
18-796/SPRING 1999/CHEN

(OVER→)

HW SET #2 (DUE BEFORE CLASS ON FEB 3, WED)

Problem 1 (15 points) Show that C as defined in Problem 1, HW SET #1, is an orthogonal
matrix, i.e., N

TT ICCCC == where I is an NN × identity matrix. (Therefore, the 2-D inverse

DCT (IDCT) can be written as TCYCX = .) Hint: 







= ∑∑

−

=

−

=

1

0

1

0

Recos
N

k

N
km

jN

k

e
N

km ππ

Problem 2 (10 points) One property of vector quantization is that, at high bit rate, the codebook
size becomes very large and a large number of images are required for training. Now derive the
general relationship between the bit rate and the codebook size and the number of training images
required. Let R denote the bit rate in bpp (bits per pixel) and the block size be MM × . How
many codewords are there in the codebook? Assume that each pixel in the original image is 8 bits.
How many bits are needed to transmit the codebook? Suppose one would need training data 16
times the size of the codebook (e.g., 16000 vectors to train a codebook of 100 codewords), how
many images are needed for training?

Problem 3 (40 points) Write a subroutine (method) to construct Huffman codes. The input to the
subroutine contains the probability distribution of the symbols, e.g., (0.5,0.3,0.07,0.05,0.05,0.03)

The output is an ASCII text file containing the Huffman codes for the symbols, e.g.,

S1 1
S2 01
S3 0011
S4 0010
S5 0001
S6 0000

A few notes:

1. The input probabilities may not be monotonically decreasing. Please sort them from the largest
to the smallest before you start constructing the codes.

2. After you merge the two symbols that have the lowest probabilities, the sequence of the
resulting probabilities may not be monotonically decreasing any more, please re-sort them as
necessary after each merge. If there is tie, put the merged probability after the probability it ties
with.

3. If there is a tie when you choose the two symbols that have the lowest probabilities, choose the
symbols that appear later in the set of symbols.

4. When you assign the 0’s and 1’s to the branches in the tree, always assign 0 to the lower branch
(the symbol that has lower probability) and 1 to the upper branch (the symbol that has higher
probability).

Problem 4 (15 points) Write a program to encode a file using Huffman coding. Treat a file as a
sequence of bytes, and each byte as an unsigned char. Therefore, the set of symbols (the
alphabet) is {S0, S1, S2… S255}. This program should be a two-pass process. In the first pass, the
probability (frequency) of each symbol is collected, and a Huffman table is generated based on
these probabilities (same as in Problem 3). In the second pass, each input symbol is converted into
a codeword (composed of 0’s and 1’s). These codewords are cascaded together and saved into an
output file. If the total number of bits is not a multiple of 8, pad zero bits at the end. Save also the
Huffman table into a separate file. Apply your program to each of test files that are available on the
web. What is the compression ratio you get for each file (excluding the Huffman table)?

Problem 5 (20 points) Write a Huffman decoder. The input to the decoder contains one bitstream
and its corresponding Huffman table. To build an efficient decoder, rather than looking up each
incoming codeword in the codebook sequentially, you should utilize the tree structure of the
Huffman code.

We will test your encoder and decoder with some test data. Please deposit your code into your
directory in /afs/ece/class/ece796/handin/[your userID]/HW2. Put all your
source files (*.h, *.c, etc.) and the executables (please name the encoder huffmanencode, and
the decoder huffmandecode) there. Please also include a readme.txt file detailing all the
steps, libraries, and the machine the TA needs to know to re-compile your code to re-generate the
executables. Note that it is your responsibility to let the TA know how to compile and execute
your code. Using C or C++ on PCs or Unix machines in the clusters is required. If you are
considering other languages or platforms, please discuss with the instructor. After successful
compilation, the TA will test your code by typing:

huffmanencode filename huffmantable filename_bits
huffmandecode filename_bits huffmantable filename_dec

where filename is the name of the original file, filename_bits is the compressed
bitstream, filename_dec is the decompressed file, and huffmantable is the Huffman table
(an ASCII file with the format as in Problem 3). Note that huffmantable is an output file of
huffmanencode, and an input file to huffmandecode. The TA will check the content in
huffmantable and the content in filename_bits, and compare filename and
filename_dec to verify your result.

Project Proposal

Please email to the instructor a one-page (or more) description of the project you would like to do
for this course. Include a list of names of the group members. Each group only needs to submit
one proposal. Each group should have either two or three members. In your proposal, specify the
goals/deliverables both for the mid-term project and the final project. Try to align the mid-term
project with the final project in that the mid-term project serves as a checkpoint for your progress
toward the final project. For example, if you would like to implement an H.320 video conferencing
system, you should finish H.261 by mid-term and finish the rest (audio coding, signaling, and
multiplexing) for the final project. Also, keep in mind that you should choose a topic with
workload that is proportional the number of group members. For example, building a complete a
complete H.320 video conferencing system is perhaps too much for a two-person group. On the
other hand, implementation of JPEG is too little. One purpose for the proposal is for the
instructor to provide you feedback and suggestions in this aspect.

