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Deep Neural Networks

Flexible model for learning arbitrary non-linear, 
non-convex functions

Transform input through a network of neurons

Each neuron applies a non-linear activation 
function (σ) to its inputs

            n3 = σ(w1. n1 + w2.n2 + b) 

Output
(Image label, next word, next move, etc.)

Input
(Image, sentence, game position, etc.)

neuron



Understanding Deep Neural Networks

We understand them enough to:

● Design architectures for complex learning tasks (supervised and unsupervised)

● Train these architectures to favorable optima

● Help them generalize beyond training set (prevent overfitting)

But, a trained network largely remains a black box to humans



Understanding the input-output behavior of Deep Networks

i.e., we ask why did it make this prediction on this input?

Objective



Why did the network label this 
image as “fireboat”?



Why does the network label this 
image with “mild” Diabetic 
Retinopathy?

Retinal Fundus Image



Why study input-output behavior of deep networks?

● Debug/Sanity check networks

● Surface an explanation to the end-user

● Identify network biases and blind spots

● Intellectual curiosity



Analytical Reasoning is very hard

● Modern architectures are way too complex for analytical reasoning
○ The meaning of individual neurons is not human-intelligible

● Could train a simpler model to approximate its behavior
○ Faithfulness vs. Interpretability

Inception architecture: 1.6 million parameters



The Attribution Problem 

Attribute a deep network’s prediction to its input features, 
relative to a certain baseline input
● E.g., Attribute an object recognition network’s prediction to its pixels

● E.g., Attribute a text sentiment network’s prediction to individual words



Need for a baseline

● Every explanation involves an implicit or explicit counterfactual

○ see [Kahneman-Miller 86]

● Ideally, the baseline is an informationless input for the network

○ e.g., black image for image networks

● The baseline may also be an important analysis knob

https://pdfs.semanticscholar.org/9809/8ee48700173e2f09aeff48c406ef943918b5.pdf


Outline

● Our attribution method: Integrated Gradients

● Applications of the method

● Justifying Integrated Gradients 

● Case Study: Neural Programmer

● Discussion



Naive approach: Ablations

Ablate each input feature and measure the change in prediction

Downsides:
● Costly, especially for image networks with (224*224*3) pixel features

● Unrealistic inputs

● Misleading when there are interactive features
○ E.g., Query=”Facebook”  AND  Domain=”facebook.com”   IMPLIES high click 

through rate



Gradient-based Attribution

Attribute using gradient of the output w.r.t each input feature

Attribution for feature xi is xi* ᶬy/ᶬxi

● Standard approach for understanding linear models

○ Here, gradients == feature weights

● First-order approximation for non-linear models



Inception on ImageNet

Fireboat (0.9999) pier (3e-5) Steel arch bridge (6e-7) Crane (4e-7) Liner (4e-2)



Visualizing Attributions
Visualization: Use (normalized) attribution as mask/window over image

Why the 
sky?



Attribution using gradients

Why the 
water?



Saturation

Intensity ᵙ

Baseline

… Scaled
      inputs ...

Baseline Image

Prediction Score



Saturation

Pixel gradient
(average across
all pixels)

Intensity ᵙ

… Scaled
      inputs ...

Baseline Image



Saturation

Pixel gradient
(average across
all pixels) Uninteresting gradients

interesting gradients Intensity ᵙ

… Scaled
      inputs ...

Baseline Image



Saturation occurs...

● across images
○ Not just the two images we discussed

● across networks
○ Not just Inception on ImageNet

○ Severity varies

(see this paper for details)

https://arxiv.org/abs/1611.02639


The Method: Integrated Gradients

Pixel gradient

Intensity ᵙ
… Scaled
      inputs ...

