
Techniques for Obtaining High Performance in Java Programs

IFFAT H. KAZI, HOWARD H. CHEN, BERDENIA STANLEY, AND DAVID J. LILJA

Minnesota Supercomputing Institute, University of Minnesota

This survey describes research directions in techniques to improve the performance of
programs written in the Java programming language. The standard technique for Java
execution is interpretation, which provides for extensive portability of programs. A Java
interpreter dynamically executes Java bytecodes, which comprise the instruction set of
the Java Virtual Machine (JVM). Execution time performance of Java programs can be
improved through compilation, possibly at the expense of portability. Various types of
Java compilers have been proposed, including Just-In-Time (JIT) compilers that
compile bytecodes into native processor instructions on the fly; direct compilers that
directly translate the Java source code into the target processor’s native language; and
bytecode-to-source translators that generate either native code or an intermediate
language, such as C, from the bytecodes. Additional techniques, including bytecode
optimization, dynamic compilation, and executing Java programs in parallel, attempt to
improve Java run-time performance while maintaining Java’s portability. Another
alternative for executing Java programs is a Java processor that implements the JVM
directly in hardware. In this survey, we discuss the basic features, and the advantages
and disadvantages, of the various Java execution techniques. We also discuss the
various Java benchmarks that are being used by the Java community for performance
evaluation of the different techniques. Finally, we conclude with a comparison of the
performance of the alternative Java execution techniques based on reported results.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and
Survey; C.4 [Computer Systems Organization]: Performance of Systems; D.3
[Software]: Programming Languages

General Terms: Languages, Performance

Additional Key Words and Phrases: Java, Java virtual machine, interpreters,
just-in-time compilers, direct compilers, bytecode-to-source translators, dynamic
compilation

1. INTRODUCTION

The Java programming language that
evolved out of a research project started
by Sun Microsystems in 1990 [Arnold and
Gosling 1996; Gosling et al. 1996] is one
of the most exciting technical develop-
ments in recent years. Java combines sev-

Authors’ addresses: I. H. Kazi, Dept. of Electrical and Computer Engineering, Minnesota Supercomputing
Inst., Univ. of Minnesota, 200 Union St., SE, Minneapolis, MN 55455; H. Chen, Dept. of Computer Science
and Engineering; B. Stanley, Dept. of Electrical and Computer Engineering; D. J. Lilja, Dept. of Electrical
and Computer Engineering.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
c©2001 ACM 0360-0300/01/0900-0213 $5.00

eral features found in different program-
ming paradigms into one language. Fea-
tures such as platform independence for
portability, an object-orientation model,
support for multithreading, support for
distributed programming, and automatic
garbage collection, make Java very ap-
pealing to program developers. Java’s

ACM Computing Surveys, Vol. 32, No. 3, September 2000, pp. 213–240.

214 I. H. Kazi et al.

“write-once, run anywhere” philosophy
captures much of what developers have
been looking for in a programming lan-
guage in terms of application portabil-
ity, robustness, and security. The cost of
Java’s flexibility, however, is its slow per-
formance due to the high degree of hard-
ware abstraction it offers.

To support portability, Java source code
is translated into architecture neutral
bytecodes that can be executed on any
platform that supports an implementa-
tion of the Java Virtual Machine (JVM).
Most JVM implementations execute Java
bytecodes through either interpretation
or Just-In-Time (JIT) compilation. Since
both interpretation and JIT compilation
require runtime translation of bytecodes,
they both result in relatively slow ex-
ecution times for an application pro-
gram. While advances with JIT compilers
are making progress towards improving
Java performance, existing Java execu-
tion techniques do not yet match the per-
formance attained by conventional com-
piled languages. Of course, performance
improves when Java is compiled directly
to native machine code, but at the expense
of diminished portability.

This survey describes the different exe-
cution techniques that are currently being
used with the Java programming lan-
guage. Section 2 describes the basic con-
cepts behind the JVM. Section 3 discusses
the different Java execution techniques,
including interpreters, JIT and static com-
pilers, and Java processors. In Section 4,
we describe several optimization tech-
niques for improving Java performance,
including dynamic compilation, bytecode
optimization, and parallel and distributed
techniques. Section 5 reviews the exist-
ing benchmarks available to evaluate the
performance of the various Java execution
techniques with a summary of their per-
formance presented in Section 6. Conclu-
sions are presented in Section 7.

2. BASIC JAVA EXECUTION

Basic execution of an application written
in the Java programming language begins
with the Java source code. The Java source

code files (.java files) are translated by a
Java compiler into Java bytecodes, which
are then placed into .class files. The byte-
codes define the instruction set for the
JVM which actually executes the user’s
application program.

2.1. Java Virtual Machine

The Java Virtual Machine (JVM) executes
the Java program’s bytecodes [Lindholm
and Yellin 1997; Meyer and Downing
1997]. The JVM is said to be virtual since,
in general, it is implemented in software
on an existing hardware platform. The
JVM must be implemented on the tar-
get platform before any compiled Java
programs can be executed on that plat-
form. The ability to implement the JVM
on various platforms is what makes Java
portable. The JVM provides the interface
between compiled Java programs and any
target hardware platform.

Traditionally, the JVM executes the
Java bytecodes by interpreting a stream
of bytecodes as a sequence of instructions.
One stream of bytecodes exists for each
method1 in the class. They are interpreted
and executed when a method is invoked
during the execution of the program. Each
of the JVM’s stack-based instructions con-
sists of a one-byte opcode immediately fol-
lowed by zero or more operands. The in-
structions operate on byte, short, integer,
long, float, double, char, object, and return
address data types. The JVM’s instruction
set defines 200 standard opcodes, 25 quick
variations of some opcodes (to support ef-
ficient dynamic binding), and three re-
served opcodes. The opcodes dictate to the
JVM what action to perform. Operands
provide additional information, if needed,
for the JVM to execute the action. Since
bytecode instructions operate primarily on
a stack, all operands must be pushed on
the stack before they can be used.

The JVM can be divided into the five ba-
sic components shown in Figure 1. Each
of the registers, stack, garbage-collected
heap, methods area, and execution engine

1 A method roughly corresponds to a function call in
a procedural language.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 215

Fig. 1 . Basic components of the Java Virtual Machine.

components must be implemented in some
form in every JVM. The registers compo-
nent includes a program counter and three
other registers used to manage the stack.
Since most of the bytecode instructions op-
erate on the stack, only a few registers are
needed. The bytecodes are stored in the
methods area. The program counter points
to the next byte in the methods area to be
executed by the JVM. Parameters for byte-
code instructions, as well as results from
the execution of bytecode instructions,
are stored in the stack. The stack passes
parameters and return values to and from
the methods. It is also used to maintain
the state of each method invocation, which
is referred to as the stack frame. The op-
top, frame, and vars registers manage the
stack frame.

Since the JVM is a stack-based machine,
all operations on data must occur through
the stack. Data is pushed onto the stack
from constant pools stored in the methods
area and from the local variables section
of the stack. The stack frame is divided
into three sections. The first is the local
variables section which contains all of the
local variables being utilized by the cur-
rent method invocation. The vars register
points to this section of the stack frame.
The second section of the stack frame is the
execution environment, which maintains
the stack operations. The frame register
points to this section. The final section is

the operand stack. This section is utilized
by the bytecode instructions for storing pa-
rameters and temporary data for expres-
sion evaluations.

The optop register points to the top of
the operand stack. It should be noted that
the operand stack is always the topmost
stack section. Therefore, the optop register
always points to the top of the entire stack.
While instructions obtain their operands
from the top of the stack, the JVM requires
random access into the stack to support
instructions like iload, which loads an in-
teger from the local variables section onto
the operand stack, or istore, which pops an
integer from the top of the operand stack
and stores it in the local variables section.

Memory is dynamically allocated to
executing programs from the garbage-
collected heap using the new operator. The
JVM specification requires that any space
allocated for a new object be preinitialized
to zeroes. Java does not permit the user to
explicitly free allocated memory. Instead,
the garbage collection process monitors
existing objects on the heap and periodi-
cally marks those that are no longer being
used by the currently executing Java pro-
gram. Marked objects are then returned to
the pool of available memory. Implementa-
tion details of the garbage collection mech-
anism are discussed further in Section 2.2.

The core of the JVM is the execu-
tion engine, which is a “virtual” processor

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

216 I. H. Kazi et al.

that executes the bytecodes of the Java
methods. This “virtual” processor can be
implemented as an interpreter, a compiler,
or a Java-specific processor. Interpreters
and compilers are software implementa-
tions of the JVM while Java processors
implement the JVM directly in hardware.
The execution engine interacts with the
methods area to retrieve the bytecodes
for execution. Various implementations of
the Java execution engine are described in
subsequent sections.

2.2. Garbage Collection

In Java, objects are never explicitly
deleted. Instead, Java relies on some form
of garbage collection to free memory when
objects are no longer in use. The JVM
specification [Lindholm and Yellin 1997]
requires that every Java runtime imple-
mentation should have some form of au-
tomatic garbage collection. The specific
details of the mechanism are left up
to the implementors. A large variety of
garbage collection algorithms have been
developed, including reference counting,
mark-sweep, mark-compact, copying, and
noncopying implicit collection [Wilson
1992]. While these techniques typically
halt processing of the application pro-
gram when garbage collection is needed,
incremental garbage collection techniques
have been developed that allow garbage
collection to be interleaved with normal
program execution. Another class of tech-
niques known as generational garbage col-
lection improve efficiency and memory lo-
cality by working on a smaller area of
memory. These techniques exploit the ob-
servation that recently allocated objects
are most likely to become garbage within
a short period of time.

The garbage collection process imposes
a time penalty on the user program. Con-
sequently, it is important that the garbage
collector is efficient and interferes with
program execution as little as possible.
From the implementor’s point of view,
the programming effort required to imple-
ment the garbage collector is another con-
sideration. However, easy-to-implement
techniques may not be the most execution-

time efficient. For example, conservative
garbage collectors treat every register and
word of allocated memory as a potential
pointer and thus do not require any addi-
tional type information for allocated mem-
ory blocks to be maintained. The draw-
back, however, is slower execution time.
Thus, there are trade-offs between ease of
implementation and execution-time per-
formance to be made when selecting a
garbage collection technique for the JVM
implementation.

3. ALTERNATIVE EXECUTION TECHNIQUES
FOR JAVA PROGRAMS

In addition to the standard interpreted
JVM implementation, a variety of execu-
tion techniques have been proposed to re-
duce the execution time of Java programs.
In this section, we discuss the alterna-
tive execution techniques summarized in
Figure 2.

As shown in this figure, there are nu-
merous alternatives for executing Java
programs compared to the execution of
programs written in a typical program-
ming language such as C. The standard
mechanism for executing Java programs is
through interpretation, which is discussed
in Section 3.1. Compilation is another al-
ternative for executing Java programs and
a variety of Java compilers are available
that operate on either Java source code or
Java bytecodes. We describe several differ-
ent Java compilers in Section 3.2. Finally,
Java processors, which are hardware im-
plementations of the JVM, are discussed
in Section 3.3.

3.1. Java Interpreters

Java interpreters are the original method
for executing Java bytecodes. An inter-
preter emulates the operation of a pro-
cessor by executing a program, in this
case, the JVM, on a target processor.
In other words, the running JVM pro-
gram reads and executes each of the
bytecodes of the user’s application pro-
gram in order. An interpreter has several
advantages over a traditional compiled
execution. Interpretation is very simple,

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 217

Fig. 2 . Alternatives for executing Java compared to a typical C programming language compilation
process.

and it does not require a large mem-
ory to store the compiled program. Fur-
thermore, interpreters are relatively easy
to implement. However, the primary dis-
advantage of an interpreter is its slow
performance.

