
 

 

 
 

 

 
 
 

Team 4 
Experimental Evaluation 

 
 
 

18-749: Fault-Tolerant Distributed Systems 
Priya Narasimhan 

Spring 2006 
 
 

Jonathan Gray 

Megan Hyland 

Mike Mishkin 

Bryan Murawski 

Prameet Shah 

Joe Trapasso 

 
 



 
2

 
Experimental Evaluation Data: 
 
Data for the project was obtained by creating Perl scripts to gather probe data for each of the 48 
experimental situations and writing the collected data to labeled output files. The experiments tested 
system response for varying numbers of clients (1, 4, 7, 10), varying request rates (0, 20, 40 
milliseconds), and varying reply sizes (original size, 256, 512, 1024 bytes). A general description of our 
application is a distributed auction system that allows users to buy and sell items in an auction plaza. 
Clients have the ability to create accounts, view account data, post new auctions, post bids, view bid 
history, and check on the status of an auction. The two different invocations that were used in these 
scenarios were AuctionPost and AuctionView, described briefly below.  
 

No. Method Name Input Parameters Exception Return Value Description Info. 
1 Auction Post Auction aucObj  Invalid 

auctionInfo 
 User Not 

Logged In 

Void This method 
allows a user to 
post auctions 
with specific 
information about 
the product. 

Two way, 
Database 
Access, 
Request size 
= 114 bytes, 
Reply size  
= 102 bytes 

2 AuctionView String 
AuctionID 

 Invalid 
Auction 

Auction 
aucObj 

This method 
allows a user to 
retrieve a specific 
auction with a 
given AuctionID 
string 

Two way, 
Database 
Access, 
Request size 
= 4 bytes,  
Reply size 
= 94 bytes 

 
The first of these invocations was invoked 5,000 consecutive times, and then the scripts switched to the 
second function for the final 5,000 invocations in each experiment. The next step involved creating 
scripts to sort the gathered data in Matlab, as specified in lecture, and then creating graphs to analyze the 
system performance, based on several factors: 
 

Latency(i) = P2(i) – P1(i) 

Server(i) = P5(i) – P4(i) 

Middleware = Latency(i) – Server(i) 

Req_Rate(i) = ( ) ( )( )1
10

44

6

−− iPiP
 

Throughput = ( ) ( )( ) ⋅−− 1
10

44

6

iPiP
Reply Size 

 
With these calculations, we used Matlab to develop plots of the data, which can be found and analyzed 
in this document.  



 
3

 
Experimental Evaluation Analysis: 
 
Below is a detailed explanation of the analysis performed on the data collected from the experiments. 
 
1.  Line Plots of Latency for increasing numbers of clients and different reply sizes 
 
The first thing discovered while plotting latency for the clients was that there was a noticeable 
difference in latency on each individual server’s data. This is due to the fact that when we ran the 
experiments, we utilized 2 different functions: AuctionPost and AuctionView. AuctionPost takes much 
longer as a transaction due to its increased interaction with the database, adding new information to the 
database, whereas AuctionView simply returns the requested data. Therefore, the first 5000 invocations 
in each of our datasets tend to have a noticeably larger latency, as seen below in Figure 1. 

 
Figure 1: Latency for 4 cli, 256 bytes, girltalk 

 
Also, we found that when the experiments were run the first time with 10 clients and a reply size 
different than our original size, we saw a dramatic increase in latency, as shown in the Figure 2 below. 
We have chosen to show the results for latency for 10 clients on the Chess server, but similar results 
occurred for all of the 10 client cases with larger than normal reply size. This graph represents requests 
with a reply size of 256, showing the problem described. The most likely reason for this behavior is that 
the allocation of additional memory for the larger than normal reply sizes slowed down the server with 
10 simultaneous clients.  Since there were so many clients allocating additional memory and then 
releasing it, the garbage collector most likely began to run more frequently, contributing to the higher 
latency.  This effect may have been amplified towards the end as server logs were also being stored on 
the heap.  Java likely ran out of heap space and was forced to run the garbage collector even more 
frequently.  



