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Machine Learning 
is Everywhere



How Much can We Trust DNN Predictions?

Deep learning has seen 
enormous success in the 
past several years



How Much can We Trust DNN Predictions?

But deep networks remain 
opaque and often exhibit 
undesirable behavior even 
when they appear to work well



Example: Adversarial Attacks

what is this a picture of?

OSTRICH

Original Image Adversarial 
Perturbation Perturbed Image

OSTRICH

OSTRICH

OSTRICH

[Szegedy et al. 2014]



Increasing Model Trust

• Generalization error might not be sufficient to instill model trust
• Question: when a model makes a decision, did it make it for the right 

reason?

• By examining the inner workings of a network, we may be able to 
address these types of questions



Example: Overfitting

Sample of LFW training instances

Typical explanations on test instances of Tony Blair

Explanation [Leino et al. 2018] on 
training instance of Tony Blair with 
distinctive pink background. The 
model uses the background to 
classify the instance as Tony Blair.

notice the distinctive pink background

[Leino and Fredrikson, 2019]



What Else Might We Want to Understand?

• Explaining mistakes
• Question: when a model makes a mistake, why?

• Uncovering new knowledge
• Question: did the model learn a pattern that we overlooked but might find 

useful?



Purpose of an Explanation Framework

• Answer queries like the questions posed in previous slides
• Goal: provide a framework for rigorously formulating and answering 

as broad a set of specific queries as possible



Overview

• Background on Interpretability
• Input Influence
• Internal Influence
• Slices
• Distributions of Interest
• Quantities of Interest
• Axioms

• Interpretation of Internal Features



Notation

• We will take a functional view of a neural network:

A model is a function, 𝑓:ℝ! → ℝ", where 𝑛 is the number of input 
features and 𝑚 is the number of classes

• Let 𝑥 ∈ ℝ! be an input to the model
• We say 𝑥! for 𝑗 ∈ [𝑛] is a feature or variable

• Let 𝑓"(𝑥) be the model’s output for class 𝑐 on input 𝑥



Influence Measures

• An (input) influence measure, 𝜒, for a model, 𝑓, assigns a value to 
each of the input features, 𝑥), specifying how important 𝑥) was in 
determining the model’s output, 𝑓(𝑥)



Saliency Maps

• Informally, for an influence measure to be causal (with respect to the 
model), a feature should be considered important if changing it 
slightly* would change the output of the model
• Gradient w.r.t. features captures this intuition precisely
• Simple influence definition [Simonyan et al. 2014]

𝜒*+,)-!./ 𝑓, 𝒙 =
𝜕𝑓.!
𝜕𝑥

𝒙

take the gradient w.r.t. the input

c’ is the predicted class

evaluate at the point we are 
calculating the influence for



Example: Saliency Maps

[Simonyan et al. 2014]



Integrated Gradients

• Gradient at a point may describe behavior that is too local
• Example:
• let 𝑓 𝑥 = max{𝑥, 1} (where 𝑥 ∈ ℝ, i.e., the input is 1-dimensional)
• let 𝒙 = 1.5
• Then 𝑓 𝒙 = 1, but #$

#%
𝒙 = 0

• It seems natural to give some influence to 𝒙, but according to a very local 
view, 𝒙 does not change 𝑓

• Integrated gradients [Sundararajan et al. 2017] addresses this by 
taking the average gradient between the point, 𝒙, and a baseline
point



Integrated Gradients

• Integrated gradients [Sundararajan et al. 2017]

𝜒01 𝑓, 𝒙, 𝒙𝟎 = (𝒙 − 𝒙𝟎) 0
345

6
𝜕𝑓.!
𝜕𝑥

𝒙𝟎 + 𝛼(𝒙 − 𝒙𝟎) 𝑑𝛼

baseline point
note: this is different from 
saliency maps conceptually 
because we multiply the 
gradient term by the input 
value (minus the baseline)

this is essentially an integral along 
the straight-line path from the 
baseline, x0 , to the point, x

𝜶 interpolates 
between x0 and x



Example: Integrated Gradients

[Sundararajan et al. 2017]



Selecting a Baseline

• Baseline is arbitrary, but affects how influence should be interpreted
• Commonly set to zero, i.e., a black image
• Could be a specific point we want to compare to



Why Take a Line?

