The Explanation Game Explaining ML models with Shapley Values

Joint work with Luke Merrick

Ankur Taly, Fiddler Labs ankur@fiddler.ai

Al platform providing trust, visibility, and insights

Problem: Machine Learning is a Black box

Input (Data, image, sentence, etc.)

Credit Lending in a black-box ML world

Why? Why not? How?

Fair lending laws [ECOA, FCRA] require credit decisions to be explainable

Black-box AI creates confusion and doubt

Why did the model make this prediction?

The Attribution Problem

Attribute a model's prediction on <u>an input</u> to features of the input

Examples:

- Attribute an object recognition network's prediction to its pixels
- Attribute a text sentiment network's prediction to individual words
- Attribute a lending model's prediction to its features

A reductive formulation of "why this prediction" but surprisingly useful :-)

Applications of Attributions

- Debugging model predictions
- Generating an explanation for the end-user
- Analyzing model robustness
- Extracting rules from the model

Gradient-Based Attribution Methods

• Feature*Gradient

- Paper: <u>How to explain individual classification decisions</u>, JMLR 2010
- Inspired by linear models (where it amounts to feature*coefficient)
- Does not work as well for highly non-linear models

• Integrated Gradients

- Paper: <u>Axiomatic Attribution for Deep Networks</u>, ICML 2017
- Integrate the gradients along a straight line path from the input at hand to a baseline
- Inspired by Aumann-Shapley values
- Many more
 - GradCAM, SmoothGrad, Influence-Directed Explanations, ...

But, what about non-differentiable models?

- Decision trees
- Boosted trees
- Random forests
- etc.

Shapley Value

- Classic result in game theory on distributing the total gain from a **cooperative game**
- Introduced by Lloyd Shapley in 1953¹, who later won the Nobel Prize in Economics in the 2012
- Popular tool in studying cost-sharing, market analytics, voting power, and most recently **explaining ML models**

Lloyd Shapley in 1980

¹ "A Value for n-person Games". Contributions to the Theory of Games 2.28 (1953): 307-317

Cooperative Game

- Players {1, ..., M} collaborating to generate some gain
 - Think: Employees in a company creating some profit
 - Described by a **set function v(S)** specifying the gain for any subset $S \subseteq \{1, ..., M\}$

- **Shapley values** are a fair way to attribute the total gain to the players
 - Think: Bonus allocation to the employees
 - Shapley values are commensurate with the player's contribution

Shapley Value Algorithm [Conceptual]

$$\phi_i(v) = \mathop{\mathbb{E}}_{\boldsymbol{O} \sim \pi(M)} \left[v(\operatorname{pre}_i(\boldsymbol{O}) \cup \{i\}) - v(\operatorname{pre}_i(\boldsymbol{O})) \right]$$

- Consider all possible permutations $\pi(M)$ of players (**M! possibilities**)
- In each permutation $\boldsymbol{O} \sim \pi(M)$
 - Add players to the coalition in that order
 - Note the marginal contribution of each player i to set of players before it in the permutation, i.e., $v(pre_i(O) \cup \{i\}) v(pre_i(O))$
- The average marginal contribution across all permutations is the Shapley Value

Example

A company with two employees Alice and Bob

- No employees, no profit
- Alice alone makes 20 units of profit
- Bob alone makes 10 units of profit
- Alice and Bob make 50 units of profit

What should the bonuses be?

[v({}) = 0] [v({Alice}) = 20] [v({Bob}) = 10] [v({Alice, Bob}) = 50]

Example

A company with two employees Alice and Bob

- No employees, no profit
- Alice alone makes 20 units of profit
- Bob alone makes 10 units of profit
- Alice and Bob make 50 units of profit

What should the bonuses be?