 
4

 
Figure 2: Latency for 10 cli, 256 bytes, chess 

 
However, after repeating the experiments with an increased heap size of 300 MB, the total number of 
spikes in latency was greatly reduced, and the overall data acted closer to expected results. Due to these 
variations in latency and insights into our application and evaluation behaviors, we decided to include 
each of our 88 latency graphs to better show trends in our data. These graphs are differentiated by 
number of clients (1, 4, 7, 10) and request size (original, 256, 512, 1024) and then individual graphs 
were made for each client. They show more expected and predictable behavior for the course of the 
experiments, and the remaining spikes can be explained by the high load on the servers. These graphs 
can be found in Appendix A at the end of this document. 

 
Figure 3: Latency for 10 cli, 1024 bytes, chess 



 
5

We also combined data collected across all servers to graph max, mean, and 99% latency for each reply 
size, given a certain number of clients. Below are the lines graphs for max (Figure 4), 99% (Figure 5), 
and mean (Figure 6) latency for all aggregated data: 

 
Figure 4: Max Latency 

 

 
Figure 5: 99% Latency 

 



 
6

 
Figure 6: Mean Latency 

 
It is clear from the graphs that after removing the top 1% of values, the 99% latency follows the mean 
latency much more closely. Both the 99% and the mean show observable upward trends in latency as 
number of clients increases for every reply size. One interesting trend we observed in the mean latency 
was that the original request size showed higher latencies in all cases than the other request sizes, shown 
in Figure 6. We believe that this is due to a Java optimization to our remote procedure call code causing 
less memory to be allocated and decreasing overall latency for the invocation when there is a non-
standard reply size. We were unable to test this theory, however, due to the fact that the MySQL server 
was at 99% load for several days, and then failed to respond. 

 
 

2. Area Plots (mean, max) latency and (mean, 99%) latency 
 
The next analysis of data was done by taking the latency, as calculated in Part 1, and plotting both the 
mean and max values (sorted by increasing mean values) and then performing the same plot using mean 
and 99% values. The data was sorted capturing mean, maximum and 99th percentile data for each of the 
48 different experiments. The graphs below show the maximum and mean latencies plotted together and 
also zoomed in due to the over 2 orders of magnitude difference in scale. Figure 8 shows the normal 
view for the mean and max latencies. Figure 7 is zoomed in by 2 orders of magnitude to show more 
closely the upward trend of latency across the experiments. 

 



 
7

 
             Figure 7: Mean/Max Latency Area Plots Zoomed                Figure 8: Mean/Max Latency Area Plots, Standard View 

 
 
We believe the large spikes shown in Figure 8 come from the indeterminism in the server and the fact 
that there are random periods of high latency.  They are much larger and more common towards the end 
because when we reran the tests with a larger heap many of our classmates were putting a huge load on 
the server, which significantly decreased our performance under 10 clients. 
 
Figure 9 is a graph of the data comparing the mean values and the 99%. The plot shows that the magic 
1% (in terms of the first half of the experiments) does indeed have a great effect on data, as the 99% 
nearly matches the mean values for the experiments. The difference between the mean and 99% 
latencies, however, show that there was greater than 1% spikes in the experimentation, most likely due 
to high server load. 

 
Figure 9: Mean/99% Latency 

 
 
 



 
8

3. Bar Graph of latency component break down and normal requests 
 
The third step in data analysis involved quantifying the outliers for the server and the middleware. Some 
of the most interesting data is contained in the figures below. Figure 10 shows the typical outliers for 
varying 1 client experiments.  It is clear that middleware time is very consistent across different reply 
sizes, but server time is much greater in the original return size.  This further supports our argument that 
in the non-standard return cases, java is doing some type of optimization to our code because we are not 
returning the data calculated in the method. 
 
Figure 11 depicts the wildly different outliers we found once we increased past the single client 
experiments.  With 4, 7, and 10 clients, we found that some outliers were caused by high server latency 
while others were from high middleware latency.  As clients increase, both network traffic and server 
load increase.  With this comes a greater likelihood of Ethernet collisions for both client to server (part 
of the middleware latency) as well as server to database (part of the server latency). 
 
Lastly, Figure 12 gives our average outliers across different numbers of client, with all other 
experimental variables fixed.  The average outlier greatly increases in total latency time as clients 
increase, as expected, and the single client case is far below all other cases.  Average latency time is 
split somewhat evenly between server and middleware, so it is difficult to draw any conclusions about 
the real culprit of these extremely high latencies.  More testing is necessary to determine the effects of 
the server to database latency and it’s affect on total server latency.  This could be done with two 
additional probes recording times into and out of the database; these bar graphs could then be split three 
ways into server, middleware, and database time.  However to get useful data, the database server would 
need to be far less utilized than it was during our experiments due to other teams’ experiments being run 
concurrently.  
 

