
Team 4:
18-749: Fault-Tolerant Distributed Systems

Bryan Murawski
Meg Hyland

Jon Gray
Joseph Trapasso

Prameet Shah
Michael Mishkin

‹#›

Team Members

http://www.ece.cmu.edu/~ece749/teams-06/team4/

Meg Hyland
mhyland@andrew.cmu.edu

BrYan Murawski
bmurawsk@andrew.cmu.edu

Joe Trapasso
jtrapass@andrew.cmu.edu

Prameet Shah
phs@andrew.cmu.edu

Michael Mishkin
mmishkin@andrew.cmu.edu

Jonathan Gray
jongray@cmu.edu

‹#›

Baseline Application
 System Description

– EJBay is a distributed auctioning system that allows users to buy and sell items in an auction plaza
 Baseline Applications

– A user can create, login, update, logout, view other users’ account information.
– A user can post, view, search, post a bid, view bid history of auctions.
– Application Exceptions: DuplicateAccount, InvalidAuction, InvalidBid, InvalidUserInfo,

InvalidUserPass, UserNotLoggedIn
 Why is it Interesting?

– A service used by many commercial vendors.
 Configuration

– Operating System
• Server & Client: Linux

– Language
• Java SDK 1.4.2

– Middleware
• Enterprise Java Beans

– Third-party Software
• Database: MySQL
• Application Server: JBoss
• IDE: XEmacs, Netbeans

‹#›

Baseline Application –Configuration Selection Criteria

 Operating System: Linux
– Easier to use, since ECE clusters are configured.
– System is managed and backed up nightly by Computing Services.

 Enterprise Java Beans (EJB)
– Popular technology in the industry.
– Every members’ preference.

 MySQL
– World’s most popular open source database.
– Easy to install and use.
– Couple of group members knew it well.

 JBoss
– Easily available on the servers.
– Environment that was used in previous projects.

 XEmacs
– Most commonly learned text editor.
– Members were familiar with syntax.

 Netbeans
– Easy to install and incorporates tab completion.
– Allows you to see available functions within a class.

‹#›

Baseline Architecture

‹#›

Experimental Evaluation –Architecture
 Unmodified Server Application
 New Automated Client

– Experimental variables taken as command-line inputs
– Performs specified number of invocations and dies

 Central Library of MATLAB scripts
– One script to read in data from all probes
– Others scripts each responsible for a specific graph

‹#›

Experimental Evaluation –Results
 Expected results

– Increasing clients yield increasing latency
– Most time spent in Middleware
– “Magical 1%”
– Slightly longer latencies in non-standard reply size cases

 Actual results
– Memory / Heap problems
– Java optimizations changing behavior of code
•Shorter latency in non-standard reply size cases

– Database INSERTs take much longer than SELECTs
– Only exhibited “Magical 1%” to some extent
– Very high variability and some unusual/unexpected results
•During test runs close to deadline; very high server/database loads

‹#›

Experimental Evaluation –Original Latency

–First set of experiments revealed unusual characteristics at high load
–Default Java heap-size was not large enough
–Garbage collector ran constantly after ~4500 requests w/ 10 clients

‹#›

Experimental Evaluation –Improved Latency

– Increased heap from default to 300MB

‹#›

Experimental Evaluation –Improved Latency

–Mean and 99% Latency area graph only loosely exhibited the
“Magic 1%”behavior

‹#›

Fault-Tolerance Framework
 Replicate servers

– Passive replication
– Stateless servers
– Allow for up to 14 replicas

•One for each machine in the Games cluster (minus ASL and Mahjongg)

 Sacred Machines
– Clients
– Replication Manager
– Naming Service
– Fault Injector
– Database

 Elements of Fault-tolerance Framework
– Replication Manager

•Heartbeat
•Fault detector
•Automatic recovery (maintenance of number of replicas)

– Fault Injector

‹#›

FT-Baseline Architecture

‹#›

Replication Manager
 Responsible for launching and maintaining servers
 Heartbeats replicas periodically

– 500ms period
 Differentiates between crash faults and process faults

– Crash fault: Server is removed from the active list
– Process fault: Process is killed and restarted

