access to addresses that are not used
by the VMM.

The use of segmentation to separate guest memory accesses
from those introduced by the translator is a critical compo-

8



nent of VMware’s ability to implement a low overhead x86 to
x86 translator. Guest memory accesses that do not overlap
with the VMM incur no overhead relative to that same mem-
ory access running “natively” outside of a VM. The major
difficulty with this design has been the performance cliff for
instructions that do overlap with the VMM. Such instruc-
tions incur a fault and must be emulated without the benefit
of the shadow page tables for getting to the corresponding
guest memory. Fortunately, the VMM can often avoid such
faults by predicting if an instruction may generate memory
accesses in the VMM range (see Section 3.4), but even then
the instruction will typically execute one or two orders of
magnitude slower than a native memory access.

This cliff leads to a strong pressure to minimize the fre-
quency that guest memory overlaps with the VMM’s ad-
dress space. Because only the limit of the segment can be
adjusted, the VMM is constrained to the top of the address
space. In practice, it has also been limited to use at most
4 MB of address space. Making it any larger is undesirable
as the VMM would then overlap with hot data structures
for many Windows guests. The resulting scarcity of address
space has influenced the design of almost all components of
the VMM. Small data structures were squeezed as tightly
as possible and large data structures had to be paged to
leave space for a sufficiently large TC to hold the guest’s
code working set, even as guests grew over the years from
Windows 95/98, NT, 2000, XP, and Vista to Windows 7.

While the address space pressure at times was a source of
grief, over the years it created an environment that favored
minimality and cleanliness as overriding design principles.
We believe that this, in turn, has given us a more reliable
and more efficient VMM.

3.4 Adaptive BT
The need to cheaply interpose on certain non-virtualizable
instructions motivated the use of BT for guest kernel code.
But as the VMM matured, BT became increasingly useful
as a means of reducing additional virtualization overheads.

Maintaining coherency of the shadow page tables requires
trapping accesses to guest page tables, which is accomplished
by marking those pages as read-only in the shadow page
tables. Each time the guest writes to a page table natively
it is a simple write to memory, but when run in a VM it
can turn into a page fault, followed by emulation of the
instruction, and finally an update to the shadow page table.

Fortunately operating systems typically modify page tables
from within blocks of code with the express purpose of mod-
ifying page tables. Thus, instructions that modify page ta-
bles always (or usually) modify page tables and instructions
that do other things (like updating scheduler records) never
modify page tables. This permits the VMM to track instruc-
tions that modify page tables and feed that information back
into the translator, allowing creation of custom translations
for instructions that are likely to modify page tables.

Since these translations assume that the page they are writ-
ing to is a page table (i.e., write-protected by the VMM),
there is no need to attempt to write to the page only to
receive a page fault. Instead they can jump directly to the

instruction interpreter, avoiding the page fault and thereby
eliminating a large portion of the overhead.

It is possible to save more than just the page fault. Rather
than using a general-purpose interpreter that must decode
the guest instruction, the translator can pre-decode the in-
struction into an easy-to-interpret form and call an opti-
mized interpreter.

Reducing page table modification costs has other indirect
benefits: we reduce the pressure on the MMU to drop (and
reinstall) traces, in turn avoiding hidden page faults.

Optimized translations for instructions that touch special
memory are useful beyond page tables: they can avoid page
faults for accesses to memory-mapped devices by identifying
instructions likely to touch such devices. For certain device
accesses, such as those to the APIC, the VMM goes one step
further.

The APIC is a memory mapped device built into every mod-
ern x86 CPU to control the delivery of interrupts. One of
the device registers in the APIC memory range is the Task
Priority Register (TPR) which specifies the minimal priority
for an interrupt to be delivered. Many versions of Windows,
starting with NT and up to but not including 2003 SP2, ac-
cess the TPR tens of thousands of times per second. Worse
still, certain antivirus software can increase the access rate
by an order of magnitude. For example, running a com-
pilation job on Windows XP with 2 VCPUs and antivirus
software generated more than 800,000 accesses to the TPR
per second.

Incurring a page fault each time Windows accesses the TPR
results in unacceptable performance. Even replacing the
page fault with a call to the interpreter can be too costly,
given this access frequency. However, by using adaptive BT,
we can emit custom translations for instructions that con-
sistently access the APIC TPR. In ideal circumstances, the
translator can prove that an instruction will always access a
fixed virtual address that maps to the APIC. By cooperating
with the MMU to receive notification if that address were to
be remapped (the APIC lives in the physical address space),
the translator can emit highly optimized translations. In the
case of a guest write to the TPR, the best case translation
contains about half a dozen load/store and ALU instruc-
tions to verify the pending interrupt priority and store the
new task priority value (in the common case, no interrupt is
raised). On a modern superscalar CPU, we measured this
translation at just 3 cycles, exceeding even the native per-
formance of an APIC TPR write.

Not all guest APIC accesses can be statically proven to ac-
cess a fixed location in memory; in the remaining cases, the
translator inserts checks to verify that the accessed address
matches the predicted one. If the prediction fails (which is
extremely infrequent), we take a slow recovery path. If it
fails repeatedly, we can retranslate, using this new informa-
tion.

In addition to those for the APIC and the MMU, the trans-
lator also customizes accesses to segment descriptor pages,
to certain virtual network adapters, and, as mentioned pre-
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viously, to the VMM’s address range.

4. SUPPORTING MULTIPROCESSOR VMs
In early 2002, VMware needed to grow beyond its base in
the desktop and developer focused workstation market. To
capture server workloads, we considered virtualizing a rec-
ognized server architecture such as Itanium or SPARC. Ulti-
mately, we continued to bet on x86 and set out to implement
virtual SMP to have a story for larger workloads.

This project required changes and innovations throughout
the hypervisor: the vmkernel scheduler was challenged; the
virtual BIOS had to change; we needed to come up with a
threading model, implement synchronization primitives that
would work across multiple contexts, find a new device pro-
gramming model, generalize traces, understand cross-CPU
code modification, etc. It was all new, unknown and un-
certain; in short, it was a “bet the company” effort for our
start-up.

Amazingly, by the end of that summer, we had managed
to boot a 4-VCPU Windows 2000 VM, albeit over several
hours and making good use of checkpoints along the way
to recover from crashes. The VM ran, but barely: perfmon
running in the guest showed four CPUs, but it was so slow
that the CPUs were pegged at nearly 100% load simply ser-
vicing timer interrupts! In spite of this dismal performance,
we were buoyed by the success, and confident that opti-
mization would address the performance and scaling issues.
With little hesitation, we sent a screenshot to everyone in
the company trumpeting success.