IG(input, base) ::=  (input - base) * ∫0 -1▽F(ᵙ*input + (1-ᵙ)*base) dᵙ

Baseline Image



Gradient at image

Original image 
(Fireboat)

Integrated gradient



Gradient at image

Original image (Turtle)

Integrated gradient



Many more Inception+ImageNet examples here

https://github.com/ankurtaly/Attributions


Human label:  accordion
Network’s top label: toaster

Misconception



Human label:  accordion
Network’s top label: toaster

Misconception

Integrated gradient



Very few lines of code...
def integrated_gradients(inp, base, label, steps=50):

  scaled_inps = [base + (float(i)/steps)*(inp-base) for i in range(0, steps)]

  predictions, grads = predictions_and_gradients(scaled_inputs, label)

  integrated_gradients = (img - base) * np.average(grads, axis=0)

  return integrated_gradients

see this colab

https://colab.corp.google.com/drive/0B9aMVAqGTH9veUxNR09UbWQzdDg


Baseline matters

Black baseline White baseline



Applications



Diabetic Retinopathy

Diabetes complication that causes damage to blood vessels in the eye due to 
excess blood sugar.

An Inception-based network for 
predicting  diabetic retinopathy grade 
from retinal fundus images achieves 
0.97 AUC [JAMA paper]

On what basis, does the network 
predict the DR grade?

http://www.mayoclinic.org/diseases-conditions/diabetic-retinopathy/basics/definition/con-20023311
http://europepmc.org/abstract/med/27898976


A prediction

Predicted DR grade: Mild 



Surfacing an explanation to the doctor!



Surfacing an explanation to the doctor!

Lesions

Barely visible 
to human eye



Application: Text Classification

● We have a data set of questions and answers
○ Answer types include numbers, strings, dates, and yes/no

● Can we predict the answer type from the question? 
○ Answer: Yes using a simple feedforward network

● Can we tell which words were indicative of the answer type?
○ Enter attributions

● Key issue: What is the baseline (analog of the black image)?
○ Answer: the zero embedding vector



Application: Text Classification

Red is positive attribution
Blue is negative attribution
Shades interplolate



Application: Text ClassificationSeveral sensible results, 
can almost harvest these 
as grammar rules

Overfitting?
Negative 
signals too



Many Other Applications

● Search Ranking
○ What makes one result rank higher than another?

● Language translation
○ Which input word does this output word correspond to?

● Text sentiment
○ Which input words cause negative sentiment?



Justifying Integrated Gradients



Related Work on Attributions

● Score back-propagation methods

○ DeepLift [ICML’17], Layerwise Relevance Propagation [JMLR’17], Guided BackPropagation 
[CoRR’14], DeConvNets [CVPR ‘10]… 

● Local Model Approximation

○ E.g., LIME [KDD ’16], Anchors [AAAI ’18]

● Shapley value based methods

○ E.g., Quantitative Input Influence [S&P ’16], SHAP [NIPS ‘17]

● Gradient-based methods

○ E.g., SmoothGrad [2017], SaliencyMaps [2014]



How do you evaluate an attribution method?



How do you evaluate an attribution method?

● Eyeball Attributions
○ Issue: Attribution may “look” incorrect due to unintuitive network behavior
○ Issue: Preference to methods that agree with human reasoning (confirmation bias) 

● Ablate top attributed features
○ Issue: Ablations may change prediction for artifactual reasons

Hard to separate model behavior, attribution errors, eval artifacts



How do you evaluate an attribution method?

● Eyeball Attributions
○ Issue: Attribution may “look” incorrect due to unintuitive network behavior
○ Issue: Preference to methods that agree with human reasoning (confirmation bias) 

● Ablate top attributed features
○ Issue: Ablations may change prediction for artifactual reasons

Hard to separate model behavior, attribution errors, eval artifacts

Our approach:
● List desirable criteria (axioms) for an attribution method
● Establish a uniqueness result: X is the only method that satisfies these 

desirable criteria



A. If starting from baseline, varying a variable changes the output, then 
the variable should receive some attribution.

B. A variable that has no effect on the output gets no attribution.

(A) not satisfied by:

