; UNIVERSITY OF 7 VECTOR
A TORONTO INSTITUTE

The Limitations of DL In
Adversarial Settings

Nicolas Papernot
University of Toronto & Vector Institute

March 2020 - CMU @NicolasPapernot



&
w

§TORONTO  V WTiie
Machine learning is not magic: ideal setting
Age .
A f=——— Risk of
\ ~( diabetes
a B \
A AR ‘ \\
‘ ‘ A \)
—@ > Weight
A
o O




7 VECTOR
INSTITUTE




UNIVERSITY OF 7 VECTOR
¥ TORONTO INSTITUTE

Machine learning is not magic: (adversarial) real-world
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Machine learning is not magic: (adversarial) real-world
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Machine learning is not magic: (adversarial) real-world
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The ML paradigm in adversarial settings

Data privacy attacks
Model parameters

Data poisoning -

Training data

. , Predictions
Healthy
Model theft
A
Test data
Adversarial examples Inference

Adapted from a slide by lan Goodfellow



Security in Machine Learning



The threat model

Attacker may see the model: attacker needs to know details of the machine learning

model to do an attack --- aka a white-box attacker @ ML
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Jacobian-based Saliency Map Approach (JSMA)
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The Limitations of Deep Learning in Adversarial Settings [IEEE EuroS&P 2016]
Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami
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Output classification
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Adversarial examples...

... beyond deep learning ... beyond computer vision

A‘ Y@\ P[X=Malware] = 0.90
e \ P[X=Benign] = 0.10

P[X*=Malware] = 0.10
P[X*=Benign] = 0.90

Positive
Output Class

Support Vector Machines Decision Trees

[ Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples [arXiv preprint]

&

Nicolas Papernot, Patrick McDaniel, and lan Goodfellow

" Adversarial Attacks on Neural Network Policies [arXiv preprint]

Sandy Huang, Nicolas Papernot, lan Goodfellow, Yan Duan, Pieter Abbeel

-

Adversarial Perturbations Against Deep Neural Networks for Malware Classification [ESORICS 2017]
Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, Patrick McDaniel
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Optimization for adversarial examples

4.1 Formal description

We denote by f : R™ — {1...k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by loss; :
R™ x {1...k} — R™. For a given z € R™ image and target label [ € {1...k}, we aim to solve
the following box-constrained optimization problem:

* Minimize ||7||2 subject to:

1. flx+71)=1
2. z+rel0, 1™

The minimizer » might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(z,[). Informally,  + r is the closest image to x classified as [ by f. Obviously,
D(z, f(z)) = f(x), so this task is non-trivial only if f(x) # [. In general, the exact computation
of D(z,!) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(z, [) by performing line-search to find the minimum ¢ > 0 for which
the minimizer r of the following problem satisfies f(x + ) = L.

 Minimize c|r| + loss¢(x + r,1) subjectto z + r € [0, 1]™

Szegedy et al., Intriguing Properties of Neural Networks. (ICLR 2014)



The threat model

Attacker may not see the model: attacker who knows very little (e.g. only gets to ask

a few questions) --- aka a black-box attacker ——
U —

15



Attacking remotely hosted black-box models

Local
substitute

ML sys

“no truck sign”
“STOP sign”

The adversary selects new synthetic inputs for queries to the remote ML system
based on the local substitute’s output surface sensitivity to input variations.
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Attacking remotely hosted black-box models

Local — @ — Remote — " “yield sign”
substitute ML sys

The adversary then uses the local substitute to craft adversarial examples,
which are misclassified by the remote ML system because of transferability.
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Cross-technique

transferability
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Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples [arXiv preprint]

Nicolas Papernot, Patrick McDaniel, and lan Goodfellow




Properly-blinded attacks on real-world remote systems

Adversarial examples
Remote Platform ML technique Number of queries misclassified
(after querying)
@ MetaMind | Deep Learning 6,400 84.24%
amazon Logistic 800 96.19%
webservices" Regression
) Unknown 2,000 97.72%
Google Cloud Platform

All remote classifiers are trained on the MNIST dataset (10 classes, 60,000 training samples)
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Learning models robust to adversarial examples is hard

Training robust models creates an
arms race because we don’t have a
good security policy

Error spaces containing adversarial
examples are large
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|s attacking machine learning easier than defending it? [Blog post at www.cleverhans.io]
lan Goodfellow and Nicolas Papernot 21
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An example toy security policy: the £, norm in vision

Perturbation-Unrobust Model Perturbation-Robust Model

® Classified as: 5
Classified as: 3

- == Perturbation-unrobust decision boundary —— Oracle Decision-boundary --- Perturbation-robust decision boundary

Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness (Jacobsen et al.)