[v({}) = 0] [v({Alice}) = 20] [v({Bob}) = 10] [v({Alice, Bob}) = 50]

Permutation	Marginal for Alice	Marginal for Bob
Alice, Bob	20	30
Bob, Alice	40	10
Shapley Value	30	20

Axiomatic Justification

Shapley values are **unique under four simple axioms**

- **Dummy:** A player that doesn't contribute to any subset of players must receive zero attribution
- **Efficiency:** Attributions must add to the total gain
- **Symmetry:** Symmetric players must receive equal attribution
- **Linearity:** Attribution for the (weighted) sum of two games must be the same as the (weighted) sum of the attributions for each of the games

Computing Shapley Values

Exact computation

• Permutations-based approach

(Complexity: O(M!))

$$\phi_i(v) = \mathop{\mathbb{E}}_{\boldsymbol{O} \sim \pi(M)} \left[v(\operatorname{pre}_i(\boldsymbol{O}) \cup \{i\}) - v(\operatorname{pre}_i(\boldsymbol{O})) \right]$$

• Subsets-based approach $\phi_i(v) = \mathop{\mathbb{E}}_{S} \left[\frac{2^{M-1}}{M} \binom{M-1}{|S|}^{-1} \left(v(S \cup \{i\}) - v(S) \right) \right]$ (Complexity: **O(2^M)**)

Computing Shapley Values

Exact computation

• Permutations-based approach

(Complexity: O(M!))

$$\phi_i(v) = \mathop{\mathbb{E}}_{\boldsymbol{O} \sim \pi(M)} \left[v(\operatorname{pre}_i(\boldsymbol{O}) \cup \{i\}) - v(\operatorname{pre}_i(\boldsymbol{O})) \right]$$

• Subsets-based approach

$$\phi_i(v) = \mathop{\mathbb{E}}_{S} \left[\frac{2^{M-1}}{M} \binom{M-1}{|S|}^{-1} \left(v(S \cup \{i\}) - v(S) \right) \right]$$

(Complexity: **O(2^M)**)

• <u>KernelSHAP</u>: Solve a weighted least squares problem (Complexity: $O(2^{M})$) $\phi = \underset{\phi}{\operatorname{arg\,min}} \sum_{S \subseteq \mathcal{M}} \frac{M-1}{\binom{M}{|S|} |S|(M-|S|)} \left(v(S) - \sum_{i=1}^{M} \phi_i \right)$

Computing Shapley Values

Approximation computation

- General idea: Express Shapley Values as an expectation over a distribution of marginals, and use sampling-based methods to estimate the expectation
- See: "Computational Aspects of Cooperative Game Theory", Chalkiadakis et al. 2011

Shapley Values for Explaining ML Models

Shapley Values for Explaining ML models

- Define a coalition game for each model input x to be explained
 - Players are the features of the input
 - Gain is the model prediction F(x)
- Feature attributions are the Shapley values of this game

We call the coalition game setup for computing Shapley Values as the "Explanation Game"

Setting up the Coalition Game

Challenge: Defining the prediction F(x) when only a subset of features are present? i.e., what is $F(x_1, < absent >, x_3, < absent >, ... x_m)$?

Setting up the Coalition Game

Challenge: Defining the prediction F(x) when only a subset of features are present? i.e., what is $F(x_1, < absent >, x_3, < absent >, ... x_m)$?

Idea 1: Model absent feature with an empty or zero value

- Works well for image and text inputs
- Does not work well for structured inputs; what is the empty value for "income"?

Setting up the Coalition Game

Challenge: Defining the prediction F(x) when only a subset of features are present? i.e., what is $F(x_1, < absent >, x_3, < absent >, ... x_m)$?

Idea 1: Model absent feature with an empty or zero value

- Works well for image and text inputs
- Does not work well for structured inputs; what is the empty value for "income"?

Idea 2: Sample values for the absent features and compute the expected prediction

• This is the approach taken by most Shapley Value based explanation methods

Notation for next few slides

- Model $F: \mathscr{X} \to \mathbb{R}$ where \mathscr{X} is an M-dimensional input space
- Input distribution: **D**^{inp}
- Inputs to be explained: $\mathbf{x} \in \mathbf{X}$
- Reference inputs: $\mathbf{r}, \mathbf{r}_1, .. \in \mathbf{X}$

Notation for next few slides

- Model $F: \mathscr{X} \to \mathbb{R}$ where \mathscr{X} is an M-dimensional input space
- Input distribution: **D**^{inp}
- Inputs to be explained: $\mathbf{x} \in \mathbf{X}$
- Reference inputs: $\mathbf{r}, \mathbf{r}_1, .. \in \mathbf{X}$
- A **composite input** *z*(**x**, **r**, **S**) is an input that agrees with x on features in S and with **r** on all the other features