From that early milestone it took a significant amount of
work to get anywhere near production quality. We had to
restructure much of the VMM. Most importantly, we reim-
plemented traces in a vSMP-aware manner as a foundation
for a new caching MMU. We also used the new trace imple-
mentation to provide coherency of translated code, and to
shadow the descriptor tables so that direct execution could
be reenabled. Much of the performance tuning work in-
volved wrestling with locks introduced into the system; not
surprisingly, one of the more challenging locks was our equiv-
alent of the address-space lock for the VMM. This perfor-
mance work continues to this day as physical systems are
deployed with ever greater numbers of cores and as these
systems cope with scale through the use of NUMA architec-
tures.

Mere performance problems were only one of the kinds of
challenges we met. We also had to learn how to address
races in guests exacerbated by the timing characteristics of
VMs. Examples were quickly found in a variety of early
Windows releases, Netware, Solaris, and some Linux dis-
tributions. Our techniques included controlling the guest’s
perception of time, and more bizarre techniques such as“lock
step” execution in which VCPUs go round-robin, executing
one guest instruction at a time, to make it safely through
race-prone regions of guest code: after you, my friend!

How one structures any system to support concurrency has a
profound impact not just on performance and scalability but
also on how tractable the system is to reason about and work
with, and how it evolves over long time periods where re-

quirements may change. In the remainder of this section, we
discuss synchronization mechanisms and the vSMP MMU.

4.1 The vSMP Programming Model
Since the physical CPUs in an SMP system execute largely
independently of each other, it is natural to model VCPUs
as independent threads of execution. These threads must
coordinate when accessing shared device state, when updat-
ing gPA-to-hPA mappings, and when handling trace events.
The coordination must present a consistent view to the guest
while being fast and scalable.

Initially, we used Posix-like synchronization mechanisms, in-
cluding mutexes, semaphores, and condition variables. How-
ever, we soon found that in order to control when and where
VCPUs handled certain events, we needed additional higher-
level mechanisms: crosscalls, actions, and stop.

In cases where this coordination requires synchronicity, the
VMM employs crosscalls. Crosscalls allow one VCPU to
request some service or action from other VCPUs. The ini-
tiating VCPU blocks until the request has been handled by
all the callees.

To understand the motivation for crosscalls, first consider
traces in a vSMP VMM. The set of pages that are traced is
dynamic. Adding a page to this set (installing a trace) re-
quires all VCPUs to respect the presence of the trace before
the installer can depend upon it. Another use of crosscalls is
the invalidation of gPA-to-hPA mappings in order to allow
memory to be shared, unshared, swapped or remapped [19].

To reason about crosscalls and their interaction with mu-
texes, we statically rank crosscalls and mutexes based on
the kinds of resources they manipulate or guard. VCPUs
can progress from one ranked operation to another only in
order of increasing rank. Additionally, any VCPU block-
ing on a mutex or invoking a crosscall must serve same- or
higher-ranked incoming crosscalls. These simple constraints,
checkable by assertions, ensure that deadlocks do not occur.

In cases where coordination between VCPUs only requires
some eventual processing on the part of other VCPUs (i.e.,
constitute an asynchronous request), the VMM employs ac-

tions. Actions, once delivered to a VCPU, are guaranteed
to be processed before the execution of the next guest in-
struction, but the caller cannot make any assumptions about
how long delivery will take. For example, we use actions to
remove traces. While we could have used a synchronous
crosscall, an asynchronous action permits looser coupling
and therefore better scalability.

Our final higher-level coordination mechanism is stop: bring
all VCPUs to a stand-still at base rank and at a virtual in-
struction boundary. Having “stopped the world,” the VMM
can perform operations that are safe only in this controlled
environment. For example, we use a form of stop to check-
point a virtual machine’s state.

Over the years, we found these higher-level coordination
mechanisms, and especially ranks, to serve our needs well.
However, they were no silver bullet: we still had to pro-
gram carefully to attain scalability, including sometimes us-
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ing lock-free algorithms.

4.2 vSMP MMU Virtualization
In x86 SMP systems, each core has its own page walker and
TLB. However, most operating systems use a shared pool of
memory for page tables. To bridge from shared page tables
to per-core TLBs, a precisely coordinated“TLB shootdown”
approach must be used to invalidate mappings.

Given the dichotomy between shared page tables and per-
core TLBs, how should the virtual MMU be designed? On
the one hand, shadow page tables can be seen as coun-
terparts to primary page tables, suggesting that we share
shadow page tables between VCPUs. On the other hand,
shadow page tables have similarities with TLBs in that they
cache mappings, suggesting use of per-VCPU shadow page
table caches.

For simplicity and to generally decouple VCPUs, we went
with per-VCPU shadow page table caches. Reasoning about
nonshared caches seemed easier, although we knew we would
have to watch out for potential drawbacks including: (1)
increased memory usage when multiple VCPUs would all
shadow the same primary page table, and (2) more hidden
page faults than if VCPUs cooperate to validate the working
set into shared shadows, especially when guest schedulers
migrate processes from VCPU to VCPU.

Our initial vSMP MMU was noncaching. We simply ran in-
dependent instances of the familiar shadowing algorithm on
each VCPU. Each VCPU would, independently, take hid-
den faults, build up private shadow page tables, and fully
clear these shadow page tables on context switches. The
noncaching MMU allowed us to run and examine the first
set of SMP workloads.

For higher performance, we needed caching to allow shadow
page tables to survive context switches. And, as in the
uniprocessor case, we would need traces to keep the shadow
page tables in sync with the primary page tables. Our first
caching vSMP MMU used the trace system directly. Each
time a VCPU processed a hidden fault, it installed a write
trace on the path that the page walker traversed in the pri-
mary page tables to satisfy the hidden fault. The trace sub-
system tracked which VCPUs had a trace on which pages,
allowing for precise notification to the VCPUs that were af-
fected by page table writes. As expected, the caching MMU
lowered the number of hidden faults and gave us a significant
performance boost.