● Gradient at output

● DeConvNets

● Guided Backpropagation

Axiom: Sensitivity



Two networks that compute identical functions for all inputs get identical 

attributions even if their architecture/parameters differ

E.g. F = x*y + z and G = y*x + z should get the same attributions

Not satisfied by:

● DeepLift

● Layerwise Relevance Propagation

Axiom: Implementation Invariance



x1 = 3

x2 = 1

z1 = ReLU(x1) 
    = 3

z2 = ReLU(x2)
    = 1

F(x1, x2) = ReLU(z1 -1 - z2)   
            = 1

 Integrated gradients x1 = 1.5, x2 = -0.5     

DeepLift x1 = 1.5, x2 = -0.5

LRP x1 = 1.5, x2 = -0.5

x1 = 3

x2 = 1

z1 = ReLU(x1 - 1) 
    = 2

z2 = ReLU(x2)
    = 1

G(x1, x2) = ReLU(z1 - z2)   
             = 1

Integrated gradients x1 = 1.5, x2 = -0.5     

DeepLift x1 = 2,    x2 = -1

LRP x1 = 2,    x2 = -1

For all x1 and x2:  F(x1, x2) == G(x1, x2)



Axiom: Linearity Preservation

If the function F is a linear combination of two functions F1,F2 then the 
attributions for F are a linear combination of the attributions for F1,F2

I.e., Attributions(ɑ*F1 + ß*F2) = ɑ*Attributions(F1) + ß*Attributions(F2)

Rationale: 

● Attributions have additive semantics, good to respect existing linear structure 

● E.g.,  For F = x*y + z, the "optimal" attribution should assign blame 

independently to ‘z’ and ‘x*y’



Axiom: Completeness

Sum(attributions) = F(input) - F(baseline)

Rationale: Attributions apportion the prediction
● Break down the predicted click through rate (pCTR) of an ad like:

○ 55% of pCTR is because it’s at position 1
○ 25% is due to its domain (a popular one)
○ …

Theorem [Friedman 2004]

Every method that satisfies Linearity preservation, Sensitivity and Implementation 

invariance, and Completeness is a path integral of a gradient. 



Axiom: Symmetry

Symmetric variables with identical values get equal attributions

Rationale: 

● E.g.,  For F = x*y + z, the "optimal" attribution at x,y,z=1,1,2 should be equal 

for x and y.

Theorem: [This work]

Integrated Gradients is the unique path method that satisfies these axioms. (there 

are other methods that take an average over a symmetric set of paths)



Highlights of Integrated Gradients

● Easy to implement 
○ Gradient calls on a bunch of scaled down inputs

○ No instrumentation of the network, no new training

● Widely applicable 

● Backed by an axiomatic guarantee

References
● Google Data Science Blog: Attributing a deep network’s prediction to its input 
● Paper [ICML 2017]: Axiomatic Attribution for Deep Networks 

http://www.unofficialgoogledatascience.com/2017/03/attributing-deep-networks-prediction-to.html
https://arxiv.org/pdf/1703.01365.pdf


Case Study: Neural Programmer
(Joint work with Pramod Mudrakarta, Mukund Sundararajan, Qiqi Yan, 
and Kedar Dhamdhere)



Question-Answering Task

Answer a natural language question on a table (think: spreadsheet)

Q: How many gold medals did India win?
A: 102

Q: how many countries won more than 10 
gold medals?
A: 3

1999 South Asian Games



WikiTables Dataset (WTQ)  [Pasupat and Liang 2015]
Dataset of 22,033 <Question, Table, Answer> triples  (split into train, dev, test)

● Tables scraped from Wikipedia; Questions and Answers by Mechanical 

Turkers

● Wide variety of questions
○ [Max/Min] which lake has the greatest elevation?

○ [A_or_B] who won more gold medals, brazil or china?

○ [Position] which location comes after kfar yona?

