CMU 18-749 Fault-Tolerant Distributed Systems Spring 2006

Performance
 Team7-Sixers

Kyu Hou, Min Ho Jeung, Wangbong Lee, Heejoon Jung, Wen Shu Tang

1. Introduction
In order to improve performance, we applied a thread pool technology supported by Java. The purpose of using a thread pool is improving performance by creating many threads during initializing rather than creating each thread while running an application.
In our system, when a client sends requests for “retrieve Bus Schedule”, “buy Ticket” or “cancel Ticket”, each request is assigned to created threads. The number of thread for each request is equal to the number of replica because each thread interacts with each replica.
2. Purpose
By using thread pool, our aim is to improve performance by reducing thread creation.

3. Test cases
For ensuring better performance, we tested three cases as below. All the three cases are compared with the application that does not apply thread pool. The all test cases run 1000 times.
	Test cases
	Num. of client
	Num. of replica
	Message size(bytes)
	Delay time(ms)

	Normal case
	1
	2
	4
	0

	Increasing replica
	1
	3
	4
	0

	Increasing clients
	4
	3
	4
	0

4. Environment
The machine that we used is as below
	Client/Server
	Machine name

	Server
	chess, risk, othello

	client
	go, diplomacy, settlers, boggle

	DB
	mahjongg

5. Result
1) Normal case
[image: image1.emf]0

50000

100000

150000

200000

250000

0 100 200 300 400 500 600 700 800 900

RTT [usec]

With Thread Pool W/O Thread Pool

Figure1. Normal Case (X axis: Number of Request, Y axis: Round Trip Time)
As shown above, there is no big performance difference between using thread pool and not using thread pool. By several experiments, we concluded that we can not see any significant performance improvement. The reason is that the performance improvement is relatively trivial for total RTT, because the number of creating thread is only two which is the number of replica in the normal case.

2) Increasing replica
[image: image2.emf]0

50000

100000

150000

200000

250000

0 100 200 300 400 500 600 700 800 900

RTT [usec]

With Thread Pool W/O Thread Pool

Figure2. Increasing Replica Case (X axis: Number of Request, Y axis: Round Trip Time)
In the case of increasing replica by 3, there is a distinctive performance improvement. By increasing the replica, the number of generating thread is increased so that the cost of making thread is increased in the application that does not apply the thread pool. The interesting thing is that the performance improvement is significantly shown after 500th request.
3) Increasing clients
[image: image3.emf]0

50000

100000

150000

200000

250000

0 100 200 300 400 500 600 700 800 900

RTT [usec]

Threadpool No Threadpool

Figure3. Increasing Clients Case (X axis: Number of Request, Y axis: Round Trip Time)
In this experiment, the number of client are increased by 4, the figure above is the average RTT. The performance has been improved. Again, the performance improved as the number of requests increase. The application that applies thread pool takes more time at the beginning because it takes time for initiating thread pool. The overload explains the beginning part of the graph.
6. Conclusion
Even though the application using thread pool slows down at the beginning of request, thread pool technology is effective especially as the number of replica or the number of clients increases. In addition, thread pool technology that Java support provides several methods that can handle each thread in the main which is very convenient to control thread. To sum up, thread pool provides performance improvement especially when a system grows in terms of the number of server and clients.

1
3