Trace firing was the next optimization target. To fire an
MMU trace, we crosscalled all affected VCPUs. This syn-
chronicity was both expensive and unnecessary: TLB con-
sistency rules only require that page table updates are re-
flected at the next TLB flush. Thus, instead of carrying
MMU trace events with synchronous crosscalls, we imple-
mented an inbound “patch set” queue for each VCPU. To
notify another VCPU of a trace event, the event could sim-
ply be added to its patch set. Each VCPU would process
the queued events in its patch set at the next TLB flush (or
sooner if the fixed-size data structure filled up). This decou-
pling of trace producer and consumer improved our MMU
performance substantially.

Finally, to reduce the number of hidden faults resulting from
remotely produced traces, we added eager validation into the
patch set processing.

The combined effect of these optimization steps gave us a
software MMU with acceptable performance, albeit one that
we would continue to refine and tune over the years.

5. VIRTUALIZING 64 BIT x86
AMD started shipping x86 compatible 64 bit Opteron CPUs
in 2003. Their architecture—called AMD64, x86-64, and
later simply x64—added a new 64 bit execution mode, long

mode, while retaining existing 16 and 32 bit execution modes
for complete x86 backwards compatibility.

During those years, server workloads were increasingly push-
ing against memory limitations. PAE mode extended the
physical address space from 4 GB to 64 GB, but did nothing
to relieve virtual address space pressure in the increasingly
“cramped” 32 bit environment: any individual process could
still address at most 4 GB of virtual memory at a time. Long
mode, however, provided 64 bit addressing (though imple-
mentations could cap at 48 usable bits), thereby eliminating
address space pressure completely. In long mode, 4-level hi-
erarchical page tables map 48 bits of virtual addresses to,
typically, 48 bits of physical addresses.

Long mode also brought instruction set improvements, ex-
tending the eight legacy x86 registers to 64 bits in much
the same way as the 80386 processor had widened the reg-
isters from 16 to 32 bits almost two decades earlier. For
example, the 16 bit %ax register had grown into the 32 bit
%eax in 1985, and in 2003 it grew to become the 64 bit %rax
register. Moreover, long mode added an additional eight
general-purpose registers to alleviate one of the most often
cited architectural bottlenecks of the x86 architecture.

AMD also took the opportunity to remove or simplify some
legacy features in long mode. Unfortunately, two of these
“improvements” directly affected our ability to use BT to
virtualize x64:

• All segment registers but %fs and %gs were flattened
(base zero, maximal limit). For %fs and %gs, only the
base address functionality remained, i.e., limit checks
were removed. The motivation was, probably, that
the base address functionality on two segment regis-
ters sufficed for providing per-thread storage with seg-
ment registers. Unfortunately, without limit checks, a
BT-based VMM could no longer use segmentation to
protect itself from the guest.

• The lahf and sahf instructions were removed from
long mode. These instructions move ALU-flags to and
from the 8 bit %ah, respectively. For a binary transla-
tor, they provide a faster way to save and restore flags
than the alternative instructions, pushf and popf, that
move flags to and from the stack.

Lacking lahf/sahf would be an inconvenience, but lacking
segment limit checks made building a high performance BT-
based 64 bit VMM much harder. Fortunately, AMD saw
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enough potential value in having a 64 bit virtualization so-
lution that they added support for segment limit checks and
lahf/sahf in “Revision D” of the processor.

5.1 The Peer Model
With the necessary architectural support secured from AMD,
we set out to virtualize long mode in much the same manner
as we had previously virtualized the 16/32 bit modes. But,
along the way, we had to make a few intermediate stops.

We got an Opteron prototype system (in a large box with
rollerskate wheels). First, we installed a 32 bit host OS on
it, and verified that our existing 32 bit VMM could run VMs
on it. As expected, this step was easy: the x64 architecture
was indeed backwards compatible with 32 bit x86. Let us
denote this configuration 32

32
.

Next, we installed a 64 bit host OS, and began pondering
how to write the “world switch code” that would get from a
64 bit host to a 32 bit VM running on our 32 bit VMM, i.e.,
32

64
. We approached this challenge with some trepidation:

back in the 80286 days, CPUs could switch from old-style
8086 real mode to new-style 80286 protected mode, but they
had no reliable way to get back! Might there be a similar
problem lurking in the transition between 32 and 64 bit pro-
tected mode? Fortunately, while this mode switch was del-
icate, involving taking the CPU all the way back to 16 bit
real mode and running instructions on an identity-mapped
page (i.e., one with the same virtual and physical address),
this all worked out. Soon, we had a 32 bit VM running on
our VMM with the host in 64 bit mode. The CPU happily
transitioned between long mode and legacy mode thousands
of times per second.

Feeling confident from this experience, we set out in earnest
to virtualize long mode, i.e., implement the 64

32
and 64

64
con-

figurations. Since we already had a 16- and 32-bit capable
VMM, we decided to write a new long-mode capable VMM
that could do just that: virtualize x64 long mode. We would
use this “vmm64” when the guest was running in long mode
and use our existing VMM, now renamed“vmm32”when the
guest was running 16 or 32 bit code. This decision allowed
us to reuse our existing VMM largely unchanged while keep-
ing long mode functionality in a new binary. We hoped this
would improve performance and keep the task ahead of us
simpler. Soon we started using the term “peers” to describe
the (vmm32, vmm64) pair that would cooperate to run a 64
bit guest.

In addition to promising code reuse, the peer model assured
us that 32 bit code would execute in exactly the same man-
ner, whether the guest was potentially using long mode on
an x64 CPU or using legacy mode on a 32 bit legacy CPU. In
a commercial setting where paying customers commit mis-
sion critical workloads to our platform and require extremely
high reliability, avoiding duplicated functionality is not just
attractive, but almost a requirement.

While we would ship two separate binaries, one 32 bit and
one 64 bit, we still wanted as much source code shared be-
tween the two as possible. We started thinking of our source
code as having three flavors: 32 bit, 64 bit, and common
code. The common code would be compiled twice: once

into the vmm32 binary and once into the vmm64 binary.
Initially, 100% of our source code was 32 bit, and 0% was
common and 64 bit. By the time we shipped our first 64
bit capable product, VMware Workstation 5.5 in 2005, the
breakdown was approximately 15% 32 bit specific source,
15% 64 bit specific source, and 70% common source. We
consider this breakdown a successful outcome: while we had
two binaries, each just a few hundred KBs, there was very
little source code duplication. (It is not, however, the end-
stage; more on that later.)

As with the existing vmm32, the new vmm64 would use
BT for privileged code, and direct execution for user code.
When running translated code, the VMM would use the
“reintroduced” (long mode) segment limit checks to protect
the VMM’s address space.

