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Existing methods

e Local(Instance-wise) methods = Most important features of the input
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Existing methods

e Local(Instance-wise) methods = Most important features of the input
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Existing methods

e Global (label-wise) = Most important features of the class
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Existing methods

e Global (label-wise) = Most important features of the class
e TCAV tests queries
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e |In what follows:

Review Concept Activation Vectors (CAVs)

Review the TCAV method

Introduce Concept Discovery in deep neural networks
Introduce ACE method

Describe ACE experiments and results
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Concept Activation Vectors (CAVs)

e Define a concept to test = wheel, asphalt texture, etc.
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Concept Activation Vectors (CAVs)

e Define a concept to test = wheel, asphalt texture, etc
e Choose a bottleneck layer
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Concept Activation Vectors (CAVs)

e Define a concept to test = wheel, asphalt texture, etc
e Choose a bottleneck layer
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Concept Activation Vectors (CAVs)

e Define a concept to test = wheel, asphalt texture, etc
e Choose a bottleneck layer
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Linear binary
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classification?
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Concept Activation Vectors (CAVs)

e Define a concept to test = wheel, asphalt texture, etc
e Choose a bottleneck layer
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Concept Activation Vectors (CAVs)

e Define a concept to test = wheel, asphalt texture, etc
e Choose a bottleneck layer
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Concept Activation Vectors (CAVs)

e Define a concept to test = wheel, asphalt texture, etc
e Choose a bottleneck layer
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Concept Activation Vectors (CAVs)

e Test example: Is the concept associates with network’s decision
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Concept Activation Vectors (CAVs)

Test example: Is the concept associated with network’s decision?
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Concept Activation Vectors (CAVs)

e Hypothesis?
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Testing Concept Activation Vectors (TCAV)

e Repeat for bunch of test examples: Concept Cav VS Random Cavs = Statistical Test
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Testing Concept Activation Vectors (TCAV)

e TCAV score = Ratio of test examples where t
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Testing Concept Activation Vectors (TCAV)

e TCAV works for human concepts
o Good for interpretability
o A few labeled examples (10-30) are shown to be enough
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Testing Concept Activation Vectors (TCAV)

e TCAV works for man-defined concepts
o Good for interpretability
o Easy to label a few examples (&)

o Hard to keep tractable
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Testing Concept Activation Vectors (TCAV)

e TCAV works for man-defined concepts
o Good for interpretability
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Testing Concept Activation Vectors (TCAV)

e TCAV works for man-defined concepts
o Good for interpretability
o Easyto label a few examples

What to

o Hard to keep tractable? even ask?
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o Super-human performance




Testing Concept Activation Vectors (TCAV)

e TCAV works for man-defined concepts
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Good for interpretability
Easy to label a few examples

Hard to keep tractable?

m Striped? ?
Black-&-white striped?

Super-human performance

Concepts are not directly related to image
pixels
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ACE

TCAV

Zebra TCAV in googlenet
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ACE

TCAV Saliency Maps
Global (General Local (Instance-wise
Behavior) behavior)
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ACE

TCAV Saliency Maps
Global Local
Concepts Pixels
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ACE

TCAV Saliency Maps
Global Local
Concepts Pixels
Human-in-the-loop Automatic
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ACE

TCAV Best of both world Saliency Maps
Global Global Local
Concepts Concepts = Pixels Pixels
Human-in-the-loop Automatic Automatic
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ACE

TCAV ACE Saliency Maps
Global Global Local
Concepts Concepts = Pixels Pixels
Human-in-the-loop Automatic Automatic
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ACE

TCAV

Zebra TCAV in googlenet
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ACE

TCAV

Zebra TCAV in googlenet
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ACE
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Concept Discovery

e |nputs:
o Atrained model
o Atarget class
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Concept Discovery

e |nputs:
o Atrained model
o Atarget class
o A bottleneck layer
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Concept Discovery

First step is to discover a class’s concepts — €.g. For police van: wheel, sky, asphalt, etc
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Concept Discovery
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Concept Discovery