There are several existing Java inter-
preters. The Sun Java Developers Kit
(JDK) [Sun Microsystems] is used to
develop Java applications and applets that
will run in all Java-enabled web browsers.
The JDK contains all of the necessary
classes, source files, applet viewer, debug-
ger, compiler, and interpreter. Versions ex-
ist that execute on the SPARC Solaris, x86
Solaris, Windows NT, Windows 95, and
Macintosh platforms. The Sun JVM is it-
self implemented in the C programming
language. The Microsoft Software Devel-
opment Kit (SDK) also provides the tools
to compile, execute, and test Java applets
and applications [Microsoft SDK Tools].
The SDK contains the Microsoft Win32
Virtual Machine for Java (Microsoft VM),

classes, APIs, and so forth for the x86 and
ALPHA platforms.

3.2. Java Compilers

Another technique to execute Java pro-
grams is with a compiler that translates
the Java bytecodes into native machine
code. Like traditional high-level language
compilers, a direct Java compiler starts
with an application’s Java source code (or,
alternatively, with its bytecode) and trans-
lates it directly into the machine language
of the target processor. The JIT compil-
ers, on the other hand, are dynamically-
invoked compilers that compile the Java
bytecode during runtime. These compil-
ers can apply different optimizations to
speed up the execution of the generated
native code. We discuss some common
Java-specific compiler optimizations in
Section 3.2.1. The subsequent sections de-
scribe the various Java compilers and
their specific features.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

218 I. H. Kazi et al.

3.2.1. Java Compiler Optimizations

Due to the unique features of the JVM,
such as the stack architecture, dynamic
loading, and exception handling, Java na-
tive code compilers need to apply different
types of optimizations than those used in
traditional compilers. Some commonly im-
plemented optimizations include mapping
stack variables to machine registers, mov-
ing constant stack variables into native in-
structions, increasing the efficiency of ex-
ception handling, and inlining of methods.

Mapping variables to machine regis-
ters increases native code performance
since registers are much faster to ac-
cess than memory. Registers can also be
used to reduce the amount of stack du-
plication in Java. Specifically, each Java
bytecode instruction consumes stack vari-
ables. Therefore, if a bytecode operand is
used by multiple bytecode instructions,
it must be duplicated on the stack. Reg-
ister operands can be used over mul-
tiple instructions, however, eliminating
the stack duplication overhead for those
instructions.

Stack activity also can be reduced by
moving constants on the stack into native
instructions as immediate operands.
Java bytecode instructions must receive
constant operands from the stack. Since
most architectures support instructions
with immediate operands, this optimiza-
tion eliminates the overhead of loading
the constant into a register or memory
location.

Exception overhead can be reduced by
eliminating unnecessary exception checks
and increasing the efficiency of the excep-
tion checking mechanism. For example,
arrays are often used in iterative loops.
If an array index value remains bounded
inside of a loop, array bounds checks can
be eliminated inside of the loop, which
can produce significant performance ad-
vantages for large arrays.

Inlining of static methods is useful for
speeding up the execution of method calls.
However, the Java to bytecode compiler
can only inline static methods within
the class because static methods in other
classes may be changed before actual ex-

ecution. The implementation of any sin-
gle class instantiation is stable at runtime
and can therefore be inlined. The JIT com-
pilers described in Section 3.2.2 can make
use of this fact to inline small static meth-
ods to thereby reduce the overall number
of static method calls. Dynamic methods
can be converted to static methods given a
set of classes using class hierarchy analy-
sis [Dean et al. 1995]. If a virtual method
has not been overloaded in the class hier-
archy, dynamic calls to that method can be
replaced by static calls. However, class hi-
erarchy analysis may be invalidated if a
new class is dynamically loaded into the
program.

3.2.2. Just-In-Time Compilers

A Just-In-Time (JIT) compiler translates
Java bytecodes into equivalent native ma-
chine instructions as shown in Figure 2.
This translation is performed at runtime
immediately after a method is invoked. In-
stead of interpreting the code for an in-
voked method, the JIT compiler translates
a method’s bytecodes into a sequence of
native machine instructions. These native
instructions are executed in place of the
bytecodes. Translated bytecodes are then
cached to eliminate redundant translation
of bytecodes.

In most cases, executing JIT compiler
generated native code is more efficient
than interpreting the equivalent byte-
codes since an interpreter identifies and
interprets a bytecode every time it is en-
countered during execution. JIT compi-
lation, on the other hand, identifies and
translates each instruction only once—the
first time a method is invoked. In pro-
grams with large loops or recursive meth-
ods, the combination of the JIT compila-
tion and native code execution times can
be drastically reduced compared to an in-
terpreter. Additionally, a JIT compiler can
speed up native code execution by optimiz-
ing the code it generates, as described in
Section 3.2.1.

Since the total execution time of a Java
program is a combination of compilation
time and execution time, a JIT compiler
needs to balance the time spent optimizing

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 219

generated code against the time it saves by
the optimization. Code optimization is fur-
ther limited by the scope of compilation.
Since compilation occurs on demand for
one class or one method at a time, it is diffi-
cult for a JIT compiler to perform nonlocal
optimizations. Due to the time and scope
restrictions of JIT compilation, JIT opti-
mizations are generally simple ones that
are expected to yield reasonably large per-
formance gains compared to the optimiza-
tion time.

Although JIT compilers are generally
more efficient than interpreters, there
are still advantages to using an inter-
preter. One advantage is that interpreters
are better suited to debugging programs.
Another advantage is that JIT compila-
tion compiles an entire method at once,
while interpretation translates only the
instructions that actually are executed.
If only a small percentage of the byte-
codes in a method are ever executed and
the method is rarely executed, the time
spent on JIT compilation may never be
recouped by the reduction in execution
time.

Current JIT compilers offer a variety
of target platforms and features. The
Symantec Cafe JIT is included in the
Java 2 runtime environment for Win-
dows 95/NT and Netscape Navigator
[Symantec]. Microsoft includes a JIT with
Internet Explorer for Windows 95/NT
and Macintosh [Just-In-Time Compila-
tion]. No published information is avail-
able about the implementation details of
these JIT compilers.

IBM includes an optimizing JIT
compiler in its IBM Developer Kit for
Windows [Ishizaki et al. 1999; Suganuma
et al. 2000]. This JIT compiler performs a
variety of optimizations including method
inlining, exception check elimination,
common subexpression elimination, loop
versioning, and code scheduling. The com-
piler begins by performing flow analysis
to identify basic blocks and loop struc-
ture information for later optimizations.
The bytecodes are transformed into an
internal representation, called extended
bytecodes, on which the optimizations are
performed.

The optimizations begin with method
inlining. Empty method calls originating
from object constructors or small access
methods are always inlined. To avoid code
expansion (and thus, the resulting cache
inefficiency) other method calls are inlined
only if they are in program hotspots such
as loops. Virtual method calls are handled
by adding an explicit check to make sure
that the inlined method is still valid. If
the check fails, standard virtual method
invocation is performed. If the referenced
method changes frequently, the additional
check and inlined code space adds addi-
tional overhead to the invocation. How-
ever, the referenced method is likely to
remain the same in most instances, elimi-
nating the cost of a virtual method lookup
and invocation.

Following inlining, the IBM JIT com-
piler performs general exception check
elimination and common subexpression
elimination based on program flow infor-
mation. The number of array bound excep-
tion checks is further reduced using loop
versioning. Loop versioning creates two
versions of a target loop—a safe version
with exception checking and an unsafe
version without exception checking. De-
pending on the loop index range test at the
entry point of the loop, either the safe or
the unsafe version of the loop is executed.

At this point, the IBM JIT compiler
generates native x86 machine code based
on the extended bytecode representation.
Certain stack manipulation semantics are
detected in the bytecode by matching byte-
code sequences known to represent spe-
cific stack operations. Register allocation
is applied by assigning registers to stack
variables first and then to local variables
based on usage counts. Register allocation
and code generation are performed in the
same pass to reduce compilation time.
Finally, the generated native code is sched-
uled within the basic block level to fit the
requirements of the underlying machine.

Intel includes a JIT compiler with the
VTune optimization package for Java that
interfaces with the Microsoft JVM [Adl-
Tabatabai et al. 1998]. The Intel JIT
compiler performs optimizations and gen-
erates code in a single pass without

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

220 I. H. Kazi et al.

generating a complete internal represen-
tation of the program. This approach
speeds up native code generation while
limiting the scope of the optimizations to
extended basic blocks only. The Intel JIT
compiler applies common subexpression
elimination (CSE) within basic blocks, lo-
cal and global register allocation, and lim-
ited exception optimizations.

The compiler first performs a linear scan
of the bytecodes to record stack and vari-
able information for use in later stages.
This is followed by a global register al-
location, code generation, code emission,
and code patching pass. The compiler uses
two alternative schemes for global register
allocation. The first scheme allocates the
4 callee-saved registers to the variables
with the highest static reference counts
for the duration of the method. The sec-
ond scheme iterates through all of the
variables in order of decreasing static ref-
erence counts, allocating a register to a
variable if the register is available in all
of the basic blocks that the variable is ref-
erenced.

CSE is implemented by matching
nonoverlapping subsequences in ex-
pressions. Basic blocks are represented
as a string of bytes where common
subexpressions are detected as duplicate
substrings in the string. Any two matched
substrings of less than sixteen bytecodes
is considered as a candidate for elimina-
tion. If the value calculated during the
first expression instance is still available
during the second instance of the expres-
sion, the previous value is reused and
the duplicate expression is eliminated. In
this scheme, transitivity of expressions is
not considered. Therefore, the expression
“x+ y” would not match with “ y + x.”

Unnecessary array bounds checks are
detected by keeping track of the maxi-
mum constant array index that is bounds
checked and eliminating index bound
checks for constant values less than the
maximum constant array index check. For
example, if array location 10 is accessed
before location 5, the bounds check for ar-
ray location 5 is eliminated. This optimiza-
tion is useful during array initialization
since the array creation size is considered

a successful bounds check of the highest
array index. This eliminates bound checks
for any initialization of array values us-
ing constant array indices. However, elim-
ination of bounds checks does not apply
to variables nor does it extend beyond the
scope of a basic block.

Code for handling thrown exceptions is
moved to the end of the generated code for
a method. By placing exception handling
code at the end of the method, the static
branch predictor on Pentium processors
will predict the branches to be not taken
and the exception handling code is less
likely to be loaded into a cache line. Since
exceptions do not occur frequently, this is
well-suited for the common case execution.

The OpenJIT project [Matsuoka et al.
1998] is a reflective JIT compiler writ-
ten in Java. The compiler is reflective in
the sense that it contains a set of self-
descriptive modules that allow a user pro-
gram to examine the internal state of
the compiler’s compilation and modify the
state through a compiler-supplied inter-
face. This interface allows user programs
to perform program-specific optimizations
by defining program-specific semantics.
For instance, defining properties of com-
mutivity and transitivity for a user object
provides the compiler with more informa-
tion to perform useful optimizations.

The open-source Kaffe project provides
a JIT compiler for the Kaffe JVM that
supports various operating systems on
the x86, Sparc, M68k, MIPS, Alpha, and
PARisc architectures [Wilkinson, Kaffe
v0.10.0]. The Kaffe JIT compiler uses a
machine-independent front-end that con-
verts bytecodes to an intermediate repre-
sentation called the KaffeIR. The KaffeIR
is then translated using a set of macros
which define how KaffeIR instructions
map to native code.

The AJIT compilation system generates
annotations in bytecode files to aid the
JIT compilation [Azevedo et al. 1999].
A Java to bytecode compiler generates
annotations that are stored as additional
code attributes in generated class files
to maintain compatibility with existing
JVMs. These annotations carry compiler
optimization-related information that

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 221

allow the JIT compiler to generate op-
timized native code without extensive
runtime analysis. An example of a gen-
erated attribute in the AJIT system is
the mapping of variables to an infinite
virtual register set. This virtual register
allocation (VRA) annotation is used by an
annotation-reading JIT compiler to speed
up register allocation and to identify un-
necessary duplication of stack variables.

CACAO is a stand-alone JIT compiler
for the DEC ALPHA architecture [Krall
and Grafl 1997]. The CACAO compiler
translates bytecodes to an intermedi-
ate representation, performs register al-
location, and replaces constant operands
on the stack with immediate instruction
operands.