Notation for next few slides

- Model $F: \mathfrak{A} \to \mathbb{R}$ where \mathfrak{A} is an M-dimensional input space
- Input distribution: **D**^{inp}
- Inputs to be explained: $\mathbf{x} \in \mathbf{X}$
- Reference inputs: $\mathbf{r}, \mathbf{r}_1, .. \in \mathbf{X}$
- A **composite input** *z*(**x**, **r**, **S**) is an input that agrees with x on features in S and with **r** on all the other features

Given an input **x**, the payoff for a feature set S is the expected prediction over composite inputs z(x, r, S) where the references r are drawn from a distribution $D_{x,S}$

$$v_x(S) ::= \mathop{\mathbb{E}}\limits_{r \sim D_{x,S}} [F(z(x,r,S))] - \mathop{\mathbb{E}}\limits_{r \sim D_{x,\phi}} [F(r)]$$

Given an input **x**, the payoff for a feature set S is the expected prediction over composite inputs z(x, r, S) where the references r are drawn from a distribution $D_{x,S}$

$$v_x(S) ::= \underset{r \sim D_{x,S}}{\mathbb{E}} [F(z(x,r,S))] - \underset{r \sim D_{x,\phi}}{\mathbb{E}} [F(r)]$$

Features in S come from
x while the remaining are
sampled based on D_{x,S} Offset term to ensure
that the gain for the
empty set is zero

Given an input **x**, the payoff for a feature set S is the expected prediction over composite inputs z(x, r, S) where the references r are drawn from a distribution $D_{x,S}$

$$v_x(S) ::= \mathop{\mathbb{E}}\limits_{r \sim D_{x,S}} [F(z(x,r,S))] - \mathop{\mathbb{E}}\limits_{r \sim D_{x,\phi}} [F(r)]$$

Reference distribution $\mathbf{D}_{\mathbf{x},\mathbf{S}}$ varies across methods

- [SHAP, NIPS 2018] Uses conditional distribution, i.e., $D_{x,S} = \{r \sim D^{inp} | x_S = r_S\}$
- [KernelSHAP, NIPS 2018] Uses input distribution, i.e., $D_{x,S} = D^{inp}$
- [<u>QII</u>, S&P 2016] Uses joint-marginal distribution, i.e., $D_{x,S} = D^{J.M.}$
- [IME, JMLR 2010] Use uniform distribution, i.e., $D_{x,S} = U$

Given an input **x**, the payoff for a feature set S is the expected prediction over composite inputs z(x, r, S) where the references r are drawn from a distribution $D_{x,S}$

$$v_x(S) ::= \mathop{\mathbb{E}}\limits_{r \sim D_{x,S}} [F(z(x,r,S))] - \mathop{\mathbb{E}}\limits_{r \sim D_{x,\phi}} [F(r)]$$

Reference distribution $\mathbf{D}_{\mathbf{x},\mathbf{S}}$ varies across methods

- [SHAP, NIPS 2018] Uses conditional distribution, i.e., $D_{x,S} = \{r \sim D^{inp} | x_S = r_S\}$
- [KernelSHAP, NIPS 2018] Uses input distribution, i.e., $D_{x,S} = D^{inp}$
- [<u>QII</u>, S&P 2016] Uses joint-marginal distribution, i.e., $D_{x,S} = D^{J.M.}$
- [IME, JMLR 2010] Use uniform distribution, i.e., $D_{x,S} = U$

This is a critical choice that strongly impacts the resulting Shapley Values!!

Rest of the lecture

We will discuss the following preprint:

<u>The Explanation Game: Explaining Machine Learning Models with Cooperative Game Theory</u>, Luke Merrick and Ankur Taly, 2019

- The many game formulations and the many Shapley values
- A decomposition of Shapley values in terms of single-reference games
- Confidence intervals for Shapley value approximations
- Ties to <u>Norm Theory</u> that enable contrastive explanations

Mover Example 1 (from the <u>QII paper</u>)

F(is_male, is_lifter) ::= is_male (model only hires males)

```
Input to be explained: is_male = 1, is_lifter = 1
```

Data and prediction distribution

is_male	is_lifter	P[X=x]	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Mover Example 1 (from the <u>QII paper</u>)

F(is_male, is_lifter) ::= is_male (model only hires males)

```
Input to be explained: is_male = 1, is_lifter = 1
```