The first step was to write a 64 bit peer that could merely
reflect interrupts back to the host, while not even trying to
run the guest. This required us to use the world switch code
from our earlier 32

64
milestone if the host OS was 32 bit, or

a 64-to-64 bit version for a 64 bit host OS.

To bring up the 64 bit peer, we repurposed our 32

64
switch

technology one more time, now wrapping it into a minimal
toy OS that would start in real mode, reach 32 bit pro-
tected mode, then switch to long mode and run a handful of
instructions before going back to 32 bit mode and shutting
down. Virtualizing this minimal OS kept us busy for weeks,
forcing us to deal with long mode paging, descriptor tables,
control registers, and, of course, 64 bit BT in general.

Drawing upon experience from our 32 bit VMM, we knew we
wanted to have a full 64 bit interpreter as our guaranteed-to-
be-complete execution mechanism. It would deal with the
most contrived corner cases like a page fault on an access
straddling a page boundary in the middle of a task switch.
In other words: CISC fun. The interpreter would be our
complete mechanism, giving us the confidence to write a
speed-focused binary translator. We would have one very,
very complete path and one very fast path.

Dividing ourselves into two subteams, one team set out to
write the translator, the other to write the interpreter. The
next day (!), the translator team reported back: we have a
complete translator. Indeed, it was complete; every transla-
tion called into the interpreter with a decoded instruction:
“please run this one.” Now pressure was on the interpreter
team. Soon, they got to the point where the minimal test
could run. Meanwhile, the translator team gradually shifted
the burden away from the interpreter by adding“real” trans-
lations for IDENT instructions, branches, calls, returns, etc.
(in rough order of dynamic frequency).

Having run the long mode equivalent of “hello world,” the
next challenge was clear: 64 bit Linux and Windows. The
details of getting from the minimal test OS to a real OS were
overall unsurprising. One particularly memorable moment
was the day we got our first 64 bit blue-screen of death
(BSOD) full of amazing 64 bit hex numbers. We happily
printed it out, posted the picture on our door, and sent mail
with a screen shot to “all,” declaring victory.
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Indeed, from this point on, victory was in sight. We got
Linux and XP to boot. We added optimizations to enable
descriptor table shadowing, a caching MMU, direct execu-
tion, and soon we found that 64 bit guests ran as well as, if
not better, than 32 bit guests ever had. The “better” part
we ascribe to a cleaner 64 bit architecture and less address
space pressure (so less use of memmap and other operations
that suffer from overheads in a virtual environment).

5.2 Peer Elimination
While peers allowed us to reuse existing code, and focus on
the new long mode separately from legacy modes, peers con-
tributed their own complexity. Whenever the guest would
switch execution mode, for example in response to taking a
System Management Interrupt out of long mode into 16 bit
real mode, the VMM would need to switch from the vmm64
peer to the vmm32 peer. The peer switch itself was delicate
and somewhat slow, but fortunately also infrequent. Com-
plexity also resulted from the management of peer-shared
state, including virtual device and VCPU state, as well as
VMM implementation state such as trace data structures
and shadow page tables. Thus, as 64 bit CPUs became more
prevalent, it became appealing to run the VMM exclusively
in long mode, i.e., have just one peer, vmm64.

To always run in long mode, we extended the 64 bit trans-
lator to accept 16 and 32 bit guest code input but produce
64 bit output, a form of translation we call “widening” [8].
Returning to our 32 bit spin lock example from Section 3.1,
widening translation produces this 64 bit output:

* lea -4(%rsp),%esp ; PROT_PUSH
mov %ebx,(%rsp)
mov %eax,%edx ; IDENT
and $0xfd,vcpu.flags ; PRIV
mov $1,%ecx ; IDENT
xor %ebx,%ebx

* mov %ebx,%eax ; IDENT
lock
cmpxchg %eax,%ecx,(%edx)
test %eax,%eax
jnz [spin] ; JCC

* mov (%rsp),%rbx ; WIDEN_MEM
lea 4(%rsp),%esp

* mov (%rsp),%r11d ; RET_LAUNCH
mov %rcx,%r8
movzx %r11b,%ecx
lea 4(%rsp),%esp
jmp rtc(8*%rcx)

The first TU begins with the translation of a push instruc-
tion. The 32 bit translation used an IDENT translation for
push, but 64 bit mode on x86 only allows for 64 bit stack op-
erations. Since the guest expects only 32 bits to be written
to the stack, the widening translator must break the push
into an update of the stack pointer followed by a write to
memory. The stack pointer adjustment uses a“load effective
address” lea instruction, which can perform addition, but,
unlike an add instruction leaves ALU-flags undisturbed. In
this case, we use lea to subtract four from %rsp, storing the
result into %esp (i.e., zeroing the high 32 bits of %rsp).

The memory accessing cmpxchg is translated IDENT just
like in 32 bit mode, but operates a bit differently. Unlike

a 32 bit guest on a 32 bit VMM, and a 64 bit guest on a
64 VMM, with a 32 bit guest on a 64 bit VMM, we have
plenty of free address space. Accordingly, we place the 64
bit VMM above 4 GB, i.e., above the highest address that
a 32 bit guest can generate. This ensures (1) that there
is no overlap between guest and VMM address space usage
(and therefore no performance cliff), and (2) that there is
no need for segment limit checks to enforce the guest/VMM
boundary.

To confine translated code to the low 4 GB of the address
range, the translator can apply a prefix on memory refer-
ences to clip addresses from 64 bit to 32 bits. By leaving
out the prefix the translator still has an escape mechanism to
reach VMM data structures just as the %gs prefix allowed
when using segment limits. The cli translation above no
longer needs the %gs prefix that it had in the 32 bit trans-
lation. Moreover, by setting up a guard page at 4 GB, the
translator can often get away with eliminating the address
prefix. For example, if the translator can prove that the
high 32 bits of %rax are zero, a memory reference like (%eax)
can be translated to (%rax), which is essentially as good as
IDENT.

The above example came from a guest using flat segments.
Guests that use non-flat segments, including when running
in real mode, require the widening translator to do limit
checks and base offsetting in “software.” This results in
longer and slower translations, but such non-flat code is rare
and typically designed to run on slower CPUs (e.g., OS/2
designed to run on a 33 MHz 80386), so the overheads are
affordable on fast modern CPUs.