○ [Count] how many ships were built after ardent?



How many countries have won more than 10 gold medals?

● Annotate utterances with typed entities (metrics, dimensions, filters, etc.)
● Parse annotated sentence using a grammar into a logical form
● Execute logical form to obtain an answer

Relies on human authored grammar, synonym lists, and scoring heuristics
● Good precision but poor recall

Intent word Dimension MetricFilter

Stop words

Traditional Approach: Semantic Parsing



Our Protagonist: Neural Programmer [ICLR 2016 and ICLR 2017]

● Deep network augmented with a fixed set of primitive operations 

○ Belongs to the family of Neural Abstract Machine architecture

● Learns to compose operators and apply them to the table to obtain an answer

● Trained end-to-end on <question, table, answer> triples

Eliminates the need for hand-crafted grammars, synonym lists and other heuristics. 
Instead, learns these from data!



Understanding Neural Programmer (NP)
● What triggers various operator and column selections?

● Can we extract rules from NP that we could use in a hand-authored system?

○ Can we extract a grammar from NP? 

● How robust is NP’s reasoning?

○ Can we craft adversarial examples to fool it?



Example 1

Q: Wang Zheng and Wang Hao are 
from which country?
Neural Programmer: China



Example 1

Q: Wang Zheng and Wang Hao are 
from which country?
Neural Programmer: China

Select
(Athlete)

First Print
(Nationality)

Operator Selection:

What triggered the “Nationality” column? 



Example 2

Q: Which nation earned the most gold 
medals?
Neural Programmer: Cuba



Example 2

Q: Which nation earned the most gold 
medals?
Neural Programmer: Cuba

What triggered operator Prev?
What triggered operator First?

Prev
(Team)

First Print
(Team)

Operator Selection:



Example 3

Q: which country performed better 
during the 1951 world ice hockey 
championships, switzerland or great 
britain?

Neural Programmer: Switzerland



Example 3

Select
(Team)

First Print
(Team)

Operator Selection

Q: which country performed better 
during the 1951 world ice hockey 
championships, switzerland or great 
britain?

Neural Programmer: Switzerland

What triggered this non-robust selection?



Basic Questions

● Which inputs and outputs should we focus on?

○ Not immediately clear:  
■ Several inputs comprising of question/table features, masks, labels, etc. 

■ Answer computation logic is partly continuous and partly discrete

● What is the right baseline?



Basic Questions

Take inspiration from program debugging,
● Abstract out uninteresting details
● Focus on parts that are most mysterious or error-prone

● Which inputs and outputs should we focus on?

○ Not immediately clear:  
■ Several inputs comprising of question/table features, masks, labels, etc. 

■ Answer computation logic is partly continuous and partly discrete

● What is the right baseline?



Question and Table Featurization

Question

Table

Featurize
(code)

● Column matches: Boolean tensor indicating 
which column names share a word with the 
question

● Table matches: Boolean tensor indicating 
which table cells share a word with the 
question

● Special tokens <tm_token>, <cm_token> are 
added to the question when above tensors are 
non-zero

Network nevers sees the table contents; it sees only the table matches

Question 
words

Column 
matches

Table 
matches

Column 
names



Encoder-Decoder 
network

Op1

Col1

Op2

Col2

Answer Computation (during inference)

Op3

Col3

Op4

Col4

Predict a distribution across 
operators and columns

Question 
words

Column 
matches

Table 
matches

Column 
names



Answer 
Computation

(discrete code)

(Apply the selected 
operator to the 

selected column at 
each step)

Op1

Col1

Op2

Col2
Answer

Op3

Col3

Op4

Col4

Pick the top operator and 
column (hard selection!)