Data an	d prediction	distribution
---------	--------------	--------------

Attributions for is_male=1, is_lifter = 1

is_male	is_lifter	P[X=x]	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Method	is_male	is_lifter
SHAP (conditional distribution)	0.05	0.05
KernelSHAP (input distribution)	0.10	0.0
QII (joint-marginal distribution)	0.10	0.0
IME (uniform distribution)	0.50	0.0

Mover Example 1 (from the <u>QII paper</u>)

F(is_male, is_lifter) ::= is_male (model only hires males)

```
Input to be explained: is_male = 1, is_lifter = 1
```

Data an	d prediction	distribution
---------	--------------	--------------

Attributions	for is	male=1.	is	lifter	= 1
/			··•_		

is_male	is_lifter	P[X=x]	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Method		is_male	is_lifter
SHAP (conditional distribution)		0.05	0.05
KernelSHAP (input distribution)		0.10	0.0
QII (joint-	marginal distribution		0.0
IME (uni	ME (united the is lifter feature which		
	plays no role in the model?		

Attributions under conditional distribution [SHAP]

Data and prediction distribution

is_male	is_lifter	P[X=x] (D ^{inp})	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Attributions under conditional distribution [SHAP]

Data and prediction distribution

is_male	is_lifter	P[X=x] (D ^{inp})	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Attributions for is_male=1, is_lifter = 1

Permutation	Marginal for is_male	Marginal for is_lifter
is_male, is_lifter	0.1	0.0
is_lifter, is_male	0.0	0.1
Average	0.05	0.05
Attributions under conditional distribution [SHAP]

Data and prediction distribution

is_male	is_lifter	P[X=x] (D ^{inp})	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Attributions for is_male=1, is_lifter = 1

Permutation	Marginal for is_male	Marginal for is_lifter
is_male, is_lifter	0.1	0.0
is_lifter, is_male	0.0	0.1
Average	0.05	0.05

$$\begin{split} v^{cond}(\{\}) &= 0.0 \\ v^{cond}(\{\text{is_male}\}) &= \mathbb{E}[F([\text{is_male}, \text{is_lifter}]) \mid \text{is_male} = 1] - \mathbb{E}[F([\text{is_male}, \text{is_lifter}])] \\ &= 1.0 - 0.9 = 0.1 \\ v^{cond}(\{\text{is_lifter}\}) &= \mathbb{E}[F([\text{is_male}, \text{is_lifter}]) \mid \text{is_lifter} = 1] - \mathbb{E}[F([\text{is_male}, \text{is_lifter}])] \\ &= 1.0 - 0.9 = 0.1 \\ v^{cond}(\{\text{is_male}, \text{is_lifter}\}) = 1.0 - \mathbb{E}[F([\text{is_male}, \text{is_lifter}])] \\ &= 1.0 - 0.9 = 0.1 \end{split}$$

Attributions under conditional distribution [SHAP]

Data and prediction distribution

is_male	is_lifter	P[X=x] (D ^{inp})	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Attributions for is_male=1, is_lifter = 1

Permutation	Marginal for is_male	Marginal for is_lifter
is_male, is_lifter	0.1	0.0
is_lifter, is_male	0.0	0.1
Average	0.05	0.05

$$\begin{split} v^{cond}(\{\}) &= 0.0 \\ v^{cond}(\{\text{is_male}\}) &= \mathbb{E}[F([\text{is_male, is_lifter}]) \mid \text{is_male} = 1] - \mathbb{E}[F([\text{is_male, is_lifter}])] \\ &= 1.0 - 0.9 = 0.1 \\ v^{cond}(\{\text{is_lifter}\}) &= \mathbb{E}[F([\text{is_male, is_lifter}]) \mid \text{is_lifter} = 1] - \mathbb{E}[F([\text{is_male, is_lifter}])] \\ &= 1.0 - 0.9 = 0.1 \\ v^{cond}(\{\text{is_male, is_lifter}\}) &= 1.0 - \mathbb{E}[F([\text{is_male, is_lifter}])] \\ &= 1.0 - 0.9 = 0.1 \end{split}$$

Attributions under input distribution [KernelSHAP]

Data and prediction distribution

is_male	is_lifter	P[X=x] (D ^{inp})	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Attributions for is_male=1, is_lifter = 1