First step is to discover a class’s concepts — €.g. For police van: wheel, sky, asphalt, etc
Looking back at CAVs =—highly accurate

CAV2
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Concept Discovery

First step is to discover a class’s concepts — €.g. For police van: wheel, sky, asphalt, etc
Looking back at CAVs =—highly accurate
Assumption: Concept examples form clusters in the activation space
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Concept Discovery

First step is to discover a class’s concepts — €.g. For police van: wheel, sky, asphalt, etc
Looking back at CAVs =—highly accurate
Assumption: Concept examples form clusters in the activation space
How to find concept examples?
o Can appear several times, once or not at all
o Appear with different sizes




Concept Discovery

Humans
choose
concepts

Clustering in
activation
space

TCAV

Example
concept
images

ACE

Example
concept
images

Clustering in
activation
space

Human
interprets
concepts
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Concept Discovery

e |dea: Segment every image with several resolutions = SLIC
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Concept Discovery

e |dea: Segment every image with several resolutions — Remove duplicate segments
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Concept Discovery

e |dea: Segment every image with several resolutions —» Remove duplicate segments
e Resize each segment to the network input size




Concept Discovery

Idea: Segment every image with several resolutions — Remove duplicate segments
Resize each segment to the network input size
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Concept Discovery

e |dea: Segment every image with several resolutions —» Remove duplicate segments
e Resize each segment to the network input size = “Resized Patches”
e Map resized patches to activation space
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Concept Discovery

e |dea: Segment every image with several resolutions —» Remove duplicate segments
e Resize each segment to the network input size = “Resized Patches”
e Map resized patches to activation space — Clustering with noise removal

Problem: Lots of irrelevant resized patches




Concept Discovery

Colors
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Concept Discovery

Textures

78



Concept Discovery

Objects
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Concept Discovery

Human related
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Concept Discovery

We are running intruder test with human subjects

Discovered Concepts Hand-labeled concept
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ACE
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ACE

1. Example results: Inception-V3, Mixed-8, Basketball
TCAV score = 0.81 TCAV score = 0.89 TCAV score = 0.88




ACE

Example results: Inception-V3, Mixed-8, Drilling Platform
TCAV score = 0.73 TCAV score = 0.73

TCAV score = 0.80

TCAV score = 0.69 TCAV score = 0. 72



ACE

Example results: Inception-V3, Mixed-8, Volcano
TCAV score = 0.94 TCAV score = 0.92 TCAV score = 0.89

TCAV score — 0.55 TCAV score = 0.88

TCAV score = 0.78
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EXperiments

e How to verify ACE?




EXperiments

e Concept deletion/addition:
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EXperiments

Concept deletion/addition:
o Take a bunch of test images
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EXperiments
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o Segment them the same way
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EXperiments

Concept deletion/addition:
o Take a bunch of test images
o Segment them the same way
o Assign each patch its NN cluster in activation space
o Remove/add patches with concept TCAV score order

Addition

Deletion
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EXperiments

Concept deletion/addition:
o Take a bunch of test images
o Segment them the same way
o Assign each patch its NN cluster in activation space
o Remove/add patches with assigned concept’s TCAV score order

Addition

Deletion
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EXperiments

e Concept deletion/addition:
o Take a bunch of test images
o Segment them the same way
o Assign each patch its NN cluster in activation space
o Remove/add patches with assigned concept’s TCAV score order




EXperiments

e Concept deletion/addition:
o Average results for 100 Imagenet classes

SSC SDC
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=== Random === Random

80 Baseline performance
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SSC
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Prediction accuracy(%)

60
40
20 g
wn 13
% 1 2 3 4 5 % 1 2 3 4 5

Number of added concepts Number of deleted concepts




EXperiments

Concept stitching experiment:
o Concepts are discovered as a set of patches
o We can randomly stitch patches of top-k concepts of each class
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EXperiments

Basketball

King Snake




Thanks!

Paper: https://arxiv.org/pdf/1902.03129.pdf

Code: https://github.com/amiratag/ACE
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