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Machine learning is not magic: (adversarial) real-world
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The ML paradigm in adversarial settings

Adapted from a slide by Ian Goodfellow
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Security in Machine Learning



Attacker may see the model: attacker needs to know details of the machine learning 

model to do an attack --- aka a white-box attacker

Attacker may not see the model: attacker who knows very little (e.g. only gets to ask 

a few questions) --- aka a black-box attacker

The threat model
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Jacobian-based Saliency Map Approach (JSMA)
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The Limitations of Deep Learning in Adversarial Settings [IEEE EuroS&P 2016]
Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami
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Adversarial examples...
… beyond deep learning 
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… beyond computer vision

Logistic Regression

Support Vector Machines

Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples [arXiv preprint]
Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow

P[X=Malware] = 0.90
P[X=Benign] = 0.10 

P[X*=Malware] = 0.10
P[X*=Benign] = 0.90 

Adversarial Attacks on Neural Network Policies [arXiv preprint]
Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, Pieter Abbeel
Adversarial Perturbations Against Deep Neural Networks for Malware Classification [ESORICS 2017]
Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, Patrick McDaniel

Nearest Neighbors

Decision Trees



Optimization for adversarial examples

Szegedy et al., Intriguing Properties of Neural Networks. (ICLR 2014)



Attacker may see the model: attacker needs to know details of the machine learning 

model to do an attack --- aka a white-box attacker

Attacker may not see the model: attacker who knows very little (e.g. only gets to ask 

a few questions) --- aka a black-box attacker

The threat model
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Remote 
ML sys

Local 
substitute

“no truck sign”
“STOP sign”

The adversary selects new synthetic inputs for queries to the remote ML system 
based on the local substitute’s output surface sensitivity to input variations.

Attacking remotely hosted black-box models
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Remote 
ML sys

Local 
substitute

“yield sign”

The adversary then uses the local substitute to craft adversarial examples, 
which are misclassified by the remote ML system because of transferability. 

Attacking remotely hosted black-box models



Cross-technique transferability
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Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples [arXiv preprint]
Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow

ML



Properly-blinded attacks on real-world remote systems
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All remote classifiers are trained on the MNIST dataset (10 classes, 60,000 training samples)

Remote Platform ML technique Number of queries
Adversarial examples 

misclassified 
(after querying)

Deep Learning 6,400 84.24%

Logistic 
Regression 800 96.19%

Unknown 2,000 97.72%
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Learning models robust to adversarial examples is hard

21
Is attacking machine learning easier than defending it? [Blog post at www.cleverhans.io]
Ian Goodfellow and Nicolas Papernot

Error spaces containing adversarial 
examples are large

Training robust models creates an 
arms race because we don’t have a 

good security policy

ML 
Victim



An example toy security policy: the ℓp norm in vision

Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness (Jacobsen et al.)



Admission control at test time
Weak authentication (similar to search engines) calls for admission control:

Do we admit a sandboxed model’s output into our pool of answers?

Example: 
define a well-calibrated 
estimate of uncertainty to 
reject outliers (hard when 
distribution is unknown) 
through conformal prediction

Deep k-Nearest Neighbors (2018)
Papernot and McDaniel

Soft Nearest Neighbor Loss (2019)
Frosst, Papernot and Hinton



Privacy in Machine Learning



What is a private algorithm?

}Randomized 
Algorithm

Randomized 
Algorithm

Answer 1
Answer 2

...
Answer n

Answer 1
Answer 2

...
Answer n

??
? ?

Designing algorithms with privacy guarantees understood by humans is difficult.

First question: how should we define privacy? Gold standard is now differential 
privacy. 

IACR:3650 (Dwork et al.)



A Metaphor
For Private 
Learning

Slides adapted from Ulfar Erlingsson



An Individual’s Training Data

Slides adapted from Ulfar Erlingsson



An Individual’s Training Data

Each bit is flipped with 
probability

25%

Slides adapted from Ulfar Erlingsson



Big Picture 
Remains!

Slides adapted from Ulfar Erlingsson



PATE: Private Aggregation of Teacher Ensembles

Partition 1

Partition 2

Partition n

Partition 3

...

Teacher 1

Teacher 2

Teacher n

Teacher 3

...

Aggregated 
Teacher

Sensitive 
Data



PATE: Private Aggregation of Teacher Ensembles

Count 
votes

Take maximum



PATE: Private Aggregation of Teacher Ensembles

If most teachers agree on the label, 
it does not depend on specific partitions, 
so the privacy cost is small.

If two classes have close vote counts, 
the disagreement may reveal private information. 



PATE: Private Aggregation of Teacher Ensembles

Count 
votes

Add Laplacian 
noise

Take maximum



PATE: Private Aggregation of Teacher Ensembles

Data 1

Data 2

Data n

Data 3

...

Teacher 1

Teacher 2

Teacher n

Teacher 3

...

Noisy 
aggregation QueryStudent

Training 
Prediction 
Data feeding

Accessible by adversaryInaccessible by adversary

Data

Public Data

PATE: Private Aggregation of Teacher Ensembles (ICLR 2017)
Papernot, Abadi, Erlingsson, Goodfellow, Talwar



Aligning privacy with generalization

Scalable Private Learning with PATE (Papernot*, Song* et al., ICLR 2018)



Conclusions



Saltzer and Schroeder’s principles
Economy of mechanism.
Keep the design of security mechanisms simple.

Fail-safe defaults.
Base access decisions on permission rather than  
exclusion.

Complete mediation.
Every access to an object is checked for authority.

Open design.
The design of security mechanisms should not be 
secret.

Separation of privilege.
A protection mechanism that requires two keys to 
unlock is more robust and flexible.

Least privilege.
Every user operates with least privileges necessary.

Least common mechanism.
Minimize mechanisms depended on by all users.

Psychological acceptability.
Human interface designed for ease of use.

Work factor.
Balance cost of circumventing the mechanism with 
known attacker resources.

Compromise recording.
Mechanisms that reliably record compromises can be 
used in place of mechanisms that prevent loss.



Efforts need to specify ML security and privacy policies.

What is the right abstraction and/or language to formalize security and 
privacy requirements with precise semantics and no ambiguity?

Admission control and auditing may address lack of assurance.

How can sandboxing, input-output validation and compromise recording 
help secure ML systems when data provenance and assurance is hard? 

Security and privacy should strive to align with ML goals.

How do private learning and robust learning relate to generalization? How 
does poisoning relate to learning from noisy data or distribution drifts?
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Ressources: 
cleverhans.io
github.com/tensorflow/cleverhans
github.com/tensorflow/privacy

Contact information:
nicolas.papernot@utoronto.ca
@NicolasPapernot

I’m hiring at UofT & Vector:
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