Permutation	Marginal for is_male	Marginal for is_lifter
is_male, is_lifter	0.1	0.0
is_lifter, is_male	0.1	0.0
Average	0.1	0.0

Attributions under input distribution [KernelSHAP]

Data and prediction distribution

is_male	is_lifter	P[X=x] (D ^{inp})	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Attributions for is_male=1, is_lifter = 1

Permutation	Marginal for is_male	Marginal for is_lifter
is_male, is_lifter	0.1	0.0
is_lifter, is_male	0.1	0.0
Average	0.1	0.0

$$\begin{split} v^{inp}(\{\}) &= 0.0 \\ v^{inp}(\{\text{is_male}\}) &= \mathbb{E}[F([1, \text{is_lifter}])] - \mathbb{E}[F([\text{is_male, is_lifter}])] \\ &= 1.0 - 0.9 = 0.1 \\ v^{inp}(\{\text{is_lifter}\}) &= \mathbb{E}[F([\text{is_male, 1}])] - \mathbb{E}[F([\text{is_male, is_lifter}])] \\ &= 0.9 - 0.9 = 0.0 \\ v^{inp}(\{\text{is_male, is_lifter}\}) &= 1.0 - \mathbb{E}[F([\text{is_male, is_lifter}])] \\ &= 1.0 - 0.9 = 0.1 \end{split}$$

Attributions under input distribution [KernelSHAP]

Data and prediction distribution

is_male	is_lifter	P[X=x] (D ^{inp})	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Attributions for is_male=1, is_lifter = 1

Permutation	Marginal for is_male	Marginal for is_lifter
is_male, is_lifter	0.1	0.0
is_lifter, is_male	0.1	0.0
Average	0.1	0.0

$$\begin{split} v^{inp}(\{\}) &= 0.0 \\ v^{inp}(\{\text{is_male}\}) &= \mathbb{E}[F([1, \text{is_lifter}])] - \mathbb{E}[F([\text{is_male, is_lifter}])] \\ &= 1.0 - 0.9 = 0.1 \\ \hline v^{inp}(\{\text{is_lifter}\}) &= \mathbb{E}[F([\text{is_male, 1}])] - \mathbb{E}[F([\text{is_male, is_lifter}])] \\ &= 0.9 - 0.9 = 0.0 \\ v^{inp}(\{\text{is_male, is_lifter}\}) &= 1.0 - \mathbb{E}[F([\text{is_male, is_lifter}])] \\ &= 1.0 - 0.9 = 0.1 \end{split}$$

Mover Example 2

F(is_male, is_lifter) ::= is_male AND is_lifter (model hires males who are lifters)
Input to be explained: is_male = 1, is_lifter = 1

Data and prediction distribution

is_male	is_lifter	P[X=x]	F(x)
0	0	0.1	0
0	1	0.0	0
1	0	0.4	1
1	1	0.5	1

Attributions for is_male=1, is_lifter = 1

Method	is_male	is_lifter
SHAP (conditional distribution)	0.028	0.047
KernelSHAP (input distribution)	0.05	0.045
QII (joint-marginal distribution)	0.075	0.475
IME (uniform distribution)	0.375	0.375

Mover Example 2

F(is_male, is_lifter) ::= is_male AND is_lifter (model hires males who are lifters)
Input to be explained: is_male = 1, is_lifter = 1

Data	and	prediction	distribution
------	-----	------------	--------------

Attributions for is_male=1, is_lifter = 1

is_male	is_	lifter	P[X=x]	F(x)	Met
0	0		0.1	0	SHA
0	1	Eac	h method		Ker
1	0	•	duces a		QII (
1	1	aine	erent attrit	Julion!	IME

Method	is_male	is_lifter
SHAP (conditional distribution)	0.028	0.047
KernelSHAP (input distribution)	0.05	0.045
QII (joint-marginal distribution)	0.075	0.475
IME (uniform distribution)	0.375	0.375

How do we reconcile the differences between the various Shapley Values?