Fajita [FAJITA] is a variation of a JIT
compiler that runs as a Java compila-
tion server on a network, independent of
the Java runtime. The server compiles
Java bytecode as a pass-through proxy
server, allowing class compilation to be
cached and shared among different pro-
grams and machines. Since the lifetime of
compiled code in this environment is gen-
erally much longer than a standard JIT,
this compiler has more time to perform
advanced optimizations.

3.2.3. Direct Compilers

A direct compiler translates either Java
source code or bytecodes into machine in-
structions that are directly executable on
the designated target processor (refer to
Figure 2). The main difference between
a direct compiler and a JIT compiler is
that the compiled code generated by a di-
rect compiler is available for future exe-
cutions of the Java program. In JIT com-
pilation, since the translation is done at
run-time, compilation speed requirements
limit the type and range of code optimiza-
tions that can be applied. Direct compi-
lation is done statically, however, and so
can apply traditional time-consuming op-
timization techniques, such as data-flow
analysis, interprocedural analysis, and so
on [Aho et al. 1986], to improve the per-
formance of the compiled code. However,
because they provide static compilation,

direct compilers cannot support dynamic
class loading. Direct compilation also re-
sults in a loss of portability since the gen-
erated code can be executed only on the
specific target processor. It should be noted
that the portability is not completely lost
if the original bytecodes or source code are
still available, however.

Caffeine [Hsieh et al. 1996] is a Java
bytecode-to-native code compiler that gen-
erates optimized machine code for the
X86 architecture. The compilation pro-
cess involves several translation steps.
First, it translates the bytecodes into an
internal language representation, called
Java IR, that is organized into functions
and basic blocks. The Java IR is then
converted to a machine-independent IR,
called Lcode, using stack analysis, stack-
to-register mapping, and class hierarchy
analysis. The IMPACT compiler [Chang
et al. 1991] is then used to generate
an optimized machine-independent IR by
applying optimizations such as inlining,
data-dependence and interclass analysis
to improve instruction-level parallelism
(ILP). Further, machine-specific optimiza-
tions, including peephole optimization, in-
struction scheduling, speculation, and reg-
ister allocation, are applied to generate
the optimized machine-specific IR. Finally,
optimized machine code is generated from
this machine-specific IR. Caffeine uses
an enhanced memory model to reduce
the overhead due to additional indirec-
tions specified in the standard Java mem-
ory model. It combines the Java class in-
stance data block and the method table
into one object block and thus requires
only one level of indirection. Caffeine sup-
ports exception handling only through ar-
ray bounds checking. It does not support
garbage collection, threads, and the use of
graphics libraries.

The Native Executable Translation
(NET) compiler [Hsieh et al. 1997] extends
the Caffeine prototype by supporting
garbage collection. It uses a mark-and-
sweep garbage collector which is invoked
only when memory is full or reaches a
predefined limit. Thus, NET eliminates
the overhead due to garbage collection in
smaller application programs that have

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

222 I. H. Kazi et al.

low memory requirements. NET also sup-
ports threads and graphic libraries.

The IBM High Performance Compiler
for Java (HPCJ) [Seshadri 1997] is an-
other optimizing native code compiler tar-
geted for the AIX, OS/2, Windows95, and
WindowsNT platforms. HPCJ takes both
Java source code and bytecodes as its
input. If the Java source code is used
as an input, it invokes the AIX JDK’s
Java source-to-bytecode compiler (javac)
to produce the bytecodes. Java bytecodes
are translated to an internal compiler in-
termediate language (IL) representation.
The common back-end from IBM’s XL fam-
ily of compilers for the RS/6000 is used to
translate the IL code into an object mod-
ule (.o file). The object module is then
linked to other object modules from the
Java application program and libraries to
produce the executable machine code. The
libraries in HPCJ implement garbage col-
lection, Java APIs, and various runtime
system routines to support object creation,
threads, and exception handling.

A common back-end for the native code
generation allows HPCJ to apply vari-
ous language-independent optimizations,
such as instruction scheduling, common
subexpression elimination, intramodular
inlining, constant propagation, global reg-
ister allocation, and so on. The bytecode-
to-IL translator reduces the overhead for
Java run-time checking by performing a
simple bytecode simulation during basic
block compilation to determine whether
such checks can be eliminated. HPCJ re-
duces the overhead due to method indirec-
tion by emitting direct calls for instance
methods that are known to be final or
that are known to belong to a final class.
It uses a conservative garbage collec-
tor since the common back-end does not
provide any special support for garbage
collection.

3.2.4. Bytecode-to-Source Translators

Bytecode-to-source translators are static
compilers that generate an intermediate
high-level language, such as C, from the
Java bytecodes (see Figure 2). A standard
compiler for the intermediate language is

then used to generate executable machine
code. Choosing a high-level language such
as C as an intermediate language allows
the use of existing compiler technology,
which is useful since many compilers that
incorporate extensive optimization tech-
niques are available for almost all plat-
forms.

Toba [Proebsting et al. 1997] is a
bytecode-to-source translator for Irix, So-
laris, and Linux platforms that converts
Java class files directly into C code. The
generated C code can then be compiled
into machine code. Toba describes itself
as a Way-Ahead-of-Time compiler since it
compiles bytecodes before program execu-
tion in contrast to JIT compilers which
compile the bytecodes immediately before
execution. All versions of Toba provide
support for garbage collection, exceptions,
threads, and the BISS-AWT, an alterna-
tive to the Sun AWT (Abstract Window
Toolkit). In addition, the Linux version
of Toba also supports dynamic loading of
classes using a JIT compiler. The Toba C
code generator naively converts each byte-
code directly into equivalent C statements
without a complex intermediate represen-
tation, relying on the C compiler to even-
tually optimize the code.

Harissa [Muller et al. 1997, Welcome to
Harissa] is a Java environment that in-
cludes both a bytecode translator and an
interpreter for SunOS, Solaris, Linux, and
DEC Alpha platforms. The Harissa com-
piler reads in Java source code and con-
verts it into an intermediate representa-
tion (IR). It then analyzes and optimizes
the structure of the Java code and out-
puts optimized C files. Since existing C
compilers can be used to perform more
generalized optimizations, Harissa’s com-
piler focuses on IR optimizations such as
static evaluation to eliminate the stack,
elimination of redundant bounds checks,
elimination of bounds checks on array in-
dices that can be statically determined,
and transforming virtual method calls
into simple procedure calls using class hi-
erarchy analysis. A complete interpret-
ing JVM has been integrated into the
runtime library to allow code to be dy-
namically loaded into previously compiled

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 223

applications. Since data structures are
compatible between the compiled code and
the interpreter, Harissa provides an envi-
ronment that cleanly allows the mixing of
bytecodes and compiled code.

TurboJ is a Java bytecode-to-source
translator [TurboJ Java to Native Com-
piler] that also uses C as an intermediate
representation. The generated code re-
tains all of the Java run-time checks, al-
though redundant checks are eliminated.
TurboJ is not a stand-alone Java runtime
system. Instead it operates in conjunction
with a Java runtime system and uses the
native JDK on a given platform for mem-
ory allocation, garbage collection, and ac-
cess to the standard thread package.

Vortex is an optimizing compiler that
supports general object-oriented lan-
guages [UW Cecil/Vortex Project, Dean
et al. 1996]. The Java, C++, Cecil, and
Modula-3 languages are all translated
into a common IL. If the Java source code
is not available, this system can use a
modified version of the javap bytecode
disassembler to translate the bytecodes
into the Vortex IL. The IL representation
of the program is then optimized using
such techniques as intraprocedural class
analysis, class hierarchy analysis, re-
ceiver class prediction, and inlining. An
enhanced CSE technique is also provided.
Once optimization is complete, either C
code or assembly code can be generated.

3.3. Java Processors

To run Java applications on general-
purpose processors, the compiled byte-
codes need to be executed through an
interpreter or through some sort of com-
pilation, as described in the previous
sections. While a JIT compiler can pro-
vide significant speedups over an inter-
preter, it introduces additional compila-
tion time and can require a large amount
of memory. If the bytecodes can be di-
rectly executed on a processor, the mem-
ory advantage of the interpreter and the
performance speedup of the JIT compiler
can be combined. Such a processor must
support the architectural features spec-
ified for the JVM. A Java processor is

an execution model that implements the
JVM in silicon to directly execute Java
bytecodes. Java processors can be tailored
specifically to the Java environment by
providing hardware support for such fea-
tures as stack processing, multithreading,
and garbage collection. Thus, a Java pro-
cessor can potentially deliver much bet-
ter performance for Java applications than
a general-purpose processor. Java proces-
sors appear to be particularly well-suited
for cost-sensitive embedded computing
applications.

Some of the design goals behind the
JVM definition were to provide portabil-
ity, security, and small code size for the
executable programs. In addition, it was
designed to simplify the task of writing an
interpreter or a JIT compiler for a spe-
cific target processor and operating sys-
tem. However, these design goals result
in architectural features for the JVM that
pose significant challenges in developing
an effective implementation of a Java pro-
cessor [O’Connor and Tremblay 1997]. In
particular, there are certain common char-
acteristics of Java programs that are dif-
ferent from traditional procedural pro-
gramming languages. For instance, Java
processors are stack-based and must sup-
port the multithreading and unique mem-
ory management features of the JVM.
These unique characteristics suggest that
the architects of a Java processor must
take into consideration the dynamic fre-
quency counts of the various instructions
types to achieve high performance.

The JVM instructions fall into sev-
eral categories, namely, local-variable
loads and stores, memory loads and
stores, integer and floating-point compu-
tations, branches, method calls and re-
turns, stack operations, and new object
creation. Figure 3 shows the dynamic fre-
quencies of the various JVM instruc-
tion categories measured in the Java
benchmark programs LinPack, Caffeine-
Mark, Dhrystone, Symantec, JMark2.0,
and JavaWorld (benchmark program
details are provided in Section 5). These
dynamic instruction frequencies were ob-
tained by instrumenting the source code
of the Sun 1.1.5 JVM interpreter to count

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

224 I. H. Kazi et al.

Fig. 3 . Dynamic execution frequency of JVM bytecode instructions measured for several common
benchmark programs.

the number of times each type of bytecode
was executed.

As seen in this figure, the most fre-
quent instructions are local variable loads
(about 30–47% of the total instructions ex-
ecuted), which move operands from the
local variables area of the stack to the
top of the stack. The high frequency of
these loads suggests that optimizing lo-
cal loads could substantially enhance per-
formance. Method calls and returns are
also quite common in Java programs. As
seen in Figure 3, they constitute about 7%
of the total instructions executed. Hence,
optimizing the method call and return
process is expected to have a relatively
large impact on the performance of Java
codes. Since method calls occur through
the stack, a Java processor also should
have an efficient stack implementation.

Another common operation supported
by the JVM is the concurrent execution
of multiple threads. As with any mul-

tithreading execution, threads will of-
ten need to enter synchronized critical
sections of code to provide mutually ex-
clusive access to shared objects. Thus, a
Java processor should provide architec-
tural support for this type of synchro-
nization. A Java processor must also pro-
vide support for memory management via
the garbage collection process, such as
hardware tagging of memory objects, for
instance.

PicoJava-I [McGham and O’Connor
1998; O’Connor and Tremblay 1997] is
a configurable processor core that sup-
ports the JVM specification. It includes
a RISC-style pipeline executing the JVM
instruction set. However, only the most
common instructions that most directly
impact the program execution are imple-
mented in hardware. Some moderately
complicated but performance critical in-
structions are implemented through mi-
crocode. The remaining instructions are

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 225

trapped and emulated in software by
the processor core. The hardware de-
sign is thus simplified since the complex,
but infrequently executed, instructions do
not need to be directly implemented in
hardware.

In the Java bytecodes, it is common for
an instruction that copies data from a lo-
cal variable to the top of the stack to pre-
cede an instruction that uses it. The pico-
Java core folds these two instructions into
one by accessing the local variable directly
and using it in the operation. This folding
operation accelerates Java bytecode exe-
cution by taking advantage of the single-
cycle random access to the stack cache.
Hardware support for synchronization is
provided to the operating system by using
the low-order 2-bits in shared objects as
flags to control access to the object.