We first shipped vmm64 in 2005, but only now, almost five
years later, has the time come when we can move all func-
tionality into vmm64 and eliminate vmm32. We had to wait
for vmm64 to gain the required functionality, but more im-
portantly, we had to wait for 64 bit CPUs to become ubiq-
uitous so that we have within sight the day we can retire
support for vmm32. Otherwise, we would find ourselves in
the undesirable position of supporting legacy guest execu-
tion with two different implementations, one in each peer.

5.3 Intel’s EM64T
The 64 bit x64 architecture originated with AMD’s Opteron.
In 2004, just a year later, Intel shipped their 64 bit ex-
tension of x86, calling it IA-32e or EM64T. This architec-
ture is surprisingly similar to AMD’s, including the removal
of lahf/sahf and segment limit checks. While Intel later
added back lahf/sahf, and thereby enabled widening BT,
Intel never reintroduced segment limit checks in long mode.
To this date, to run a 64 bit guest on an Intel CPU us-
ing VMware’s software, the CPU must have VT-x hardware
support for virtualization.

6. HARDWARE SUPPORT
By 2005, both Intel and AMD were publicly discussing ar-
chitectural extensions to enable trap-and-emulate virtualiza-
tion of the x86 architecture. These extensions, named VT-x
and AMD-V, respectively, differ in details but their overall
designs are similar and they both enable x86 instruction set
virtualization without the need for BT [3, 10]. We review
this “first generation” hardware support in Section 6.1.
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Subsequently, in 2007-8, additional hardware support for
virtualization, now seeking to eliminate the need for shadow
page tables, was brought to market: AMD added Rapid Vir-
tualization Indexing (RVI, originally named Nested Page Ta-
bles, NPT) and Intel added Extended Page Tables (EPT).
Again, while differing in names and details, the two vendors’
architectures are remarkably similar overall. We review this
“second generation” hardware support in Section 6.2.

6.1 Instruction Set Virtualization: VT-x and
AMD-V

Since VT-x and AMD-V differ only in details, we describe
the hardware support using common terminology. The an-
chor point is an in-memory data structure, which we refer
to as a virtual machine control block (VMCB). The VMCB
combines control state with a subset of the guest VCPU
state. A new, less privileged execution mode, guest mode,
supports direct execution of guest code, including privileged
kernel code. To contrast with guest mode, we refer to the
previously architected execution mode as host mode.

A new instruction, vmrun, transfers from host to guest mode.
Upon execution of vmrun, the hardware loads guest state
from the VMCB and continues execution in guest mode.
Guest execution proceeds until some condition, expressed by
the VMM using the control bits of the VMCB, is reached. At
this point, the hardware performs an exit operation, which
is the inverse of vmrun: guest state is saved to the VMCB,
VMM state is loaded, and execution resumes in host mode,
now in the VMM.

To aid the VMM in handling the exit, the hardware writes
certain exit code fields in the VMCB. For example, exits
due to guest in/out instructions provide the port number,
width, and direction of the operation whereas exits due to
page faults provide the faulting address and access mode.
After emulating the effect of the exiting operation in the
VMCB, the VMM again executes vmrun to resume execution
of the guest.

Within guest mode, the VM can issue system calls to switch
between kernel and user mode, use segmentation, run in-
structions like popf that are sensitive to privilege level, change
code size between 16, 32 and 64 bit code, and take faults
without causing any exits to the VMM.

For some instructions, such as cpuid, an exit is mandatory.
For many others, the VMM can choose whether to interpose
by setting control bits in the VMCB. For example, at times,
VMM may request an exit when the guest attempts to ex-
ecute the rdtsc (”read time-stamp counter”) instruction to
help the VMM virtualize time and timers with greater accu-
racy; at other times, the higher performance permitted by
exit-free execution of rdtsc may be desirable.

The first generation hardware support provides a fairly com-
plete virtualization solution, leaving the VMM with the task
of vectoring to emulation code based on exit codes provided
in the VMCB. Most of this emulation code remains the same,
whether instruction execution is done with BT or hardware
support. The emulation code includes peripheral device
models, code for delivery of guest interrupts, and infrastruc-
ture tasks such as logging, synchronization and interaction

with the host platform. Since first generation hardware sup-
port lacks explicit support for memory virtualization, the
VMM must implement a software MMU using shadow page
tables. However, unlike the BT case, the address space de-
fined by the shadow page tables is active only when running
in guest mode. This gives the guest access to its entire ad-
dress space, while the VMM can have a full address space of
its own. The price for this “convenience” is a context switch
on each vmrun and exit.

The performance characteristics of the hardware-assisted VMM
differ substantially from the BT-based VMM. With hardware-
assist, the guest runs at full speed, unless an exit is triggered.
Thus, virtualization overheads are determined as the prod-
uct of the exit frequency and the average cost of handling
an exit.

Early implementations of hardware support had quite high
exit costs. For example, the Intel P4 model 672 CPU took
4340 cycles for a guest to VMM to guest “null” round-trip
[1]. Later processors have reduced these costs by almost
an order of magnitude, but exits, at several hundred cycles
each, are still far from free. In addition, one must add in
software costs for actually handling the exit. This leaves us
with a situation where reducing the frequency of exits is the
most important optimization.

To help avoid the most frequent exits, VT-x and AMD-V
include ideas similar to the IBM System 370 interpretive ex-

ecution facility [11]. Essentially, certain types of exits can be
“buffered” in the VMCB rather than unconditionally causing
exits. Consider popf. A naive extension of x86 to support
trap-and-emulate virtualization would trigger exits on all
guest mode executions of popf to allow the VMM to update
the virtual “interrupts enabled” bit. However, guests may
execute popf very frequently, leading to an unacceptable exit
rate. Instead, the VMCB includes a hardware-maintained
shadow of the guest %eflags register. When running in
guest mode, instructions operating on %eflags operate on
the shadow, removing the need for exits.

The exit rate is a function of guest behavior, hardware de-
sign, and VMM software design: a guest that only computes
never needs to exit. Hardware provides means for throttling
some exit types, and VMM design choices, particularly the
use of traces and hidden page faults, directly impact the exit
rate.

6.2 Memory Virtualization: RVI and EPT
To drive a software MMU, a VMM using first generation
hardware support must interpose on several guest events:

• the VMM must write-protect primary page tables to
trigger exits when the guest updates primary page ta-
bles so that the VMM can propagate the change into
the shadow page tables (e.g., invalidate).