Question 
words

Column 
matches

Table 
matches

Column 
names

Answer Computation (during inference)

Encoder-Decoder 
network



Answer 
Computation

(discrete code)

(Apply the selected 
operator to the 

selected column at 
each step)

Op1

Col1

Op2

Col2
Answer

Op3

Col3

Op4

Col4

Question 
words

Column 
matches

Table 
matches

Column 
names

Program (or logical form)
Focus on explaining this

Answer Computation (during inference)

Encoder-Decoder 
network



Currying

col-names → < ques-words, table-matches, col-matches > → R#operators

(analogous function for column selection)

Split the analysis:

1. Understand the influence of table inputs (column names)

2. Understand the influence of question inputs given the table



Step 1: Understanding Table Influence

We invoked the network on a given set of column names but empty question 
(i.e., ques-words = [], table-matches = 0, column-matches = 0)

● We expected this to return uniform operator and column distributions

● Instead, the distributions were quite skewed ⇒ network has a bias per table

● We call the (skewed) selections Table-Default Programs

Next step: Attribute table-default programs to column names



Table-Default Programs 

(similar table for column selections)



Table-Default Programs 

(similar table for column selections)

Sports tables?



Bias can be useful

● When question has OOV words, final program == table-default program

● For 6% of dev data instances, the table-default program is the final program

 

Reset 
(prob: 0.41)

Prev 
(prob: 0.37)

Max 
(prob: 0.50)

Print 
(prob: 0.97)

There is a global default for empty table, empty question too!

  



Step 2: Understanding Question Influence

col-names →    < ques-words, table-match, col-match > → R#operators

Use Integrated Gradients to attribute selections to question words, table-matches 
and column-matches

● Baseline: empty question

● Attributions will be meaningful only for selections different from those in the 
table-default program



Visualizing Attributions  

Wang zhen and Wang Hao are both from which country?



Visualizing Attributions  

Wang zhen and Wang Hao are both from which country?

Table-default selection 
is shown in parenthesis

Attribution is set to 
0.0 when selection is 
same as table-default



Visualizing Attributions  

Table-match →  Select

“Country” →  “Nationality”

Table-default selection 
is shown in parenthesis

Attribution is set to 
0.0 when selection is 
same as table-default

Wang zhen and Wang Hao are both from which country?



Example 2
Which nation earned the most gold medals?



Example 2

Operator 
Prev comes 
from the 
table default

Column “Nation” at 
the last step also from 
the table default

“Gold” → First

Which nation earned the most gold medals?



Example 3
Which country performed better during the 1951 word ice 
hockey championships, switzerland  or great britain?



Example 3

“Or”, table-match 
and column-match 
trigger the “Team” 
column at first step

“Better” →  First

“Team” at the last step 
comes from 
table-default

Which country performed better during the 1951 word ice 
hockey championships, switzerland  or great britain?



Crafting Adversarial Inputs
Can we use (mis-) attributions to craft adversarial inputs 
against Neural Programmer?



Operator triggers 

Fluff words?

Irrelevant?

For each operator, aggregate the top attributed words across questions



Attack 1: Fluff word deletion

● We deleted fluff words from all dev data questions

● Dev accuracy falls from 33.62% to 28.60%



Attack 2: Question phrase concatenation
Stick a content-free phrase comprised of semantically-irrelevant trigger words to 
all questions in the dev set1.

Union of the 6*2 = 12 
attacks drops accuracy 
from 33.62% to 5.01%

Original Accuracy: 33.62%

1Related work: Adversarial examples for evaluating reading-comprehension systems [Jia and Liang, 2017]



Other Research Directions



On Understandability

● Extract rules from a DNN
○ E.g., Can we extract contextual synonyms from Neural Programmer?

● Understand individual dataflow paths
○ For e.g., what influence does the attention path have on the predictions?

○ Allows extracting more focussed rules

● Understand feature interactions 
○ Can we automatically extract feature crosses from a deep network?

○ Hessians instead of Gradients?

● Steer DNNs toward robust behavior
○ Training data augmentation

○ Intervene with rules, e.g., only attend to non-stop words?



Questions?