The picoJava-2 core [Turley 1997],
which is the successor to the picoJava-
I processor, augments the bytecode in-
struction set with a number of extended
instructions to manipulate the caches,
control registers, and absolute memory ad-
dresses. These extended instructions are
intended to be useful for non-Java applica-
tion programs that are run on this Java ex-
ecution core. All programs, however, still
need to be compiled to Java bytecodes first,
since these bytecodes are the processor’s
native instruction set. The pipeline is ex-
tended to 6 stages compared to the 4 stages
in the picoJava-I pipeline. Finally, the fold-
ing operation is extended to include two
local variable accesses, instead of just one.

Another Java processor is the Sun
microJava 701 microprocessor [Sun
Microsystems. MicroJava-701 Proces-
sor]. It is based on the picoJava-2 core
and is supported by a complete set of
software and hardware development
tools. The Patriot PSC1000 microproces-
sor [Patriot Scientific Corporation] is a
general-purpose 32-bit, stack-oriented
architecture. Since its instruction set is
very similar to the JVM bytecodes, the
PSC1000 can efficiently execute Java
programs.

Another proposed Java processor
[Vijaykrishnan et al. 1998] provides
architectural support for direct object ma-

nipulation, stack processing, and method
invocations to enhance the execution of
Java bytecodes. This architecture uses a
virtual address object cache for efficient
manipulation and relocation of objects.
Three cache-based schemes—the hybrid
cache, the hybrid polymorphic cache,
and the two-level hybrid cache—have
been proposed to efficiently implement
virtual method invocations. The processor
uses extended folding operations similar
to those in the picoJava-2 core. Also,
simple, frequently executed instructions
are directly implemented in the hard-
ware, while more complex but infrequent
instructions are executed via a trap
handler.

The Java ILP processor [Ebcioglu et
al. 1997] executes Java applications on
an ILP machine with a Java JIT com-
piler hidden within the chip architecture.
The first time a fragment of Java code
is executed, the JIT compiler transpar-
ently converts the Java bytecodes into op-
timized RISC primitives for a Very Long
Instruction Word (VLIW) parallel archi-
tecture. The VLIW code is saved in a por-
tion of the main memory not visible to
the Java architecture. Each time a frag-
ment of Java bytecode is accessed for exe-
cution, the processor’s memory is checked
to see if the corresponding ILP code is
already available. If it is, then the ex-
ecution jumps to the location in mem-
ory where the ILP code is stored. Other-
wise, the compiler is invoked to compile
the new Java bytecode fragment into the
code for the target processor, which is then
executed.

While Java processors can deliver sig-
nificant performance speedups for Java
applications, they cannot be used effi-
ciently for applications written in any
other language. If we want to have bet-
ter performance for Java applications, and
to execute applications written in other
languages as well, Java processors will
be of limited use. With so many appli-
cations written in other languages al-
ready available, it may be desirable to
have general-purpose processors with en-
hanced architectural features to support
faster execution of Java applications.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

226 I. H. Kazi et al.

4. HIGH-PERFORMANCE JAVA EXECUTION
TECHNIQUES

Direct compilers or bytecode-to-source
translators can improve Java performance
by generating optimized native codes or
intermediate language codes. However,
this high performance may come at the
expense of a loss of portability and flex-
ibility. JIT compilers, on the other hand,
support both portability and flexibility, but
they cannot achieve performance compa-
rable to directly compiled code as only
limited-scope optimizations can be per-
formed. A number of execution techniques
have been developed that attempt to im-
prove Java performance by optimizing the
Java source code or the bytecodes so that
portability is not lost. Some techniques ap-
ply dynamic optimizations to the JIT com-
pilation approach to improve the quality of
the compiled native machine code within
the limited time available to a JIT com-
piler. Some other techniques improve var-
ious features of the JVM, such as thread
synchronization, remote method invoca-
tion (RMI), and garbage collection, that
aid in improving the overall performance
of Java programs. In this section, we de-
scribe these high-performance Java exe-
cution techniques.

4.1. Bytecode Optimization

One technique for improving the execu-
tion time performance of Java programs is
to optimize the bytecodes. The Briki com-
piler applies a number of optimizations to
bytecodes to improve the execution time
performance [Cierniak and Li 1997a,b].
The front-end of the offline mode of the
Briki compiler [Cierniak and Li 1997a] re-
constructs the high-level program struc-
ture of the original Java program from the
bytecodes. This high-level view of the in-
put bytecodes is stored in an intermedi-
ate representation called JavaIR. A num-
ber of optimizations can then be applied to
this JavaIR. Finally, the optimized JavaIR
is transformed back into Java source code
and executed by a Java compiler.

Converting Java bytecodes to JavaIR
is very expensive, however, requiring an

order of magnitude more time than the
time required to perform the optimiza-
tions themselves. In an on-line version
of Briki [Cierniak and Li 1997b], the
same optimizations are performed while
recovering only as much of the structure
information as needed and using faster
analysis techniques than those used in
traditional compilers. This on-line version
of Briki is integrated with the Kaffe JIT
compiler [Wilkinson, Kaffe v0.10.0], using
Kaffe to generate an IR. The compiler an-
alyzes and transforms the Kaffe IR into
an optimized IR which the Kaffe JIT back-
end then translates into native code.

One optimization in Briki attempts to
improve memory locality by data remap-
ping. Briki groups together similar fields
within objects onto consecutive memory
locations, increasing the probability that
fields will reside on the same cache line.
However, the specific criterion used by the
Briki compiler to determine similar fields
has not been described [Cierniak and Li
1997a,b]. Briki also attempts to remap ar-
ray dimensions when dimension remap-
ping will improve memory access time.
For example, in a two-dimensional array
A, location A[i][j] might be remapped to
A[j][i] if such a remapping is advanta-
geous. However, this remapping poses a
number of problems. First, Java arrays
are not standard rectangular arrays but
rather are implemented as an array of ar-
rays. Therefore, array elements in a given
dimension are not guaranteed to be of
the same size. A[i] might reference an ar-
ray of size 2 while A[j] references an ar-
ray of size 3, for instance. Since array
remapping is valid only for rectangular
arrays, Briki constrains remapping to
cases where all dimensions of the array
are accessed. Second, subscript expres-
sions in arrays can have potential side-
effects. For instance, the calculation of a
subscript may, as a side-effect, assign a
value to a variable. Remapping the array
dimensions may cause problems since the
renaming changes the evaluation order of
these expressions. To remedy this prob-
lem, Briki evaluates subscript expressions
in the correct order before the arrays are
actually referenced.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 227

The DashO Pro [DashO Pro] bytecode
optimizer applies several optimization
techniques to improve runtime perfor-
mance and reduce the size of the Java
executable. These techniques include
shortening the names of all the classes,
methods, and fields, removing all unused
methods, fields, and constant-pool entries
(both constants and instance variables),
extracting classes from accessible third-
party packages or libraries, and so on.
DashO produces one file that contains only
the class files needed for the Java program
resulting in smaller and faster Java byte-
code files.

Krintz et al. [1999] proposed a Java
class file splitting and prefetching tech-
nique to reduce the transfer delay of
bytecodes sent over the Internet. Class
file splitting partitions a Java class file
into separate hot and cold class files to
eliminate transferring code in the cold
class file that is very rarely (or never)
used. Class file prefetching inserts special
prefetch instructions into the Java class
file to overlap bytecode transfer with ex-
ecution. These optimizations use compile-
time analysis and profiling to select code
to split and to insert prefetch instructions.
Experimental results showed that class
file splitting was able to reduce startup
time for Java programs by 10% while
prefetching combined with splitting re-
duced the overall bytecode transfer delay
by 25% on average.

The Java application extractor Jax [Tip
et al. 1999] applies several techniques,
such as the elimination of redundant
methods/fields and class hierarchy spe-
cialization [Tip and Sweeney 1997], to re-
duce the size of a Java class file archive
(e.g., zip or jar files). Jax performs a whole-
program analysis on a Java class file to
determine the classes, methods, and fields
that must be retained to preserve pro-
gram behavior. It then removes the un-
necessary components of the class files to
reduce the archive size. Additionally, Jax
applies a class hierarchy transformation
that reduces the archive size by eliminat-
ing classes entirely or by merging adjacent
classes in the hierarchy. It also replaces
original class, method, and field names

with shorter names. Once methods are re-
moved from a class file, some entries in
the constant pool may appear to be redun-
dant. Thus, when the archive is rewrit-
ten after all the transformations are ap-
plied, a new constant pool is created from
scratch to contain only the classes, meth-
ods, fields, and constants that are refer-
enced in the transformed class file. Using
Jax on a number of Java archives resulted
in a 13.4–90.2% reduction in size [Tip et al.
1999].

4.2. Parallel and Distributed Execution
Techniques

A number of techniques parallelize Java
source code or bytecodes to improve the
execution-time performance of the ap-
plication. The parallelization typically
is achieved through Java language-level
support for multithreading. Thus, these
techniques maintain the portability of the
transformed parallel Java programs. Most
of these techniques exploit implicit paral-
lelism in Java programs for parallel ex-
ecution on shared-memory multiproces-
sor systems using Java multithreading
and synchronization primitives. Some ap-
proaches extend the Java language itself
to support parallel and distributed Java
programs. The performance improvement
obtained when using these techniques
depends on the amount of parallelism
that can be exploited in the application
program.

The High Performance Java project [Bik
and Gannon 1997; Bik and Gannon 1998]
exploits implicit parallelism in loops and
multiway recursive methods to generate
parallel code using the standard Java
multithreading mechanism. The JAVAR
[Bik and Gannon 1997] tool, which is
a source-to-source restructuring compiler,
relies on explicit annotations in a se-
quential Java program to transform a se-
quential Java source code into a corre-
sponding parallel code. The transformed
program can be compiled into bytecodes
using any standard Java compiler. The
JAVAB [Bik and Gannon 1998] tool, on the
other hand, works directly on Java byte-
codes to automatically detect and exploit

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

228 I. H. Kazi et al.

implicit loop parallelism. Since the par-
allelism is expressed in Java itself using
Java’s thread libraries and synchroniza-
tion primitives, the parallelized bytecodes
can be executed on any platform with a
JVM implementation that supports native
threads.

The Java Speculative Multithreading
(JavaSpMT) parallelization technique
[Kazi and Lilja 2000] uses a speculative
thread pipelining execution model to
exploit implicit loop-level parallelism
on shared-memory multiprocessors for
general-purpose Java application pro-
grams. Its support of control specula-
tion combined with its run-time data-
dependence checking allows JavaSpMT
to parallelize a wide variety of loop
constructs, including do–while loops.
JavaSpMT is implemented using the
standard Java multithreading mecha-
nism. The parallelism is expressed by a
Java source-to-source transformation.

The Do! project [Launay and Pazat
1997] provides a parallel framework
embedded in Java to ease parallel and
distributed programming in Java. The
parallel framework supports both data
parallelism and control (or task) paral-
lelism. The framework provides a model
for parallel programming and a library of
generic classes. Relevant library classes
can be extended for a particular applica-
tion or new framework classes can be de-
fined for better tuning of the application.

Tiny Data-Parallel Java [Ichisugi and
Roudier 1997] is a Java language ex-
tension for data-parallel programming.
The language defines data-parallel classes
whose methods are executed on a large
number of virtual processors. An exten-
sible Java preprocessor, EPP, is used to
translate the data-parallel code into stan-
dard Java code using the Java thread
libraries and synchronization primitives.
The preprocessor can produce Java code
for multiprocessor and distributed sys-
tems as well. However, the Tiny Data-
Parallel Java language does not yet
have sufficient language features to sup-
port high-performance parallel programs.
DPJ [Ivannikov et al. 1997] defines a
parallel framework through a Java class

library for the development of data-
parallel programs.