The unconditional case

General game formulation

$$v_x(S) ::= \mathop{\mathbb{E}}\limits_{r \sim D_{x,S}} [F(z(x,r,S))] - \mathop{\mathbb{E}}\limits_{r \sim D_{x,\phi}} [F(r)]$$

The unconditional case

General game formulation

$$v_x(S) ::= \mathop{\mathbb{E}}\limits_{r \sim D_{x,S}} [F(z(x,r,S))] - \mathop{\mathbb{E}}\limits_{r \sim D_{x,\phi}} [F(r)]$$

Consider the case where the reference distribution $D_{x,s} := D$ is the same across all inputs x and subsets S

$$v_{x,D}(S) ::= \mathop{\mathbb{E}}\limits_{r \sim D} [F(z(x,r,S))] - \mathop{\mathbb{E}}\limits_{r \sim D} [r]$$

The unconditional case

General game formulation

$$v_x(S) ::= \mathop{\mathbb{E}}\limits_{r \sim D_{x,S}} [F(z(x,r,S))] - \mathop{\mathbb{E}}\limits_{r \sim D_{x,\phi}} [F(r)]$$

Consider the case where the reference distribution $D_{x,s} := D$ is the same across all inputs x and subsets S

$$v_{x,D}(S):= \mathop{\mathbb{E}}\limits_{r\sim D}[F(z(x,r,S))] - \mathop{\mathbb{E}}\limits_{r\sim D}[r]$$

Ensures that irrelevant features get zero attribution (see paper for proof)

KernelSHAP, QII, IME fall in this case (but choose different reference distributions)

Single-reference Games

Idea: Model feature absence using a specific reference

Given an input **x** and a specific reference **r**,

the payoff for a feature set S is the prediction for the composite input z(x, r, S)

$$v_{x,r}(S) ::= F(z(x,r,S))] - F(r)$$

Side note: Integrated Gradients is a single-reference attribution method.

Single-reference Games

Idea: Model feature absence using a specific reference

Given an input **x** and a specific reference **r**,

the payoff for a feature set S is the prediction for the composite input z(x, r, S)

$$v_{x,r}(S):=F(z(x,r,S))]-F(r)$$

Offset term to ensure that the gain for the empty set is zero

Side note: Integrated Gradients is a single-reference attribution method.

A decomposition in terms of single-reference games

Shapley values of $v_{x,D}$ can be expressed as an expectation over Shapley values from single-reference games $v_{x,r}$ where the references r are drawn from D.

Lemma:
$$\phi_i(v_{x,D}(S)) ::= \mathop{\mathbb{E}}\limits_{r \sim D} [\phi_i(v_{x,r}(S))]$$

A decomposition in terms of single-reference games

Shapley values of $v_{x,D}$ can be expressed as an expectation over Shapley values from single-reference games $v_{x,r}$ where the references r are drawn from D.

Lemma:
$$\phi_i(v_{x,D}(S)) ::= \mathop{\mathbb{E}}\limits_{r \sim D} [\phi_i(v_{x,r}(S))]$$

Thus, the different Shapley Values across **KernelSHAP**, **QII**, **IME** are essentially differently weighted aggregations across a space of single-reference games

Confidence Intervals

Lemma:
$$\phi_i(v_{x,D}(S)) ::= \mathop{\mathbb{E}}\limits_{r \sim D} [\phi_i(v_{x,r}(S))]$$

- Directly computing $\phi_i(v_{x,D}(S))$ involves estimating several expectations
- This makes it challenging to quantify the estimation uncertainty
- Our decomposition reduces the computation to estimating a single expectation
- Confidence intervals (CIs) can now easily be estimated from the sample standard deviation (SSD); courtesy <u>central limit theorem</u>.

$$\bar{\boldsymbol{\phi}} \pm \frac{1.96 \times \mathsf{SSD}(\{\boldsymbol{\phi}(v_{\boldsymbol{x},\boldsymbol{r}_i})\}_{i=1}^N)}{\sqrt{N}} \quad \text{[95\% Cls]}$$

Showing Confidence Intervals is important!

Showing Confidence Intervals is important!

A new perspective on Shapley value attributions

Norm Theory [Kahneman and Miller, 1986]

Classic work in cognitive psychology.

Describes a theory of psychological norms that shape the emotional responses, social judgments, and **explanations of humans**.

Daniel Kahneman

Dale T. Miller

Three learnings from Norm Theory (and related work)

- "Why" questions evoke counterfactual norms
 - "A why question indicates that a particular event is surprising and requests the explanation of an effect, denned as a contrast between an observation and a more normal alternative."
 - Learning: Explanations are contrastive!