Admission control at test time

(similar to search engines) calls for
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Do we admit a sandboxed model’s output into our pool of answers?

Example: Layer name Neural architecture
define a well-calibrated Softmax O O
estimate of uncertainty to ?

reject outliers (hard when .

distribution is unknown) sreidden 0000
through conformal prediction T

2nd hidden O QTQ O

Deep k-Nearest Neighbors (2018) 1st hidden Q Q O Q
A

Papernot and McDaniel

.
Soft Nearest Neighbor Loss (2019) Inputs R
Frosst, Papernot and Hinton

Representation spaces

Panda

School Bus




Privacy in Machine Learning
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What is a private algorithm?

Designing algorithms with privacy guarantees is difficult.

First question: how should we define privacy? Gold standard is now

- Answer 1

' v,, Randomized Answer 2
abh ~— Algorithm

N-d Answer n 2.9
?

- Answer 1

vi' Randomized Answer 2
g Algorithm

Answer n

PriM(d) e S] <e*Pr[M(d") € S|
|IACR:3650 (Dwork et al.)
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A Metaphor

For Private
Learning

Slides adapted from Ulfar Erlingsson
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An Individual’s Training Data

....................................

Slides adapted from Ulfar Erlingsson
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An Individual’s Training Data
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Big Picture
Remains!
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PATE: Private Aggregation of Teacher Ensembles
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PATE: Private Aggregation of Teacher Ensembles
lmwm @ H = N _
Count Take maximum

n(7) = |{i VOI8S,, 1.(7) = ) f(z) = arg max {m(f)}

J
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PATE: Private Aggregation of Teacher Ensembles

If most teachers agree on the label, |
it does not depend on specific partitions,
so the privacy cost is small.

If two classes have close vote counts,
the disagreement may reveal private information. HHH i
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PATE: Private Aggregation of Teacher Ensembles

lmm 8 Iﬂu

Count Add Laplacian
ny (@) = I{i VOI8Sn, () = s} Lap ()

3

Take maximum
f(z) = arg max {nj () + Lap G) }
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PATE: Private Aggregation of Teacher Ensemblesr

Data

Data 1
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)

Data 2
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PATE: Private Aggregation of Teacher Ensembles (ICLR 2017) >
Papernot, Abadi, Erlingsson, Goodfellow, Talwar
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Aligning privacy with generalization
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Saltzer and Schroeder’s principles

Economy of mechanism.
Keep the design of security mechanisms simple.

Fail-safe defaults.
Base access decisions on permission rather than
exclusion.

Complete mediation.

Every access to an object is checked for authority.

Open design.
The design of security mechanisms should not be

secret.

Separation of privilege.
A protection mechanism that requires two keys to
unlock is more robust and flexible.

Least privilege.
Every user operates with least privileges necessary.

Least common mechanism.
Minimize mechanisms depended on by all users.

Psychological acceptability.
Human interface designed for ease of use.

Work factor.
Balance cost of circumventing the mechanism with
known attacker resources.

Compromise recording.
Mechanisms that reliably record compromises can be
used in place of mechanisms that prevent loss.
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Efforts need to specify ML security and privacy policies.

What is the right abstraction and/or language to formalize security and
privacy requirements with precise semantics and no ambiguity?
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Efforts need to specify ML security and privacy policies.

What is the right abstraction and/or language to formalize security and
privacy requirements with precise semantics and no ambiguity?

Admission control and auditing may address lack of assurance.

How can sandboxing, input-output validation and compromise recording
help secure ML systems when data provenance and assurance is hard?
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Efforts need to specify ML security and privacy policies.

What is the right abstraction and/or language to formalize security and
privacy requirements with precise semantics and no ambiguity?

Admission control and auditing may address lack of assurance.

How can sandboxing, input-output validation and compromise recording
help secure ML systems when data provenance and assurance is hard?

Security and privacy should strive to align with ML goals.

How do private learning and robust learning relate to generalization”? How
does poisoning relate to learning from noisy data or distribution drifts?
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cleverhans.io
github.com/tensorflow/cleverhans
github.com/tensorflow/privacy
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