HW SET #5 (DUE BEFORE CLASS ON FEB 24, WED)

Problem 1 (10 points) Consider an alphabet with two symbols $\{A, B\}$, where P(A) = x and P(B) = 1 - x. Plot the entropy as a function of x.

Problem 2 (15 points) Consider an alphabet with three symbols $\{A, B, C\}$, where P(A) = x, P(B) = y and P(C) = 1 - x - y. Plot the entropy as a function of x and y.

Problem 3 (10 points) From the results of Problem 1 and Problem 2, we can expect that the entropy of a source reaches its maximum when all symbols are equally probable. Please prove this formally for a alphabet with N symbols.

Problem 4 (15 points) Based on the RGB-to-YUV conversion in Lecture Notes on H.261, derive the YUV-to-RGB conversion in the matrix/vector form.

Problem 5 (20 points) This is an exercise of arithmetic coding. Given the following probabilities of symbols *A*, *B*, *C*, and *D* at different time instants:

	<i>t</i> = 1	<i>t</i> = 2	<i>t</i> = 3	<i>t</i> = 4	<i>t</i> = 5
A	0.5	0.4	0.5	0.4	0.3
В	0.3	0.2	0.2	0.4	0.3
С	0.1	0.2	0.2	0.1	0.2
D	0.1	0.2	0.1	0.1	0.2

we want to encode the sequence "BCAAD" using Implementation #1 as described in class. Consider "D" as the EOF symbol. You don't need to write a program to do this. Simply compute the interval [low,high) after each symbol is processed, and summarize the result in a table. Note that all cum_freq[i] are time-varying. At the end of the five symbols, pick a value in the range [low,high) and send it to the decoder. Then, based on value, the decoder can recover the symbols. Compute the interval [low,high) after each symbol is processed and summarize the result in a table. Verify that the interval [low,high) at the encoder varies in synchronization with the interval [low,high) at the decoder.

Problem 6 (30 points) Repeat Problem 5 with Implementation #2. Use the following numbers:

C = 8 cum_freq[0] = 10

Again, at the encoder, compute the interval [low,high] and the bits to output, after each symbol is processed. At the decoder, compute value, cum, and [low,high] after each symbol is decoded.