4.3. Dynamic Compilation

Since the compilation time in JIT compila-
tion adds directly to the application’s total
execution time, the quality of the code op-
timization is severely constrained by com-
pilation speed. Dynamic compilation ad-
dresses this problem of JIT compilation by
optimizing only the portions of the code
that are most frequently executed, i.e.,
program hotspots. Most programs spend
the majority of the time executing only
a small fraction of their code. Thus, opti-
mizing only the hotspot methods should
yield a large performance gain while
keeping the compilation speed relatively
fast.

Sun’s Hotspot JVM [The Java Hotspot
Performance Engine Architecture] uses
dynamic compilation to generate opti-
mized native machine code during run-
time. The Hotspot engine contains both a
run-time compiler and an interpreter. The
first time a method is executed, it is inter-
preted using a profiling interpreter that
gathers run-time information about the
method. This information is used to de-
tect hotspots in the program and to gather
information about program behavior that
can be used to optimize generated native
code in later stages of program execution.
After the hotspot methods are identified,
they are dynamically compiled to gener-
ate optimized native machine code. Infre-
quently executed code continues to be in-
terpreted, decreasing the amount of time
and memory spent on native code gen-
eration. Because a program is likely to
spend the majority of its execution time
in the hotspot regions detected by the in-
terpreter, the compiler can spend more
time optimizing the generated code for
these sections of the program than a JIT-
compiler while still producing an over-
all improvement in execution time. Dur-
ing code generation, the dynamic compiler
performs conventional compiler optimiza-
tions, Java specific optimizations, and in-
lining of static and dynamic methods. The
inlining optimizations are designed to be

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 229

reversible due to the problems associated
with dynamic class loading.

IBM’s Jalapeno JVM [Burke et al. 1999]
includes an adaptive dynamic optimizing
compiler that generates optimized ma-
chine code as the program is executed. The
Jalapeno JVM does not use an interpreter.
Instead, the first execution of a method
is handled by quickly compiling a method
into an unoptimized executable code. The
dynamic optimizing compiler later gener-
ates optimized executable code from the
bytecodes of the hotspot (i.e., frequently
executed) methods as determined by run-
time profile information.

The Jalapeno optimizing compiler first
compiles Java bytecodes into a vir-
tual register-based high-level intermedi-
ate representation (HIR). It then gener-
ates a control flow graph for the method.
After applying compiler optimizations on
the HIR, the intermediate executable is
converted to a low-level representation
(LIR) that includes references to spe-
cific implementation details, such as pa-
rameter passing mechanisms and object
layouts in memory. The LIR is then opti-
mized further and converted to a native
code representation using a Bottom-Up
Rewrite System [Proebsting 1992] ap-
proach. Finally, this machine specific
representation (MIR) is optimized and
assembled into machine executable code.
The optimizing compiler performs inlin-
ing both during bytecode-to-IR translation
and during HIR optimization. Inlining of
virtual functions is handled by predicting
the type of the virtual function and per-
forming a run-time check to determine the
validity of the prediction. If the predic-
tion is incorrect, the program performs a
normal virtual function invocation. Oth-
erwise, the program proceeds with the
inlined function.

The program adaptation in Jalapeno
starts with the instrumentation and re-
compilation of executable code. The ex-
ecutable code is instrumented to gather
context sensitive profile information to
aid optimization. The profile informa-
tion is used to detect program hotspots.
When a certain performance threshold
is reached, the dynamic optimizing com-

piler is invoked to recompile the hotspot
methods using context specific optimiza-
tions at all levels of representations (HIR,
LIR, and MIR). The unoptimized code is
then replaced by optimized code based on
the collected profile information. Program
adaptation continues in this cycle, with ex-
ecutable code being improved on every op-
timization iteration.

4.4. Improved JVM Features

The underlying implementation of vari-
ous JVM features, such as thread synchro-
nization, RMI support, and garbage collec-
tion, often has a significant effect on the
execution time performance of Java ap-
plication programs. While these features
make Java more powerful as a program-
ming language, they tend to add delays to
a program’s execution time. Hence, it is
important to efficiently implement these
features to improve Java performance.
Furthermore, Java, as it is now, is not
suitable for high-performance numerical
computing. To support numerical applica-
tions, Java should include features that al-
low efficient execution of floating point and
complex numbers.

4.4.1. Thread Synchronization

Thread synchronization is a potential per-
formance problem in many Java programs
that use multithreading. Since Java li-
braries are implemented in a thread-safe
manner, the performance of even single-
threaded applications may be degraded
due to synchronization. In Java, synchro-
nization is provided through monitors,
which are language-level constructs used
to guarantee mutually-exclusive access to
shared data-structures [Silberschatz and
Galvin 1997]. Unfortunately, monitors are
not efficiently implemented in the cur-
rent Sun JDK. Since Java allows any ob-
ject to be synchronizable (with or with-
out any synchronized methods), using a
lock structure for each object can be very
costly in terms of memory. To minimize
memory requirements, the Sun JDK keeps
monitors outside of the objects. This re-
quires the run-time system to first query
each monitor in a monitor cache before it

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

230 I. H. Kazi et al.

is used, which is quite inefficient. Further,
the monitor cache itself needs to be locked
during these queries to avoid race condi-
tions. Thus, this monitor implementation
approach is not scalable.

CACAO, in contrast, is a system that
implements monitors using a hash table
indexed by the address of the associated
object [Krall and Proebst 1998]. Because
only a small number of objects that re-
quire mutually-exclusive access (called a
mutex object) are locked at any given time,
this approach generally leads to decreased
memory usage. Each of these objects main-
tains a count of how many lock operations
have been performed on it without any cor-
responding unlock operations. When the
count goes to zero, the lock is not owned
by any thread. A mutex object, however,
is not destroyed when its count reaches
zero under the assumption that the mu-
tex object will be reused again soon. The
mutex object is destroyed only when a new
mutex object collides with it in the hash
table. This memory allocation approach
has the advantage of requiring less code
to implement lock and unlock operations.
Since the hash table entries will be free
only at the beginning of the program and
will never be freed again, the code to lock
the mutex need not check if the entry is
free. The unlocking code also does not need
to check whether the hash entry should be
freed.

The thin locks approach in IBM’s JDK
1.1.2 for AIX improves thread synchro-
nization by optimizing lock operations for
the most common cases [Bacon et al.
1998]. Thin locks, which require only a
partial word per object, are used for objects
that are not subject to any contention, do
not have wait/notify operations performed
on them, and are not locked to an excessive
nesting depth. Objects that do not meet
the criterion use fat locks, which are mul-
tiword locks similar to those used in the
standard Java implementation. To min-
imize the memory required for each ob-
ject’s lock, 24 bits in the object’s header
are used for the lock structure. The other
values stored in the header are compacted
using various encoding schemes to make
the 24 bits available for this lock struc-

ture. This 24-bit field stores either a thin
lock directly, or a pointer to a fat lock. The
dedicated lock for each object allows the
lock/unlock operations on the thin locks to
be performed using only a few machine
instructions. This approach also elimi-
nates the need to synchronize the monitor
cache.

4.4.2. Remote Method Invocation

The Java Remote Method Invocation
(RMI) [Remote Method Invocation Spec-
ification] mechanism enables distributed
programming by allowing methods of re-
mote Java objects to be invoked from other
JVMs, possibly on different physical hosts.
A Java program can invoke methods on a
remote object once it obtains a reference
to the remote object. This remote object
reference is obtained either by looking up
the remote object in the bootstrap-naming
service provided by RMI, or by receiving
the reference as an argument or a return
value. RMI uses object serialization to
marshal and unmarshal parameters.

The current Java RMI is designed to
support client-server applications that
communicate over TCP-based networks
[Postel 1981]. Some of the RMI design
goals, however, result in severe perfor-
mance limitations for high-performance
applications on closely connected environ-
ments, such as clusters of workstations
and distributed memory processors. The
Applications and Concurrency Working
Group (ACG) of the Java Grande Forum
(JGF) [Java Grande Forum Report] as-
sessed the suitability of RMI-based Java
for parallel and distributed computing
based on Java RMI. JGF proposed a set of
recommendations for changes in the Java
language, Java libraries, and JVM imple-
mentation to make Java more suitable for
high-end computing. ACG emphasized im-
provements in two key areas, object seri-
alization and RMI implementation, that
will potentially improve the performance
of parallel and distributed programs based
on Java RMI.

Experimental results [Java Grande Fo-
rum Report] suggest that up to 30% of
the execution time of a Java RMI is spent

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 231

in object serialization. Accordingly, ACG
recommended a number of improvements,
including a slim encoding technique for
type information, more efficient serializa-
tion of float and double data types, and
enhancing the reflection mechanism to al-
low fewer calls to be made to obtain infor-
mation about a class. In the current RMI
implementation, a new socket connection
is created for every remote method invo-
cation. In this implementation, establish-
ing a network connection can take up to
30% of the total execution of the remote
method [Java Grande Forum Report]. The
key recommendations of JGF to reduce
the connection overhead include improved
socket connection management, improved
resource management, and improved sup-
port for custom transport.

4.4.3. Java for High-Performance Numeric
Computation

The current design and implementation of
Java does not support high-performance
numerical applications. To make the per-
formance of Java numerical programs
comparable to the performance obtained
through programming languages such as
C or Fortran, the numeric features of the
Java programming language must be im-
proved. The Numerics Working Group
of the Java Grande Forum assessed the
suitability of Java for numerical pro-
gramming and proposed a number of
improvements in Java’s language fea-
tures, including floating-point and com-
plex arithmetic, multidimensional arrays,
lightweight classes, and operator over-
loading [Java Grande Forum Report].

To directly address these limitations
in Java, IBM has developed a special
library that improves the performance
of numerically-intensive Java applica-
tions [Moreira et al. 2000]. This library
takes the form of the Java Array package
and is implemented in the IBM HPCJ. The
Array package supports such FORTRAN
90 like features as complex numbers, mul-
tidimensional arrays, and linear algebra
library. A number of Java numeric appli-
cations that used this library were shown
to achieve between 55% and 90% of the

performance of corresponding highly opti-
mized FORTRAN codes.

4.4.4. Garbage Collection

Most JVM implementations use conserva-
tive garbage collectors that are very easy
to implement, but demonstrate rather
poor performance. Conservative garbage
collectors cannot always determine where
all object references are located. As a
result, they must be careful in marking
objects as candidates for garbage collec-
tion to ensure that no objects that are
potentially in use are freed prematurely.
This inaccuracy sometimes leads to mem-
ory fragmentation due to the inability to
relocate objects.

To reduce the negative performance
impacts of garbage collection, Sun’s
Hotspot JVM [The Java Hotspot Perfor-
mance Engine Architecture] implements
a fully accurate garbage collection (GC)
mechanism. This implementation allows
all inaccessible memory objects to be re-
claimed while the remaining objects can be
relocated to eliminate memory fragmen-
tation. Hotspot uses three different GC
algorithms to efficiently handle garbage
collection. A generational garbage collec-
tor is used in most cases to increase the
speed and efficiency of garbage collection.
Generational garbage collectors cannot,
however, handle long-lived objects. Conse-
quently, Hotspot needs to use an old-object
garbage collector, such as a mark-compact
garbage collector to collect objects that
accumulate in the “Old Object” area of
the generational garbage collector. The
old-object garbage collector is invoked
when very little free memory is available
or through programmatic requests.

In applications where a large amount of
data is manipulated, longer GC pauses are
encountered when a mark-compact col-
lector is used. These large latencies may
not be acceptable for latency-sensitive or
data-intensive Java applications, such as
server applications and animations. To
solve this problem, Hotspot provides an
alternative incremental garbage collec-
tor to collect objects in the “Old Object”
area. Incremental garbage collectors can

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

232 I. H. Kazi et al.

Table 1. The Benchmark Programs in SPEC JVM98 Benchmark Suite

check A simple program to test various features of the JVM
compress A modified Lempel-Ziv (LZW) compression algorithm
jess A Java Expert Shell System (JESS) based on NASA’s

CLIPS expert shell system
db A database application that performs multiple

database functions on a memory resident database
javac The Java compiler from Sun’s JDK 1.0.2
mpegaudio An application that decompresses audio files conforming

to the ISO MPEG Layer-3 audio specification
mtrt A ray tracer program that works on a scene depicting a dinosaur,

where two threads each render the scene in the input file
jack A Java parser generator that is based on the Purdue

Compiler Construction Tool Set (PCCTS)

potentially eliminate all user-perceived
GC pauses by interleaving the garbage col-
lection with program execution.