 Catches port binding exceptions
– A server is already running on the current machine remove from active list

 Maintains global JNDI
– Updating server references for clients
– Indicates which server is primary/secondary
– Keeps a count of the number of times any primary has failed

 Advanced Features
– Allows the user to see the current status of all replicas
– Allows the user to see the bindings in the JNDI

‹#›

Fault Injector
 2 Modes
 Manual Fault Injection

– Runs a “kill -9” on a user specified server
 Periodic Fault Injection

– Prompts user to set up a kill timer
•Base period
•Max jitter about the base period
•Option to only kill primary replica, or a random replica

‹#›

Mechanisms for Fail-Over
 Replication Manager detected fail-over

– Detects that a heartbeat thread failed
– Kills the associated server
– Checks cause of death
– Launches new replica
– If no active servers are free, the replication manager will print a message, kill

all servers and exit
 Client detected fail-over

– Receives a RemoteException
– Queries naming service for a new primary
•Previously accessed JNDI directly

– Required a pause for JNDI to be corrected
•Sometimes this resulted in multiple failover attempts

– When JNDI was not ready after predetermined wait time

‹#›

Round Trip Client Latency w/Faults

Average Latency for all Invocations –12.922 ms

‹#›

Fail-Over Measurements

–Half fault time is client delay waiting for JNDI to be updated
–Rest of time spent between detection and correction in Rep Manager
–This discrepancy between delay-time and correction time is the major
target for improvement

‹#›

RT-FT-Baseline Architecture Improvements
 Target fault-detection and correction time in Replication Manager

– Tweaking heartbeat frequency and heartbeat monitor frequency
– Improvements in interactions with JNDI
•Additional parameters to specify primary server
•Update JNDI by modifying entries rather than rebuilding each time

 Target fail-over time in client
– Client pre-establishes connections to all active servers
– Background thread queries JNDI and maintains updated list
– On fail-over, client immediately fails-over to next active server
•No delay waiting for Replication Manager to update JNDI
•Background thread will synchronize client’s server list once it has been updated by

the Replication Manager

‹#›

RT-FT-Baseline Architecture

‹#›

RT-FT- Post-Improvement Performance

Old 1 Client
Measurements

Avg. Latency for all
Invocations: 12.922ms

Avg. Latency during a
Fault: 4544ms

New 1 Client
Measurements

Avg. Latency for all
Invocations: 16.421ms

Avg. Latency during a
Fault: 806.96ms
(82.2% Improvement)

‹#›

RT-FT- Post-Improvement Performance –4 Clients

New 4 Client
Measurements

Avg. Latency for all
Invocations: 47.769ms

Avg. Latency during a
Fault: 1030.1ms

‹#›

RT-FT- Post-Improvement Performance

 More even distribution of time
 Client reconnect time still dominates, but is a much smaller number

‹#›

Special Features
 Experimental Evaluation

– Utilized JNI for microsecond precision timers
– Maintained a central library of MATLAB processing scripts
– Perl and shell scripts to automate entire process

 Fault-Tolerant Baseline
– Powerful Replication Manager that starts, restarts, and kills servers
– Integrated command-line interface for additional automation
– Fault-Injector with dual-modes

 Fault-Case Performance
– New client functionality to pre-establish all connections
– Contents of JNDI directly correlated to actual status of servers
•Online, offline, booting

‹#›

Open Issues
 Problems launching multiple servers concurrently from Rep Manager

– Many attempts to address/debug this issue with only some success
– If multiple faults occur within short period of time, some servers may die

unexpectedly

 Improved Client Interface
– GUI or Web-Based

 Additional Application Features
– Allow deletion of accounts, auctions, and bids
– Security!
– Improved search functionality

‹#›

Conclusions
 What we have learned

– Stateless middle tier requires less overhead
– XML has poor documentation. XDoclet would have been a good tool to use.
– Running experiments takes an extremely long time. Automating test scripts

increases throughput.

 What we accomplished
– A robust fault-tolerant system with a fully automated Replication Manager
– Fully automated testing and evaluation platform

 What we would do differently
– Spending more time with XDoclet to reduce debugging
– Use one session bean instead of separating functionality into two