• the VMM must request exits on page faults to dis-
tinguish between hidden faults, which the VMM con-
sumes to populate shadow page tables, and true faults,
which the guest consumes to populate primary page
tables.
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Figure 3: Nested paging hardware.

• the VMM must request exits on guest context switches
so that it can activate the shadow page tables corre-
sponding to the new context.

We learned the importance of fast trace handling from years
of work with the BT-based VMM. Unfortunately, the main
tool to speed up traces, adaptive BT, does not carry over to
hardware-assisted virtualization. With the resulting higher
trace costs, and little flexibility to “work” the three-way
tradeoff outlined above, it came as no surprise that first gen-
eration hardware support often did not outperform a BT-
based VMM [1].

We speculate that this situation, as well as experience from
IBM’s s/370 machines [11] motivated AMD and Intel to im-
plement a second generation of hardware support, aimed
directly at memory virtualization.

Both AMD’s RVI and Intel’s EPT hardware support for
memory virtualization require use of their respective forms
of hardware support for instruction virtualization. In other
words, one can use AMD-V/RVI and VT-x/EPT, but nei-
ther RVI nor EPT can be combined with BT.

To use RVI or EPT, the VMM maintains a hardware-walked
“nested page table” that translates gPAs to hPAs. This
mapping allows the hardware to dynamically handle guest
MMU operations, eliminating the need for VMM interposi-
tion. The operation of this scheme is illustrated in Figure 3.

While running in guest mode, the TLB contains entries map-
ping gVAs all the way to hPAs. The process of filling the
TLB in case of a miss is more complicated. Consider the
case of a guest reference to virtual address V that misses in
the hardware TLB:

1. The hardware uses the guest page table pointer %cr3

to locate the top level of the guest’s hierarchical page
table.

2. The guest’s %cr3 contains a gPA, which must be trans-
lated to a hPA before dereferencing. The hardware
walks the nested page table for the guest’s %cr3 value
to obtain the hPA of the top level of the guest’s page
table hierarchy.

3. The hardware reads the guest page directory entry cor-
responding to gVA V yielding a gPA W .

4. The gPA read from the page table entry in step 3 must
now be translated via the nested page table before pro-
ceeding. Steps 3 and 4 repeat once for each level in
the guest page table (up to four levels for a long mode
guest).

5. Having discovered the hPA of the final level of the
guest page table hierarchy, the hardware reads the
guest page table entry corresponding to V . In our ex-
ample, this page table entry points to gPA X, which
is translated via a final walk of the nested page table,
e.g. to hPA Y .

6. The translation is complete: gVA V maps to hPA Y .
The page walker can now fill the TLB with an ap-
propriate entry (V, Y ) and resume guest execution, all
without VMM intervention.

With this hardware support, all the exit-related costs asso-
ciated with the software MMU go away: there are no trace-
induced exits, no context-switch exits, and no hidden/true
fault exits. Moreover, the VMM does not have to allocate
memory for shadow page tables, reducing memory usage.

However, these benefits do not come for free. The cost to
service a TLB miss will be higher with nested paging than
without. In a naive implementation, without caching, the
number of steps required to fill the TLB is quadratic in the
depth of the page tables: the nested page table must be
walked for each level of the guest page table. Fortunately,
as described by Bhargava et al. [6], locality properties make
it possible to effectively cache data required by most of these
steps, reducing the TLB miss costs substantially. Moreover,
use of large pages (2 MB and 1 GB) in the guest and VMM
page tables can both reduce the number of TLB misses and
speed up the handling of the ones that remain.

For workloads that execute mostly in a single static address
space, such as a thread-based Java workload, there are few
performance benefits to nested page tables (other than the
reduction in memory usage) since such workloads have little
trace activity, few hidden faults, and few context switches.
However, for many other workloads, including ones that fork
short-lived processes (e.g., some web servers and make jobs),
avoiding software-MMU related exits more than outweighs
the cost in TLB misses with nested paging. All in all, our ex-
perience with second generation hardware support has been
favorable; it usually yields better performance, and – as im-
portantly – it significantly reduces performance cliffs.

7. NESTED VIRTUALIZATION
The idea of nested virtualization, i.e., running a virtual ma-
chine in a virtual machine, goes back to the mainframe era
and has now re-emerged in the x86 world [5, 12].

We found the first use case within our own engineering or-
ganization: just as an OS developer benefits from the con-
trolled development environment, offered by VMs, so can a
hypervisor developer benefit from a controlled development
environment that permits nesting of virtual machines. For
example, we have been able to use nested virtualization to
debug “host crashes.”
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We found the next use case in our QA organization: by
testing our vSphere management software against virtual-
ized ESX hosts, we can scale the test environment at lower
hardware costs by having each physical host run several ESX
VMs.

We also found use cases in sales, where one can demo a full
vSphere setup with multiple virtualized hosts and manage-
ment software by running VMs on a laptop, and training,
where one can practice installation, setup, and work flow
with virtual ESX hosts.

However, the most compelling reason why nested virtualiza-
tion is inevitable, even in production environments, comes
from observing that recent versions of popular operating sys-
tems now use virtualization internally, either to establish
compatible environments (e.g., XP mode on Windows 7) or
to partition resources. Running such guests requires nested
virtualization to use all their features.

Given all these use-cases, what does it take to run a nested
virtual machine with reasonable performance? First, note
that our VMM offers several different execution modes. Some
nest more readily than others. For example, it is relatively
straightforward to run a BT-based VMM inside a VM that
runs on a VMM using VT-x/EPT or AMD-V/RVI. The BT-
based VMM needs no special hardware features to support
virtualization: it is just an x86 program like any other. In
contrast, running a BT-based VMM on top of a BT-based
VMM is prone to suffer inefficiencies. For example, the outer
VMM will see the inner VMM’s TC as a“program”that uses
self-modifying code extensively. Self-modifying code suffers
performance overheads as the outer VMM needs to inval-
idate translated code whenever its “source” code changes.
Worse still, the inner VMM will (unless modified for the
purpose of nesting) tend to use addresses that overlap the
outer VMM, causing much more frequent guest/VMM col-
lisions than when running “normal” guests.

More interestingly, both VT-x and AMD-V can“self-virtualize.”
That is, when a VMM runs on a physical CPU with this
hardware support for virtualization, it is possible, with some
effort, to present a virtual CPU to the guest that has the
same features. In practice, performance is much better when
going one step further and virtualizing VT-x/EPT or AMD-
V/RVI: the lower exit frequency of the inner VM that runs
with EPT or RVI will result in much less overhead from
nested virtualization.