 
Figure 10: Server/Middleware Bar graph for 1 client/0 request time 

 



 
9

 
Figure 11: Server/Middleware Bar graph for 4 clients/40 request time/1024 reply size 

 

 
Figure 12: Server/Middleware Bar graph for 20 request time/1024 reply size 

 
 
4. 3D Scatter plots of reply size by request rate by max and 99% latency 
 
Another analysis of the data was performed by graphing the maximum and 99th percentile of latency 
based on reply size and request rate of the invocation, as seen below. 
  



 
10

 
                      Figure 13: Request Rate vs. Size vs. Max Latency          Figure 14: Request Rate vs. Size vs. 99% Latency 
 

By plotting these figures, we were hoping to notice some trends between the Request Arrival Rate and 
the Maximum Latency for various request sizes. In general, we noticed scattered results for the 
Maximum case, and a cluster of recorded values once we removed the highest 1%, showing 
interdependence between request arrival and latency. Ideally here, we would notice increasing latency 
with increasing request rate. However, we believe that because each client can only handle one request 
at a time, the data did not follow such a trend. Infinite (or at least a much larger number of clients) may 
have changed the results.  Increasing latency seems to correlate with decreasing request rates.  With only 
1-10 clients, there is a strong link between and limit on the values of request rate and latency.  If latency 
increases, then clients who must send requests sequentially are forced to wait for longer responses.  This 
will limit their ability to invoke more requests and thus the overall request rate is limited.  

 
Below is a 2-dimensional graph showing the recorded data of request rate as compared with 99% 
latency. This plot shows the how latency and request rate are dependent on each other and are therefore 
limited to be in that cluster shown as described above. 

 

 
Figure 15: Request Rate vs. Latency 

 



 
11

 
5. Latency vs. Throughput 
 
The final comparison was made to consider the relationship between latency on the client side, timed 
from the request until the return of the invocation, to the throughput of the overall replies returned from 
the server, as shown in Figure 16. 
 

 
Figure 16: Latency vs. Throughput Scatter plot 

 
 

The plot is shown with a logarithmic scale, indicating a downward trend in throughput as latency 
increases. This makes sense with our predictions in that less data, in terms of bytes, is being processed 
when the observed latency is increasing. This trend is best observed above in the case of 0 inter-request 
time. 
 



 
12

Appendix A 
 

  Original Reply 256 Byte Reply 512 Byte Reply 1024 Byte Reply 

1 
C

lie
nt

 
C

lie
nt

 1
/1

 

  

  

    

  Original Reply 256 Byte Reply 512 Byte Reply 1024 Byte Reply 

C
lie

nt
 1

/4
 

 

C
lie

nt
 2

/4
 

 

C
lie

nt
 3

/4
 

 

4 
C

lie
nt

s 
C

lie
nt

 4
/4

 

 
 
 
 
 
 
 
 



 
13

 
C

lie
nt

 1
/7

 

 

C
lie

nt
 2

/7
 

 

C
lie

nt
 3

/7
 

 

C
lie

nt
 4

/7
 

 

C
lie

nt
 5

/7
 

 

C
lie

nt
 6

/7
 

 

7 
C

lie
nt

s 
C

lie
nt

 7
/7

 

 
 
 

 
 

  Original Reply 256 Byte Reply 512 Byte Reply 1024 Byte Reply 



 
14

 
C

lie
nt

 1
/1

0 

    

C
lie

nt
 2

/1
0 

    

C
lie

nt
 3

/1
0 

    

C
lie

nt
 4

/1
0 

    

C
lie

nt
 5

/1
0 

    

C
lie

nt
 6

/1
0 

    

C
lie

nt
 7

/1
0 

    

C
lie

nt
 8

/1
0 

    

C
lie

nt
 9

/1
0 

    

10
 C

lie
nt

s 
C

lie
nt

 1
0/

10
 

    

  Original Reply 256 Byte Reply 512 Byte Reply 1024 Byte Reply 