Three learnings from Norm Theory (and related work)

- "Why" questions evoke counterfactual norms
 - "A why question indicates that a particular event is surprising and requests the explanation of an effect, denned as a contrast between an observation and a more normal alternative."
 - Learning: Explanations are contrastive!
- Norms vary depending on their context
 - *"A man suffers from indigestion. Doctor blames it to a stomach ulcer. Wife blames it on eating turnips."* [Hart and Honoré., 1985]
 - Learning: Different contrasts yield different explanations

Three learnings from Norm Theory (and related work)

- "Why" questions evoke counterfactual norms
 - "A why question indicates that a particular event is surprising and requests the explanation of an effect, denned as a contrast between an observation and a more normal alternative."
 - Learning: Explanations are contrastive!
- Norms vary depending on their context
 - *"A man suffers from indigestion. Doctor blames it to a stomach ulcer. Wife blames it on eating turnips."* [Hart and Honoré., 1985]
 - Learning: Different contrasts yield different explanations
- Norms tend to be relevant to to the question at hand
 - *"Our capacity for counterfactual reasoning seems to show a strong resistance to any consideration of irrelevant counterfactuals."* [Hitchcock and Knobecaus, 2009]
 - Learning: Contrasts must be picked carefully

Shapley Values meet Norm Theory

Lemma:
$$\phi_i(v_{x,D}(S)) ::= \mathop{\mathbb{E}}\limits_{r \sim D} [\phi_i(v_{x,r}(S))]$$

- Shapley values contrastively explain the prediction on an input against a distribution of references (norms)
- Reference distribution can be varied to obtain different explanations.
 - E.g., Explain a loan application rejection by contrasting with:
 - All application who were accepted, or
 - All applications with the same income level as the application at hand
- Reference distribution must be relevant to the explanation being sought
 - E.g., Explain a B- grade by contrasting with B+ (next higher grade), not an A+

Regulation may favor Contrastive Explanations

The Official Staff Interpretation to Regulation B of the Equal Credit Opportunity Act originally published in 1985¹ states:

"One method is to identify the factors for which the applicant's score fell furthest below the average score for each of those factors **achieved by applicants whose total score was at or slightly above the minimum passing score**. Another method is to identify the factors for which the applicant's score fell furthest below the average score for each of those factors achieved by all applicants."

¹12 CFR Part 1002 - Equal Credit Opportunity Act (Regulation B), 1985

Formulate-Approximate-Explain

Three step framework for explaining model predictions using Shapley values

- **Formulate** a contrastive explanation question by choosing an appropriate reference distribution D
- Approximate the attributions relative to the reference distribution D by sampling references $(r_i)_{i=1}^N \sim D$ and computing the single-reference game attributions $(\phi_i(v_{x,r_i}))_{i=1}^N$
- **Explain** the set of attributions $(\phi_i(v_{x,r_i}))_{i=1}^N$ by appropriate summarization
 - Existing approaches summarize attributions by computing a mean
 - But, means could be misleading when attributions have opposite signs

Misleading Means

Box plot of the attribution distribution $\left(\phi_i(v_{x,r_i})
ight)_{i=1}^N$ for an input

Misleading Means

Box plot of the attribution distribution $(\phi_i(v_{x,r_i}))_{i=1}^N$ for an input

Sneak Peak: Contrastive Explanations via Clustering

Takeaways

- Shapley values is an **axiomatically unique method** for attributing the total gain from a cooperative game
- It has become popular tool for explaining predictions of machine learning models
- The key idea is to **formulate a cooperative game for each prediction** being explained
- There are many different game formulations in the literature, and hence **many different Shapley values**
 - See also: <u>The many Shapley values for model explanation</u>, arxiv 2019

Takeaways

- Shapley value explanations are contrastive
 - The input at hand is contrasted with a distribution of references
 - This is well-aligned with how humans engage in explanations
- The choice of references (or norms) is an important knob for obtaining different types of explanations
- Shapley values must be interpreted in light of the references, along with rigorous quantification of any uncertainty introduced in approximating them

References

- <u>The Explanation Game: Explaining Machine Learning Models with Cooperative Game</u>
 <u>Theory</u>
- <u>A Unified Approach to Interpreting Model Predictions</u> [SHAP and KernelSHAP]
- Algorithmic Transparency via Quantitative Input Influence [QII]
- An Efficient Explanation of Individual Classifications using Game Theory [IME]
- <u>The many Shapley values for model explanation</u>
- Norm Theory: Comparing Reality to Its Alternatives