Virtualizing VT-x and AMD-V highlighted a performance
difference between the two architectures. With AMD-V, the
VMCB has a defined in-memory layout that the VMM ac-
cesses using plain loads, stores, etc. Because VMCB accesses
use normal memory operations they run at full speed even
for a nested VMM. With VT-x, the VMCB is an opaque
data structure that must be accessed using special purpose
vmread and vmwrite instructions. This layer of abstrac-
tion gives the processor freedom to change the layout of
the VMCB or implement special purpose caching. But with
nested VT-x, each time the inner VMM uses vmread or
vmwrite it generates an exit to the outer VMM. A nested
vmread or vmwrite therefore runs about two orders of mag-
nitude slower than natively. To get good performance with

nested VT-x, the (inner) VMM must be written to use as
few of these instructions as possible per exit.

Without the ability to run nested VMs, virtualization could
have fallen victim to its own success. While nested virtual-
ization is still in the early stages, we are hopeful that the
technology will work well. And, as work progresses towards
this goal, nested virtualization has already proven itself to
be a source of brain teasers and fun problems to debug!

8. OTHER TOPICS
To stay within a reasonable length, this paper had to omit
discussion of several interesting features of the VMM. We
briefly list the most important functionality here.

A VMM is responsible for virtualizing timers in such a man-
ner that the virtual machine sees a “sufficiently realistic”
view of the world that it will run correctly. Timers include
devices that can generate periodic or one-shot interrupts as
well as devices that measure elapsed time. In particular,
the VMM must keep these different time sources consistent
with each other, across multiple VCPUs, including under
circumstances of overcommit where a particular VM may
be descheduled for periods of time. Solving this problem
well, such that guests can track time-of-day with an accu-
racy of a few parts per million, and measure elapsed time
accurately down to fractions of a second, is a surprisingly
hard problem [18].

Our VMM implements a record/replay capability that al-
lows the entire virtual instruction stream of a VM to be
captured in a form that can be replayed deterministically,
i.e., with instruction-for-instruction accuracy [21]. While re-
stricted to uniprocessor VMs, this capability forms the basis
for a replay-based debugger that makes non-deterministic
bugs deterministic (once recorded) and provides a reverse
execution capability, greatly helping the debugging of soft-
ware running in VMs.

The same record/replay technology supports a fault toler-
ance solution: by recording the execution trace of a “pri-
mary” VM and transmitting it over a network to a different
host where a “backup” VM replays it, the backup VM can
act as a hot standby, ready to take over should the pri-
mary crash. Since the replaying VM’s execution matches
the recording one’s with instruction-level precision, fail-over
can be done at any time without any data loss [16]. The key
value of this approach to fault tolerance comes from the fact
that it is much more network-bandwidth efficient to trans-
mit the recording of VM execution from the primary to the
backup and regenerate the VM state than directly transmit
the state that has changed.

The VMM implements support for managing the memory
working sets of guests including techniques to support over-
commitment and remapping of memory, such as ballooning,
swapping, transparent page sharing [19] as well as NUMA-
migration when VMs are rescheduled. This cooperation is
necessary because while the vmkernel specifies what must
be achieved, the VMM knows how and where the memory
is in use.
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9. CONCLUSIONS
Over the past twelve years, we have witnessed x86 virtual-
ization proceed from a technical curiosity to the foundation
for a new way of organizing data centers and information
technology. To facilitate this, the VMM evolved from a 32
bit software system focusing on desktop workloads to a 64
bit, vSMP-capable platform that can run even the most chal-
lenging server workloads.

Twelve years is a long time, but is software life measured in
dog years or human years? Does the VMM today feel old
or is it ready to take on new challenges? Overall, we see
things positively. While large changes were implemented
over the years and today’s VMM shares little code with the
one that started it all, the overall design remains minimal
and appropriate for the task at hand. By constantly retiring
obsolete code and improving the architecture we continue to
have a VMM with little legacy code or accretion of cruft:
the VMM is still only a few hundred kilobytes in size. Our
guiding philosophy is that each simplification, such as the
recent elimination of peers, gives us a renewed “complexity
budget” that we can spend to meet new challenges.

Two contemporary challenges stand out. First, VMs must
continue to grow with the workloads being deployed. This
means keeping up with the virtual version of Moore’s law by
adding VCPUs and memory at the rate the corresponding
physical resources, i.e., cores and RAM, grow. Second, we
must further expand the types of workloads applicable to
virtualization, including latency- and time-sensitive work-
loads, developer workloads (e.g., profilers and debuggers),
and workloads written in new language frameworks, perhaps
spanning multiple VMs.

It is unusual for any technology to have as large an impact as
x86 virtualization has had. Which circumstances came to-
gether to make it happen? Crucially, VMware started with
a really good idea, x86 virtualization, at the right time,
when x86 servers had become so powerful that most de-
ployed servers were underutilized. Additionally, VMware
had a bold and convincing vision so it could attract an ex-
ceptionally strong team of software engineers who set out
to perfect the VMM as well as other software modules. For
several years, VMM development focused on finding effec-
tive, simple and elegant solutions, using the x86 architec-
ture to its fullest extent and often in ways unanticipated
by the x86 architects themselves. The combination of tal-
ent, perseverance, generality of the x86 architecture, a clear
value-proposition in improved efficiency and flexibility, and
a healthy dose of luck, succeeded in creating a significant
virtualization market opportunity. As a result, a new force
came into play when x86 CPUs acquired architectural exten-
sions to directly support virtualization. In turn, the market
opportunity continued to expand, while VMM development
shifted from being purely software-based to employing a mix
of software and hardware techniques to optimize virtual ma-
chine execution. We expect this co-evolution of hardware
and software to continue as virtualization is extended to a
wider and wider set of uses.

While this paper looks back at what we have learned and
done, we are looking forward.

10. ACKNOWLEDGMENTS
First, and most importantly, we express our sincerest thanks
to the five VMware founders: Diane Greene, Mendel Rosen-
blum, Edouard Bugnion, Edward Wang, and Scott Devine.
Their vision and effort changed our careers and industry,
and now, 12 years later, made this paper possible.