5. BENCHMARKS

Appropriate benchmarks must be identi-
fied to effectively evaluate and compare
the performance of the various Java
execution techniques. A benchmark can
be thought of as a test used to measure
the performance of a specific task [Lilja
2000]. As existing execution techniques
are improved and new techniques are
developed, the benchmarks serve as a
vehicle to provide consistency among
evaluations for comparison purposes. The
problem that exists in the Java research
community is that no benchmarks have
been agreed upon as the standard set to
be used for Java performance analysis.
Instead, researchers have used a variety
of different benchmarks making it very
difficult to compare results and determine
which techniques yield the best perfor-
mance. In this section, we identify some of
the popular benchmarks that have been
used to compare various Java execution
techniques.

Application benchmarks are used to
evaluate the overall system performance.
Microbenchmarks, on the other hand, are
used to evaluate the performance of in-
dividual system or language features,
such as storing an integer in a local
variable, incrementing a byte, or creating
an object [Java Microbenchmarks, UCSD
Benchmarks for Java].

The Open Systems Group (OSG) of
the Standard Performance Evaluation
Corporation (SPEC) [SPEC JVM98
Benchmarks] developed a Java bench-
mark suite, SPEC JVM98, to measure the
performance of JVMs. The benchmarks
in this suite are expected to serve as a
standard for performance evaluation of
different JVM implementations to pro-
vide a means for comparing the different
techniques using a common basis. SPEC
JVM98 is a collection of eight general-
purpose Java application programs, as
listed in Table 1.

SYSmark J [SYSmark] is another
benchmark suite that consists of four Java
applications: JPhoto Works, which is an
image editor using filters, the JNotePad
text editor, JSpreadSheet, which is a
spreadsheet that supports built-in func-
tions in addition to user-defined formulas;
and the MPEG video player.

A series of microbenchmark tests,
known as CaffeineMark [CaffeineMark],
has been developed to measure specific
aspects of Java performance, including
loop performance (loop test), the execu-
tion of decision-making instructions (logic
test), and the execution of recursive func-
tion calls (method test). Each of the
tests is weighted to determine the over-
all CaffeineMark score. However, since the
CaffeineMark benchmark does not em-
ulate the operations of real-world pro-
grams [Armstrong 1998], there is a ques-
tion as to whether this benchmark makes
reliable measurements of performance.
The Embedded CaffeineMark benchmark

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 233

[CaffeineMark] is similar to the Caffeine-
Mark benchmark except that all graphical
tests are excluded. This benchmark is in-
tended as a test for embedded systems.

The JMark benchmark [PC Magazine
Test Center, Welcome to JMark 2.0], from
PC Magazine, consists of eleven syn-
thetic microbenchmarks used to evalu-
ate Java functionality. Among the tests
are the graphics mix test, stack test,
bubble sort test, memory allocation and
garbage collection test, and the graph-
ics thread test. JMark is one of the
few benchmarks that attempt to evaluate
multithreading performance. VolanoMark
[Java Benchmarks] is a new server-side
Java benchmarking tool developed to as-
sess JVM performance under highly mul-
tithreaded and networked conditions. It
generates ten groups of 20 connections
each with a server. Ten messages are
broadcast by each client connection to
its respective group. VolanoMark then
returns the average number of mes-
sages transferred per second as the final
score.

The Java Grande Forum has devel-
oped a benchmark suite, called the Java
Grande Forum Benchmark Suite [Java
Grande Forum Benchmark Suite], that
consists of benchmarks in three cate-
gories. The first category, the low-level
operations, measures the performance of
such JVM operations as arithmetic and
math library operations, garbage collec-
tion, method calls and casting. The bench-
marks in the kernel category are small
program kernels, including Fourier coef-
ficient analysis, LU factorization, alpha–
beta pruned search, heapsort, and IDEA
encryption. The Large Scale Applica-
tions category is intended to represent
real application programs. Currently, the
only application program in this cate-
gory is Euler, which solves the time-
dependent Euler equations for flow in a
channel.

The Linpack benchmark is a popu-
lar Fortran benchmark that has been
translated into C and is now available
in Java [Linpack Benchmark]. This nu-
merically intensive benchmark measures
the floating-point performance of a Java

system by solving a dense system of linear
equations, A x= b. JavaLex [JLex] (a lex-
ical analyzer generator), JavaCup [CUP
Parser Generator for Java] (a Java parser
generator), JHLZip [JHLZip] (combines
multiple files into one archive file with no
compression), and JHLUnzip [JHLUnzip]
(extracts multiple files from JHLZip
archives) are some other Java application
benchmarks. Other available bench-
marks include JByte, which is a Java
version of the BYTEmark benchmark
available from BYTE magazine [TurboJ
Benchmark’s Results]; the Symantec
benchmark, which incorporates tests
such as sort and sieve [Symantec, TurboJ
Benchmark’s Results]; the Dhrystone
CPU benchmark [Dhrystone Benchmark,
Dhrystone Benchmark in Java]; Jell, a
parser generator [Jell]; Jax, a scanner
generator [Jax]; Jas, a bytecode assem-
bler [Jas]; and EspressoGrinder, a Java
source program-to-bytecode translator
[EspressoGrinder]. Additional bench-
mark references are available on the Java
Grande Forum Benchmark website [Java
Grande Forum Benchmark].

To compare the performance of the var-
ious Java execution techniques, a stan-
dard set of benchmarks must be used. The
benchmarks must be representative of
real-world applications to provide any use-
ful performance evaluations. Many of the
Java benchmarks discussed earlier, such
as CaffeineMark, Jmark, and Symantec,
consist of small programs designed to test
specific features of a JVM implementa-
tion. Since they do not test the perfor-
mance of the JVM as a whole, the per-
formance results obtained through these
benchmarks will be of little significance
when the JVM is used to execute real
applications. Some benchmarks, such as
JHLZip and JHLUnzip, are I/O bound ap-
plications that are not suitable for mea-
suring the performance obtained through
compiler optimizations. The SPEC JVM98
suite includes several applications, such
as a compiler, a database, and an mpe-
gaudio application, that represent real ap-
plications very well. Benchmarks such as
these will, therefore, help in understand-
ing the potential performance of various

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

234 I. H. Kazi et al.

Table 2. Reported Relative Performance of Different Java Execution Techniques and
Compiled C

Interpreters Interpreters JIT compilers C performance
Sun JDK (w.r.t.) (w.r.t.) 10–50× slower

JIT Compilers
Microsoft JIT Visual 5.6× faster 4× slower
J++ v1.0 (SUN JDK1.0.2)
Symantec Cafe 5× faster
version 1.0 (SUN JDK1.0.2)
IBM JIT 6.6× faster
version 3.0 (IBM JDK1.16)
Kaffe 2.4× faster
version 0.9.2 (SUN JDK1.1.1)
CACAO 5.4× faster 1.66× slower

(SUN JDK1.1)
AJIT 3.5× faster 1.46× faster

(SUN JDK1.1.1) (Kaffe v0.9.2)
Direct Compilers

NET 17.3× faster 3× faster 1.85× slower
(SUN JDK1.0.2) (MS JIT v1.0)

Caffeine 20× faster 4.7× faster 1.47× slower
(SUN JDK1.0.2) (Symantec Cafe)

HPCJ 10× faster 6× faster
(IBM AIX1.0.2) (IBM JIT v1.0)

Bytecode Translators
Toba 5.4× faster 1.6× faster

(SUN JDK1.0.2) (Guava 1.0b1)
Harissa 5× faster 3.2× faster

(SUN JDK1.0.2) (Guava 1.0b4)
Java Processors

pica Java-I 12× faster 5× faster
(SUN JDK1.0.2) (Symantec Cafe 1.5)

This table shows that the Caffeine compiler produces code that is approximately 20
times faster than the Java code interpreted with Sun’s JDK1.0.2 JVM, approximately
4.7 times faster than the Symantec Cafe JIT compiler, and approximately 1.47 times
slower than an equivalent compiled C program.

Java execution techniques when used in a
real programming environment.

6. PERFORMANCE COMPARISON

Several studies have attempted to eval-
uate the different execution techniques
for Java programs using various combi-
nations of the benchmarks mentioned in
Section 5. The performance evaluation
of the different execution techniques are
incomplete, however, due to the lack of
a standardized set of Java benchmarks.
Also, many of the techniques that have
been evaluated are not complete imple-
mentations of the JVM and the bench-
marks have been run on a wide variety
of underlying hardware configurations.
While incomplete and difficult to com-
pare directly, these performance results

do provide a limited means of comparing
the alternative techniques to determine
which ones may potentially provide an im-
provement in performance and to what
degree.

Table 2 summarizes the relative perfor-
mance of the various techniques based on
reported results. However, the numbers
alone do not prove the superiority of one
technique over another. When comparing
alternative techniques for Java execution,
it is important to consider the imple-
mentation details of each technique. To
support a complete implementation of
the JVM, any runtime approach should
include garbage collection, exception han-
dling, and thread support. However, each
of these features can produce possibly
substantial execution overhead. Hence, a
technique that includes garbage collection

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 235

Table 3. Support for Exception Handling, Multithreading, and Garbage
Collection as Reported for the Various Stand-alone Java Execution

Techniques Compared in Table 2

Exception handling Multithreading Garbage collection

NET Yes Yes Yes
Caffeine Yes No No
HPCJ Yes Yes Yes
Toba Yes Yes Yes
Harissa Yes No Yes
picoJava-I Yes Yes Yes

will require more time to execute a Java
code than a similar technique that does
not support garbage collection. The reader
is cautioned that some of the reported
values apparently do not include these
overhead effects. Table 3 lists whether
each execution technique includes support
for exception handling, multithreading,
and garbage collection. Furthermore, the
performance evaluations used a variety
of different benchmarks making it dif-
ficult to directly compare the different
execution techniques.

At present, the performance of Java in-
terpreters is typically about 10–50 times
slower than compiled C performance [Java
Compiler Technology]. The Microsoft JIT
compiler included in Visual J++ v2.0
has been reported to achieve approxi-
mately 23% of “typical” compiled C per-
formance. That is, this JIT compiler pro-
duces code that executes approximately 4
times slower than compiled C code. When
compared to the Sun JDK1.0.2 interpreter,
however, an average speedup of 5.6 was
obtained [Hsieh et al. 1997]. This perfor-
mance evaluation was performed as part
of evaluating the NET direct compiler
using a variety of benchmark programs,
in particular, the Unix utilities wc, cmp,
des, and grep; Java versions of the SPEC
benchmarks 026.compress, 099.go, 130.li,
and 129.compress; the C/C++ codes Sieve,
Linpack, Pi, othello, and cup; and the javac
Java bytecode compiler.

The Symantec Cafe JIT compiler has
been shown to be about 5 times faster,
on average, than the Sun JDK1.0.2 in-
terpreter based on the Java version of
the C programs cmp, grep, wc, Pi, Sieve,
and compress [Hsieh et al. 1996]. The

IBM JIT compiler v3.0, which applies an
extensive set of optimizations, performs
about 6.6 times faster than IBM’s en-
hanced port of Sun JDK1.1.6 [Burke et al.
1999]. The performance analysis was per-
formed using four SPEC JVM98 bench-
mark programs—compress, db, javac, and
jack.

Kaffe (version 0.9.2) typically performs
about 2.4 times faster than the Sun
JDK1.1.1 interpreter for the benchmarks
Neighbor (performs a nearest-neighbor
averaging), EM3D (performs electromag-
netic simulation on a graph), Huffman
(performs a string compression/decom-
pression algorithm), and Bitonic Sort
[Azevedo et al. 1999].