Please feel free to write to me at <u>ankur@fiddler.ai</u>

We are always looking for bright interns and data scientists :-)

Appendix

Fiddler's Explainable AI Engine

Mission: Unlock Trust, Visibility and Insights by making AI Explainable in every enterprise

Explain individual predictions (using Shapley Values)

ew Credit						Audit Complete
redictions > Instance						
credit_aprvl 0.3	Explaination Type (Local Interpretability	•			
Feature Q						
Feature	Value 💍	negative	0.5	Prediction Impact	(Filter = ±1.0%)	positive
FICO	790			32.5% (+)		
Salary	89,000			21.5% (+)		
Credit Requested	9,000			15.3% (+)		
Total Assets	204,000			9.3% (+)		
Debt to Income Ratio	0.38			5.2% (+)		
ZipCode 27	101 🔻			5.6% (-)		
School Sa	ilem College 🔻			21.6% (-)		

How Can This Help...

Customer Support Why was a customer loan rejected?

Bias & Fairness How is my model doing across demographics?

Lending LOB

What variables should they validate with customers on "borderline" decisions?

Explain individual predictions (using Shapley Values)

	re Q		Cocal Interpretability	•			
-	Feature	Value 🝼		Prediction Impact 🔶 (I			
	FICO	790	negative	0.5	32.5% (+)	0.5	positive
	Salary	89,000			21.5% (+)	1	
	Credit Requested	9,000			15.3% (+)		
	Total Assets	204,000			9.3% (+)		
	Debt to Income Ratio	0.38			5.2% (+)		
[ZipCode 27101	•			5.6% (-)		
{_	School Salem	n College 🔻			21.6% (-)		
ipCode	27101	•			5	.6% (-)	

How Can This Help...

Customer Support Why was a customer loan rejected?

Bias & Fairness How is my model doing across demographics?

Lending LOB

What variables should they validate with customers on "borderline" decisions?

Explain individual predictions (using Shapley Values)

	New Credit Audit Complete trunk #40x Predictions > Instance							
	Feature	Value 💍	Prediction Impact 🔶 (Filter = ±1.0%)					
Probe the	FICO	790	negative	0.5	0 32.5% (+)	0.5	positive	
model on	Salary	89,000			21.5% (+)			
counterfactuals	Credit Requested	9,000			15.3% (+)			
	Total Assets	204,000			9.3% (+)			
	Debt to Income Ratio	0.38			5.2% (+)			
	ZipCode 23	7101 🔻			5.6% (-)			
	School S	alem College 🔻			21.6% (-)			
()								
ZipCo	27101	•				5.6% (-)		
Schoo	Salem Col	lege 🔻				21.6% (-)		

How Can This Help...

Customer Support Why was a customer loan rejected?

Bias & Fairness How is my model doing across demographics?

Lending LOB

What variables should they validate with customers on "borderline" decisions?

Integrating explanations

How Can This Help...

Customer Support Why was a customer loan rejected?

Why was the credit card limit low?

Why was this transaction marked as fraud?

How Can This Help...

Global Explanations

What are the primary feature drivers of the dataset on my model?

Region Explanations

How does my model perform on a certain slice? Where does the model not perform well? Is my model uniformly fair across slices?

Know Your Bias

How Can This Help...

Identify Bias How is my model doing across protected groups?

Fairness Metric

What baseline group and fairness metric is relevant?

Model Monitoring: Feature Drift

Feature distribution for time slice relative to training distribution

Investigate Data Drift Impacting Model Performance

Model Monitoring: Outliers with Explanations

How Can This Help...

Operations

Why are there outliers in model predictions? What caused model performance to go awry?

Data Science

How can I improve my ML model? Where does it not do well?

An Explainable Future

Explainability Challenges & Tradeoffs

- Lack of standard interface for ML models makes pluggable explanations hard
- Explanation needs vary depending on the type of the user who needs it and also the problem at hand.
- The algorithm you employ for explanations might depend on the use-case, model type, data format, etc.
- There are trade-offs w.r.t. Explainability, Performance, Fairness, and Privacy.