The VMM benefitted from the work and inspired insights of
many talented individuals over the years. Throughout this
paper, the authors have used “we” to refer broadly to the
whole monitor group and not narrowly to the authors. In
approximate arrival order, “we” are:

Mendel Rosenblum, Edouard Bugnion, Scott Devine, Jeremy
Sugerman, Bich Le, Beng-Hong Lim, Luigi Semenzato, Ole
Agesen, Jennifer Anderson, Pratap Subrahmanyam, Jeff-
rey Sheldon, Keith Adams, Ganesh Venkitachalam, Wendy
Chien, Mike Chen, Robert Manchester, Matthias Hausner,
Taylor Hutt, Michel Lespinasse, Boris Weissman, Steve Her-
rod, Daniel Arai, Vyacheslav Malyugin, Sahil Rihan, Al-
berto Munoz, Alan Shieh, Mike Cohen, Vladimir Kirian-
sky, Doug Fawley, Michael Devine, Sriram Sankar, Jack Lo,
Steve Muckle, Garrett Smith, Geoff Pike, Sergey Lyubskiy,
Zach Amsden, Ariel Tamches, Ravi Prasad, Jim Mattson,
Eli Collins, Mike Cui, Alex Garthwaite, Dan Hecht, Alex
Moshchuk, Meenali Rungta, Bhavesh Mehta, Ka Wing Ho,
Carlos Robles, Rohit Jain, Mike Rieker, Robert Benson,
Yury Baskako, Charles Hannum, Min Xu, Alex Mirgorod-
skiy, Jeff Glasson, Wei Xu, Doug Covelli, E Christopher
Lewis, Gautam Altekar, Joyce Chen, Alexander Klaiber,
Ross Knippel, Michael Paleczny, Peter Desnoyers, Radu Rug-
ina, Kapil Arya, Wing-Chi Poon, Alok Kataria, Ron Mann,
Irene Zhang, Karen Zee, Jerri-Ann Meyer, Benjamin Sere-
brin, Palash Agarwal, Ricardo Gonzales, Patrick Chiu, Joyce
Spencer, and many others from all of VMware.

We also thank Regis Duchesne, Tim Mann and Alex Pro-
topopescu for comments on drafts of this paper.

11. REFERENCES
[1] K. Adams and O. Agesen. A comparison of software

and hardware techniques for x86 virtualization. In
ASPLOS-XII: Proceedings of the 12th international

conference on Architectural support for programming

languages and operating systems, pages 2–13, 2006.

[2] O. Agesen. Binary translation of returns. In Workshop

on Binary Instrumentation and Applications, pages
7–14, October 2006.

[3] AMD. AMD64 Architecture Programmer’s Manual

Volume 2: System Programming, June 2010. Chapter
15.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. In PLDI

’00: Proceedings of the ACM SIGPLAN 2000

conference on programming language design and

implementation, pages 1–12, 2000.

[5] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B.-A. Yassour. The turtles project: Design and
implementation of nested virtualization. In OSDI ’10:

9th USENIX Symposium on Opearting Systems Design

and Implementation. USENIX Association, 2010.

17



[6] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne.
Accelerating two-dimensional page walks for
virtualized systems. In ASPLOS XIII: Proceedings of

the 13th international conference on Architectural

support for programming languages and operating

systems, pages 26–35, 2008.

[7] P. E. Ceruzzi. History of digital computers. In
A. Ralston, E. D. Reilly, and D. Hemmendinger,
editors, Encyclopedia of Computer Science, pages
545–570. Nature Publishing Group, Londo, UK, 4th
edition, 2000.

[8] Y. Chen. Dynamic binary translation from x86-32
code to x86-64 code for virtualization. Master’s thesis,
Massachusetts Institute of Technology, 2009.
http://hdl.handle.net/1721.1/53095.

[9] B. Cmelik and D. Keppel. Shade: a fast instruction-set
simulator for execution profiling. In SIGMETRICS

’96: Proceedings of the 1996 ACM SIGMETRICS

international conference on measurement and

modeling of computer systems, pages 128–137, 1994.

[10] Intel Corporation. Intel R© Virtualization Technology

Specification for the IA-32 Intel R© Architecture, April
2005.

[11] D. L. Osisek, K. M. Jackson, and P. H. Gum. ESA/390
interpretive-execution architecture, foundation for
VM/ESA. IBM Systems Journal, 30(1):34–51, 1991.

[12] W.-C. Poon and A. K. Mok. Bounding the running
time of interrupt and exception forwarding in
recursive virtualization for the x86 architecture.
Technical Report VMware-TR-2010-003, VMware,
Inc., 3401 Hillview Avenue, Palo Alto, CA 94303,
USA, Oct 2010.

[13] G. J. Popek and R. P. Goldberg. Formal requirements
for virtualizable third generation architectures.
Commun. ACM, 17(7):412–421, 1974.

[14] G. J. Popek and C. S. Kline. The PDP-11 virtual
machine architecture: A case study. In Proceedings of

the fifth ACM symposium on Operating systems

principles, SOSP ’75, pages 97–105, 1975.

[15] J. S. Robin and C. E. Irvine. Analysis of the intel
pentium’s ability to support a secure virtual machine
monitor. In SSYM’00: Proceedings of the 9th

conference on USENIX Security Symposium, Berkeley,
CA, USA, 2000. USENIX Association.

[16] D. J. Scales, M. Nelson, and G. Venkitachalam. The
design of a practical system for fault-tolerant virtual
machines. SIGOPS Oper. Syst. Rev., 44(4), 2010.

[17] J. Sugerman, G. Venkitachalam, and B.-H. Lim.
Virtualizing I/O devices on VMware Workstation’s
hosted virtual machine monitor. In USENIX Annual

Technical Conference, General Track, pages 1–14,
2001.

[18] VMware. Timekeeping in VMware Virtual Machines,
May 2010.
http://www.vmware.com/vmtn/resources/238.

[19] C. A. Waldspurger. Memory resource management in
VMware ESX server. SIGOPS Oper. Syst. Rev.,
36(SI):181–194, 2002.

[20] L. D. Wittie. Microprocessors and microcomputers. In
A. Ralston, E. D. Reilly, and D. Hemmendinger,
editors, Encyclopedia of Computer Science, pages
1161–1169. Nature Publishing Group, London, UK,

4th edition, 2000.

[21] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam,
and B. Weissman. Retrace: Collecting execution trace
with virtual machine deterministic replay. In
Proceedings of the 3rd Annual Workshop on Modeling,

Benchmarking and Simulation, 2007.

18