CACAO improves Java execution time
by a factor of 5.4, on average, over the Sun
Java interpreter [Krall and Grafl 1997].
These performance results were obtained
using the benchmark programs JavaLex,
javac, espresso, Toba, and java cup. When
compared to compiled C programs op-
timized at the highest level, though,
CACAO (with array bounds check and pre-
cise floating point exception disabled) per-
forms about 1.66 times slower. This com-
parison with compiled C programs was
performed using the programs Sieve, ad-
dition, and Linpack. Since these are very
small programs, the performance differ-
ence compared to compiled C code is likely
to be higher when applied to real applica-
tions.

The AJIT compiler performs about 3.4
times better than the Sun JDK1.1.1 inter-
preter and about 1.46 times faster than
the Kaffe JIT compiler for the benchmarks
Neigbor, EM3D, Huffman, and Bitonic
Sort [Azevedo et al. 1999].

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

236 I. H. Kazi et al.

Performance evaluation results of a
number of direct compilers show their
higher performance compared to the in-
terpreters and JIT compilers. The NET
compiler, for instance, achieves a speedup
of up to 45.6 when compared to the
Sun JDK1.0.2 interpreter, with an aver-
age speedup of about 17.3 [Hsieh et al.
1997]. Compared to the Microsoft JIT,
NET is about 3 times faster, on average,
and currently achieves 54% of the per-
formance of compiled C code. The NET
compiler uses a mark-and-sweep based
garbage collector. The overhead of the
garbage collection is somewhat reduced
by invoking the garbage collector only
when the memory usage reaches some pre-
defined limit. The benchmarks used in
evaluating NET include the Unix utili-
ties wc, cmp, des, and grep; Java versions
of the SPEC benchmarks 026.compress,
099.go, 132.ijpeg, and 129.compress; the
C/C++ codes Sieve, Linpack, Pi, othello,
and cup; and the Java codes JBYTEmark
and javac.

The Caffeine compiler yields, on aver-
age, 68 percent of the speed of compiled C
code [Hseih et al. 1996]. It runs 4.7 times
faster than the Symantec Cafe JIT com-
piler and 20 times faster than the Sun
JDK1.0.2 interpreter. The reported perfor-
mance of Caffeine is better than the NET
compiler since it does not include garbage
collection and thread support. The bench-
marks used are cmp, grep, wc, Pi, Sieve,
and compress.

The performance results obtained for
the HPCJ show an average speedup of
10 over the IBM AIX JVM1.0.2 inter-
preter [Seshadri 1997]. HPCJ is about 6
times faster than the IBM AIX JIT com-
piler (version 1.0). The HPCJ results in-
clude the effects of a conservative garbage
collection mechanism, exception handling,
and thread support. Its performance was
evaluated using a number of language
processing benchmarks, namely, javac,
JacorB (a CORBA/IDL to Java translator),
Toba, JavaLex, JavaParser, JavaCup, and
Jobe.

Codes generated by the bytecode com-
piler Toba when using a conservative
garbage collector, thread package, and ex-

ception handling, are shown to run 5.4
times faster than the Sun JDK1.0.2 in-
terpreter and 1.6 times faster than the
Guava JIT compiler [Proebsting et al.
1997]. The results are based on the bench-
marks JavaLex, JavaCup, javac, espresso,
Toba, JHLZip, and JHLUnzip.

The Harissa bytecode-to-C translator
performs about 5 times faster than the
Sun JDK1.0.2 interpreter and 3.2 times
faster than the Guava JIT compiler based
on the javac and javadoc benchmark pro-
grams [Muller et al. 1997]. This version of
Harissa includes a conservative garbage
collector but does not provide thread sup-
port.

In addition to analyzing the perfor-
mance of the various interpreters and
compilers, the improvement in perfor-
mance due to the use of Java proces-
sors has also been considered. The perfor-
mance of the picoJava-I core was analyzed
by executing two Java benchmarks, javac
and Raytracer, on a simulated picoJava-I
core [O’Connor and Tremblay 1997]. The
results show that the simulated picoJava-
I core executes the Java codes about 12
times faster than the Sun JDK1.0.2 in-
terpreter, and about 5 times faster than
the Symantec Cafe v1.5 JIT compiler ex-
ecuting on a Pentium processor, at an
equal clock rate. In the simulation of
the picoJava-I core, the effect of garbage
collection was minimized by allocating a
large amount of memory to the applica-
tions.

A simulation-based performance anal-
ysis of the proposed Java processor
[Vijaykrishnan et al. 1998] shows that
the virtual address object cache reduces
up to 1.95 cycles per object access com-
pared to the serialized handle and object
lookup scheme. The extended folding oper-
ation feature eliminates redundant loads
and stores that constitute about 9% of
the dynamic instructions of the bench-
marks studied (javac, javadoc, disasmb,
sprdsheet, and JavaLex).

To roughly summarize this array of per-
formance comparisons, assume we have
a Java program that takes 100 sec-
onds to execute with an interpreter. A
JIT compiler would execute this program

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 237

in 10–50 seconds. A bytecode translator
would likely produce an execution time of
approximately 20 seconds. A direct Java
to native code compilation would result
in an execution time of around 5 seconds
running on the same hardware as the in-
terpreter. A Java processor implemented
with an equivalent technology is likely to
record an execution time of 5–10 seconds.
Finally, an equivalent C program running
on the same hardware would complete in
2–10 seconds.

7. CONCLUSION

Java, as a programming language, of-
fers enormous potential by providing plat-
form independence and by combining a
wide variety of language features found
in different programming paradigms, such
as, an object-orientation model, multi-
threading, automatic garbage collection,
and so forth. The same features that
make Java so attractive, however, come
at the expense of very slow performance.
The main reason behind Java’s slow per-
formance is the high degree of hard-
ware abstraction it offers. To make Java
programs portable across all hardware
platforms, Java source code is compiled to
generate platform-independent bytecodes.
These bytecodes are generated with no
knowledge of the native CPU on which the
code will be executed, however. Therefore,
some translation or interpretation must
occur at run-time, which directly adds to
the application program’s execution time.

Memory management through auto-
matic garbage collection is an important
feature of the Java programming language
since it releases programmers from the re-
sponsibility for deallocating memory when
it is no longer needed. However, this auto-
matic garbage collection process also adds
to the overall execution time. Additional
overhead is added by such features as ex-
ception handling, multithreading, and dy-
namic loading.

In the standard interpreted mode of
execution, Java is about 10–50 times
slower than an equivalent compiled C pro-
gram. Unless the performance of Java
programs becomes comparable to com-

piled programming languages such as C
or C++, however, Java is unlikely to
be widely accepted as a general-purpose
programming language. Consequently, re-
searchers have been developing a variety
of techniques to improve the performance
of Java programs. This paper surveyed
these alternative Java execution tech-
niques. Although some of these techniques
(e.g., direct Java compilers) provide per-
formance close to compiled C programs,
they do so at the possible expense of
the portability and flexibility of Java pro-
grams. Java bytecode-to-source transla-
tors convert bytecodes to an intermediate
source code and attempt to improve perfor-
mance by applying existing optimization
techniques for the chosen intermediate
language. Some other techniques attempt
to maintain portability by applying stan-
dard compiler optimizations directly to
the Java bytecodes. Only a limited num-
ber of optimization techniques can be ap-
plied to bytecodes, though, since the entire
program structure is unavailable at this
level. Hence, bytecode optimizers may not
provide performance comparable to direct
compilation.

Another technique to maintain porta-
bility while providing higher performance
is to parallelize loops or recursive proce-
dures. However, the higher performance of
such techniques is obtained only in multi-
processor systems and only on application
programs that exhibit significant amounts
of inherent parallelism. Yet another ap-
proach to high performance Java is a Java
processor that directly executes the Java
bytecodes as its native instruction set. Al-
though these processors will execute Java
programs much faster than either inter-
preters or compiled programs, they are of
limited use since applications written in
other programming languages cannot be
run efficiently on these processors.

The current state-of-the-art research in
Java execution techniques is being pur-
sued along several directions. To match
the performance of compiled programs,
Java bytecodes must be translated to na-
tive machine code. However, the gener-
ation of this native machine code must
be done dynamically during the program’s

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

238 I. H. Kazi et al.

execution to support Java’s portability
and flexibility. Researchers are continu-
ally improving JIT compilation techniques
to generate more highly optimized code
within the limited amount of time avail-
able for the JIT compilation. Dynamic
compilation techniques based on program
execution profiles are also being applied.
These techniques dynamically generate
highly optimized native code as the pro-
gram is executed. This dynamic compila-
tion allows the program execution to adapt
itself to its varying behavior to thereby
provide improved performance.

Another trend for obtaining greater lev-
els of performance is to improve the perfor-
mance of the various individual JVM fea-
tures, such as garbage collection, thread
synchronization, and exception handling,
that add overhead directly to the execu-
tion of the native code. Yet another trend
is to execute Java programs in parallel and
distributed environments. Different par-
allelization models are being developed to
extract parallelism from serial Java pro-
grams without modifying the underlying
JVM implementation. The bottleneck in
this case, however, is the performance of
the Java RMI and multithreading mech-
anisms, although research is also being
pursued to provide efficient implementa-
tions of Java RMI and thread support
mechanisms that will improve the per-
formance of parallel and distributed Java
programs.

The choice of a particular Java exe-
cution technique must be guided by the
requirements of the application program
as well as the performance offered by
the technique. However, as was pointed
out earlier, the performance evaluation of
these various execution techniques is in-
complete due to the lack of a standard-
ized set of Java benchmark programs.
Also, many of the techniques that have
been evaluated were not complete imple-
mentations of the JVM. Some included
garbage collection and exception handling,
for instance, while others did not. These
methodological variations make it ex-
tremely difficult to compare one technique
to another even with a standard bench-
mark suite.

While Java has tremendous potential
as a programming language, there is a
tremendous amount yet to be done to make
Java execution-time performance compa-
rable to more traditional approaches.

ACKNOWLEDGMENTS

We thank Amit Verma and Shakti Davis for their
help in gathering some of the information used in
this paper.

REFERENCES

ARMSTRONG, E. 1998. HotSpot: A new breed of vir-
tual machine. Java World, Mar.

ARNOLD, K. AND GOSLING, J. 1996. The Java Program-
ming Language. Addison-Wesley, Reading, MA.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986.
Compilers Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA.

AZEVEDO, A., NICOLAU, A., AND HUMMEL, J. 1999. Java
annotation-aware just-in-time (AJIT) compila-
tion system. In Proceedings of the ACM 1999
Conference on Java Grande, 142–151.

ADL-TABATABAI, A., CIERNIAK, M., LUEH, G. Y., PARIKH,
V. M., AND STICHNOTH, J. M. 1998. Fast, effective
code generation in a just-in-time Java compiler.
In Proceedings of the ACM SIGPLAN ’98 Con-
ference on Programming Language Design and
Implementation, 280–290.

BIK, A. AND GANNON, D. 1997. Automatically exploit-
ing implicit parallelism in Java. In Concurrency:
Practice and Experience, vol. 9, no. 6, 579–619.

BIK, A. AND GANNON, D. 1998. Javab—A proto-
type bytecode parallelization tool, ACM Work-
shop on Java for High-Performance Network
Computing.

BACON, D. F., KONURU, R., MURTHY, C., AND SERRANO,
M. 1998. Thin locks: Featherweight synchro-
nization for Java. In Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Lan-
guage Design and Implementation, 258–268.

BURKE, M. G., CHOI, J.-D, FINK, S., GROVE, D., HIND,
M., SARKAR, V., SERRANO, M., SREEDHAR, V. C., AND

SRINIVASAN, H. 1999. The Jalapeno dynamic op-
timizing compiler for Java. In Proceedings of the
ACM 1999 Conference on Java Grande, 129–141.

ByteMark, http://www.byte.com.
CIERNIAK, M. AND LI, W. 1997a. Optimizing Java

bytecodes. In Concurrency: Practice and Expe-
rience, vol. 9, no. 6, 427–444.