• Line between point and baseline gives rise to some natural axioms
• Sensitivity | states that if the baseline differs from 𝒙 in exactly one variable, 

and 𝑓 𝒙 ≠ 𝑓(𝒙𝟎) then that variable must have non-zero influence
• Dummy Antisensitivity | states that if 𝑓 does not mathematically depend on 

a variable, that variable’s influence should be zero
• Linear Agreement | states that for a linear model, the influence of each 

feature is just the weight of that feature
• Efficiency | states that the sum of the influences must be equal to the 

difference in output on 𝒙 and on 𝒙𝟎
• Symmetry Preserving | states that symmetrical inputs to 𝑓 receive equal 

influence
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Generalizing Input Influence

• Become internal
• Assign a meaningful influence score to internal features learned by a deep 

network

• Become distributional
• Flexibility in defining which points the influence should be supported by

• Support general quantities of interest
• Flexibility to specify what network behavior we are trying to explain



Internal Influence

• Internal influence [Leino et al. 2018]

𝜒)!7 𝑓 = 𝑔 ∘ ℎ, 𝐷, 𝑞 = 0
8∈ℝ"

𝜕𝑞 ∘ 𝑔
𝜕ℎ(𝑥)

ℎ(𝑥) 𝐷 𝑥 𝑑𝑥

slice distribution of 
interest (DoI)

quantity of 
interest (QoI)

take gradient of QoI rather 
than output of f

take gradient w.r.t.
internal features

weight each point 
according to the DoI



Overview

• Background on Interpretability
• Input Influence
• Internal Influence
• Slices
• Distributions of Interest
• Quantities of Interest
• Axioms

• Interpretation of Internal Features



Different Layers Learn Different Abstractions

[Zeiler et al. 2013]

earlier layers

later layers



Slices

• A slice of a network, 𝑓, is a pair of functions (or sub-networks), ⟨𝑔, ℎ⟩, 
such that 𝑓 = 𝑔 ∘ ℎ
• Intuitively, this exposes the internals of the network at a chosen layer

𝑥 𝑓 𝑓(𝑥) 𝑓(𝑥)𝑥 ℎ 𝑔𝑧



Slices Help Decompose Explanations into 
Natural Components

Internal Influence Input Influence
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Defining the Set of Instances to be Faithful on

• Point may describe behavior that is too local
• Alternatives:
• Neighborhood around point (smooth gradients)
• Line to baseline (realizes IG)
• Entire class
• All training points
• Entire space



Distributions of Interest

• A distribution of interest (DoI) is a probability distribution over input 
points in ℝ!, represented by its PDF, 𝐷
• E.g., to get a linear path from 𝒙 to 𝒙𝟎 (as in IG), we can define the DoI

to be a uniform distribution over the points on the line segment 
between 𝒙 and 𝒙𝟎, i.e.,

𝐷 𝑥′ = <
1

𝒙 − 𝒙𝟎
if 𝑥: is on the line segment 𝒙𝒙𝟎

0 otherwise
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Defining the Quantity to Explain

• We may be interested in explaining a model behavior besides its 
prediction, for example
• Which features contributed to some other class that wasn’t chosen by the 

model?
• Why was class A chosen rather than class B?
• Which features contributed to the activation of a particular internal neuron?



Quantities of Interest

• A quantity of interest (QoI) is a function, 𝑞, of the output* of 𝑓 that 
specifies what network behavior we would like to calculate influence 
towards.
• E.g., 
• to use the network’s prediction as before, 𝑞 𝑓 𝑥 = max{𝑓 𝑥 }
• to compare class A with class B, 𝑞 𝑓 𝑥 = 𝑓' 𝑥 − 𝑓((𝑥)



Example: Comparative Quantities of Interest

Top neuron for quantity 𝑓!"#$%!&'$(𝑥)

Top neuron for (comparative) quantity 
𝑓!"#$%!&'$ 𝑥 − 𝑓&#()*$%+,-*(𝑥)

same neuron generalizes 
to other instances [Leino et al. 2018]
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Justification for Internal Influence

• Internal influence follows from a few natural axioms
• Linear Agreement | states that for a linear model, the influence of each 

feature is just the weight of that feature
• (distributional) Marginality | essentially captures that the influence must be 

causal with respect to the model – a feature can only get influence according 
to its marginal contribution to the quantity of interest
• Distributional Linearity | states that each point must be weighted according 

to its probability density given by the distribution of interest
• Slice Invariance | states that the influence doesn’t depend on the 

implementation of ℎ and 𝑔, only on the parts of the network that are exposed 
• Preprocessing | states that computing internal influence for a slice should be 

the same as computing input influence for 𝑔, where 𝑔’s inputs are 
preprocessed by ℎ



Summary of Internal Influence

• Goal is to enable a broad set of queries that can be tailored to the 
specific application/context
• Slice allows us to specify level of abstraction

• e.g., raw inputs or high-level features
• Distribution allows us to specify relevant points

• e.g., line from baseline or entire class
• Quantity allows us to specify what we are explaining

• e.g., specific class or comparison of two classes
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𝑔
ℎ

How do We Interpret Influential Internal Neurons?

• Backpropagation techniques, 
e.g., Zeiler et al. 2013

• Use input influence with a 
quantity of interest that selects 
a particular internal neuron 𝑓&(𝑥)

ℎ!(𝑥)

internal influence

input influence

most influential neuron