CIERNIAK, M. AND LI, W. 1997b. Just-in-time opti-
mizations for high-performance Java programs.
In Concurrency: Practice and Experience, vol. 9,
no. 11, 1063–1073.

CHANG, P. P., MAHLKE, S. A., CHEN, W. Y., WATER,
N. J., AND HWU, W. W. 1991. IMPACT: An ar-
chitectural framework for multiple-instruction-

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

High Performance in Java Programs 239

issue processors. In Proceedings of the 18th
Annual International Symposium on Computer
Architecture, May 28, 266–275.

CaffeineMark, http://www.pendragon-software.com/
pendragon/cm3/info.html.

CUP Parser Generator for Java, http://www.cs.
princeton.edu/˜ appel/modern/java/CUP.

DEAN, J., GROVE, D., AND CHAMBERS, C. 1995. Op-
timization of object-oriented programs using
static class hierarchy analysis. In Proceedings
of ECOOP ’95, vol. 952 of Lecture Notes in
Computer Science. Springer-Verlag, New York,
77–101.

DEAN, J., DEFOUW, G., GROVE, D., LITVINOV, V., AND

CHAMBERS, C. 1996. Vortex: An optimizing
compiler for object-oriented languages. In
Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOP-
SLA), 93–100.

DashO Pro, http://www.preemptive.com/DashO/.
Dhrystone Benchmark, http://www.netlib.org/

benchmark/dhry-c.
Dhrystone Benchmark in Java, http://www.c-

creators.co.jp/okayan/DhrystoneApplet/.
EBCIOGLU, K., ALTMAN, E., AND HOKENEK, E. 1997.

A Java ILP machine based on fast dynamic
compilation. In International Workshop on
Security and Efficiency Aspects of Java, Eilat,
Israel, Jan. 9–10.

EspressoGrinder, http://wwwipd.ira.uka.de/∼esp-
resso/.

FAJITA FAJITA Compiler Project, http://www.ri.
silicomp.fr/adv-dvt/java/fajita/index-b.htm.

GOSLING, J., JOY, B., and STEELE, G. 1996. The
Java Language Specification. Addison-Wesley,
Reading, MA.

HSIEH, C. A., GYLLENHAAL, J. C., AND HWU, W. W. 1996.
Java bytecode to native code translation: The
caffeine prototype and preliminary results. In
International Symposium on Microarchitecture
MICRO 29, 90–97.

HSIEH, C. A., CONTE, M. T., GYLLENHAAL, J. C., AND

HWU, W. W. 1997. Optimizing NET compilers
for improved Java performance. Computer,
June, 67–75.

ICHISUGI, Y. AND ROUDIER, Y. 1997. Integrating
data-parallel and reactive constructs into Java.
In Proceedings of France–Japan Workshop
on Object-Based Parallel and Distributed
Computation (OBPDC ’97), France.

IVANNIKOV, V., GAISSARAYAN, S., DOMRACHEV, M.,
ETCH, V., AND SHTALTOVNAYA, N. 1997. DPJ:
Java Class Library for Development of Data-
Parallel Programs. Institute for Systems
Programming, Russian Academy of Sciences,
http://www.ispras.ru/∼dpj/.

ISHIZAKI, K., KAWAHITO, M., YASUE, T., TAKEUCHI,
M., OLASAWARA, T., SULANUMA, T., ONODERA, T.,
KOMATSU, H., AND NAKATANI, T. 1999. Design,
implementation, and evaluation of optimiza-
tions in a just-in-time compiler. In Proceedings

of the ACM 1999 Conference on Java Grande,
June, 119–128.

Jas: Bytecode Assembler, http://www.meurrens.
org/ip-Links/Java/codeEngineering/blackDown/
jas.html.

Java Benchmarks—VolanoMark, http://www.volano.
com/mark.html.

Java Compiler Technology, http://www.gr.opengroup.
org/compiler/index.htm.

Java Grande Forum Benchmark: Links to Other
Java Benchmarks, http://www.epcc.ed.ac.uk/
research/javagrande/links.html.

Java Grande Forum Benchmark Suite, http://www.
epcc.ed.ac.uk/research/javagrande/benchmarking.

html.
Java Grande Forum Report: Making Java Work

for High-End Computing, JavaGrande Forum
Panel, SC98, Nov. 1998, http://www.javagrande.
org/reports.htm.

Java Microbenchmarks, http://www.cs.cmu.edu/j̃ch/
java/benchmarks.html.

Jax: Scanner Generator, http://www.meurrens.
org/ip-Links/Java/codeEngineering/blackDown/
jax.html.

Jell: Parser Generator, http://www.meurrens.org/
ip-Links/Java/codeEngineering/blackDown/jell.
html.

JHLUnzip—A Zippy Utility, http://www.easynet.
it/j̃hl/apps/zip/unzip.html.

JHLZip–Another Zippy Utility, http://www. easynet.
it/˜ jhl/apps/zip/zip.html.

JLex: A Lexical Analyzer Generator for Java,
http://www.cs.princeton.edu/ãppel/modern/java/
JLex.

Just-In-Time Compilation and the Microsoft VM
for Java, http://premium.microsoft.com/msdn/
library/sdkdoc/java/htm/Jit Structure.htm.

KAZI, I. H. AND LILJA, D. J. 2000. JavaSpMT: A
speculative thread pipelining parallelization
model for Java programs. In Proceedings of
the International Parallel and Distributed
Processing Symposium (IPDPS), May, 559–564.

KRALL, A. AND GRAFL, R. 1997. CACAO—A 64 bit
Java VM just-in-time compiler. In Principles &
Practice of Parallel Programming (PPoPP) ’97
Java Workshop.

KRALL, A. AND PROBST, M. 1998. Monitors and ex-
ceptions: How to implement Java efficiently. In
ACM Workshop on Java for High-Performance
Network Computing.

KRINTZ, C., CALDER, B., AND, HÖLZLE, U. 1999. Re-
ducing transfer delay using Java class file
splitting and prefetching. In OOPSLA ’99,
276–291.

LILJA, DAVID J. 2000. Measuring Computer Per-
formance: A Practitioner’s Guide. Cambridge
University Press, New York.

LAUNAY, P. AND PAZAT, J. L. 1997. A Framework for
Parallel Programming in Java. IRISA, France,
Tech. Rep. 1154, Dec.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

240 I. H. Kazi et al.

LINDHOLM, T. AND YELLIN, F. 1997. The Java Vir-
tual Machine Specification. Addison-Wesley,
Reading, MA.

Linpack Benchmark—Java Version, http://www.
netlib.org/benchmark/linpackjava/.

MCGHAN, H. AND O’CONNOR M. 1998. PicoJava: A
direct execution engine for Java bytecode. IEEE
Computer, Oct., 22–30.

MEYER, J. AND DOWNING, T. 1997. Java Virtual Ma-
chine. O’Reilly & Associates, Inc., Sebastopol,
CA.

MULLER, G., MOURA, B., BELLARD, F., AND CONSEL, C.
1997. Harissa: A flexible and efficient Java en-
vironment mixing bytecode and compiled code.
In Conference on Object-Oriented Technologies
and Systems (COOTS).

MATSUOKA, S., OGAWA, H., SHIMURA, K., KIMURA, Y.,
HOTTA, K., AND TAKAGI, H. 1998. OpenJIT—A
reflective Java JIT compiler. In Proceed-
ings of OOPSLA ’98 Workshop on Re-
flective Programming in C++ and Java,
16–20.

MOREIRA, J. E., MIDKIFF, S. P., GUPTA, M., ARTIGAS,
P. V., SNIR, M., AND LAWRENCE, D. 2000. Java
programming for high-performance numerical
computing. IBM System Journal, vol. 39, no. 1,
21–56.

Microsoft SDK Tools, http://premium.microsoft.com/
msdn/library/sdkdoc/java/htm.

O’CONNOR, J. M. AND TREMBLAY, M. 1997. PicoJava-I:
The Java virtual machine in hardware. IEEE
Micro, Mar./Apr., 45–53.

POSTEL, J. B. 1981. Transmission Control Protocol.
RFC 791, Sept.

PROEBSTING, T. A. 1992. Simple and efficient BURS
table generation. In Proceedings of the ACM
SIGPLAN ’92 Conference on Programming
Language Design and Implementation (PLDI),
June, 331–340.

PROEBSTING, T. A., TOWNSEND, G., BRIDGES, P.,
HARTMAN, J. H., NEWSHAM, T., AND WATTERSON,
S. A. 1997. Toba: Java for applications a way
ahead of time (WAT) compiler. In Conference
on Object-Oriented Technologies and Systems
(COOTS).

Patriot Scientific Corporation. Java on Patriot’s
PSC1000 Microprocessor, http://www.ptsc.com/
PSC1000/java psc1000.html.

PC Magazine Test Center: JMark 1.01, http:// www8.
zdnet.com/pcmag/pclabs/bench/benchjm.htm.

Remote Method Invocation Specification, http://java.
sun.com/products/jdk/1.1/docs/guide/rmi-/spec/
rmiTOC.doc.html.

SESHADRI, V. 1997. IBM high performance compiler
for Java. AIXpert Magazine, Sept., http://www.
developer.ibm.com/library/aixpert.

SILBERSCHATZ, A. AND GALVIN, P. 1997. Operating
System Concepts. Addison-Wesley Longman
Inc., Reading, MA.

SUGANUMA, T., OLASAWARA, T., TAKEUCHI, M., YASUE,
T., KAWAHITO, M., ISHIZAKI, K., KOMATSU, H., AND

NAKATANI, T. 2000. Overview of the IBM Java
just-in-time compiler, IBM Systems Journal,
vol. 39, no. 1, 175–193.

SPEC JVM98 Benchmarks, http://www.spec.org/
org/jvm98/.

Sun Microsystems—The Source for Java Technology,
http://java.sun.com.

Sun Microsystems. MicroJava-701 Processor, http://
www.sun.com/microelectronics/microJava-701.

Symantec—Just-In-Time Compiler Performance
Analysis, http://www.symantec.com/jit/jit pa.
html.

SYSmark J, http://www.bapco.com/SYSmarkJ.html.
TURLEY, J. 1997. MicroJava Pushes Bytecode

Performance—Sun’s MicroJava 701 Based on
New Generation of PicoJava Core. Microproces-
sor Rep., vol. 11, no. 15, Nov. 17.

TIP, F. AND SWEENEY, P. 1997. Class hierarchy
specialization. In OOPSLA ’97, 271–285.

TIP, F., LAFFRA, C., SWEENEY, P. F., AND STREETER, D.
1999. Practical experience with an application
extractor for Java. In OOPSLA ’99, 292–305.

The Java Hotspot Performance Engine Architecture,
http://java.sun.com/products/hotspot/-
whitepaper.html.

TurboJ Benchmark’s Results, http://www.camb.
opengroup.org/openitsol/turboj/technical/
benchmarks.htm.

TurboJ Java to Native Compiler, http://www.
ri.silicomp.fr/adv-dvt/java/turbo/index-b.htm.

UCSD Benchmarks for Java, http://www-cse.ucsd.
edu/users/wgg/JavaProf/javaprof.html.

UW Cecil/Vortex Project, http://www.cs.washington.
edu/research/projects/cecil.

VIJAYKRISHNAN, N., RANGANATHAN, N., AND GADEKARLA,
R. 1998. Object-oriented architectural sup-
port for a Java processor. In Proceeding of the
12th European Conference on Object-Oriented
Programming (ECOOP), 330–354.

WILSON, P. R. 1992. Uniprocessor garbage collec-
tion techniques. In Proceedings of International
Workshop on Memory Management, vol. 637 of
Lecture Notes in Computer Science. Springer-
Verlag, New York, Sept. 17–19, 1–42.

Welcome to Harissa, http://www.irisa.fr/compose/
harissa/.

Welcome to JMark 2.0, http://www.zdnet.com/
zdbop/jmark/jmark.html.

Wilkinson, T., Kaffe v0.10.0—A Free Virtual Ma-
chine to Run Java Code, Mar. 1997. Available at
http://www.kaffe.org/.

Received December 1998; revised July 2000; accepted August 2000

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

