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Given a high-accuracy, 
black-box model,  

and a prediction from it, 
can we answer…



Why did the model make 
this prediction?



Why did the model make 
this prediction?

• Make better decisions [1] 

• Improve the model [2] 

• Discover new science [3] 

• Provide end-users explanations [4]

[1] Lakkaraju, Bach, and Leskovec, 2016 
[2] Amershi et al., 2015 
[3] Shrikumar, Greenside, and Kundaje, 2017 
[4] Goodman & Flaxman, 2016
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“Dog”

What inputs maximally  
activate these neurons? [1]

Can we represent this 
model with  
a simpler one? [2-3, 9]

Which part of the input was 
most responsible for this 

prediction? [4-9] [1] Girshick et al., 2014 
[2] Zeiler and Fergus, 2013 
[3] Ribeiro, Singh, and Guestrin, 2016 
[4] Bastani, Kim, and Bastani, 2017 
[5] Simonyan, Vedaldi, and Zisserman, 2013 
[6] Li, Monroe, and Jurafsky, 2016 
[7] Shrikumar, Greenside, and Kundaje, 2017 
[8] Sundararajan, Taly, and Yan, 2017 
[9] Leino et al., 2018
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Why did the model make this 
prediction?

Which training points were most 
responsible for this prediction?
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“Dog” (82% confidence)“Dog” (79% confidence)
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What is L(ztest, �̂�,ztrain) � L(ztest, �̂)?



Why did the model make this 
prediction?

Which training points were most 
responsible for this prediction?

How would the prediction 
change if we upweighted each 

training point?



Motivation 
> Influence functions 

Applications 
Conclusion
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Influence functions

• Introduced in the 1970s in the field of robust statistics 
(e.g., Jaeckel, 1972; Cook, 1977; Cook and Weisberg, 1982)

• Consider an estimator T that acts on a distribution F

• How much does T change if we perturb F?

• For us, F is the training distribution, and T = L(ztest, �̂(F ))
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Potential issues

*More details in paper
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Potential issues
1. Computational inefficiency
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Potential issues
For a fixed ztest and for each ztrain, compared:

1. Actual change in L(ztest) after removing ztrain

2. Predicted change in L(ztest) after removing ztrain



Actual diff in loss

Softmax (approx) Hinge CNN
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Application 1 
Debugging model errors



Debugging model errors

• If a model makes a mistake, can we find out why? 

• Case study: hospital re-admission (logistic regression, 
20K patients, 127 features)
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Debugging model errors
True test label: 

Model predicts:
Healthy 
Re-admitted
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Debugging model errors
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Debugging model errors
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Model predicts:
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Application 2 
Fixing training data



Fixing training data
• Setup: training labels are noisy, and we have a small budget

to manually inspect them

• Can we prioritize which labels to try to fix?

• Key idea: if a training point is not influential, don’t waste
effort checking it

• Because we don’t have a test set, we measure Iup,loss(z, z)
for each training point z, which approximates leave-one-out
error
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Fixing training data
• Setup: training labels are noisy, and we have a small budget

to manually inspect them

• Can we prioritize which labels to try to fix?

• Key idea: if a training point is not influential, don’t waste
effort checking it

• No test set, so we measure Iup,loss(z, z) for each training
point z, which approximates leave-one-out error



Fixing training data



Application 3 
Adversarial training examples
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Image from Goodfellow, Shlens, Szegedy, 2015 
Original demonstration from Szegedy et al., 2013

“panda” “gibbon”
57.7% confidence 99.3% confidence



Image from Goodfellow, Shlens, Szegedy, 2015 
Original demonstration from Szegedy et al., 2013

“panda” “gibbon”
57.7% confidence 99.3% confidence

Adversarial test examples 



Model

Test data Wrong  
prediction

Gradient

Adversarial test examples 
Follow the gradient of the test loss w.r.t. test features 

(to increase loss) [1]

[1] Goodfellow, Shlens, Szegedy, 2015



We have adversarial test examples. 
Can we create adversarial training examples?



Adversarial training examples 
Follow the gradient of the test loss w.r.t. train features



Model
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Wrong  
prediction

Training 
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Gradient



Adversarial training examples 
Follow the gradient of the test loss w.r.t. train features 

Influence functions help us calculate this gradient



Adversarial training examples 
Follow the gradient of the test loss w.r.t. train features 

Influence functions help us calculate this gradient

*Mathematically equivalent to gradient-based attacks 
explored by Biggio et al. (2012), Mei & Zhu (2015), and others 



Adversarial training examples

• Setup: dog vs. fish classification, logistic regression 
on top of Inception features
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Label: fish
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space



Three observations

1. Ambiguous examples are good attack vectors 

2. Small change in pixels but large change in feature 
space 

3. Attack makes model overfit to specific test examples 
(n ~ d)



Three observations

Certified Defenses for Data 
Poisoning Attacks, NIPS, 2017

Jacob Steinhardt Percy Liang

1. Ambiguous examples are good attack vectors 

2. Small change in pixels but large change in feature 
space 

3. Attack makes model overfit to specific test examples 
(n ~ d)



Test data Wrong  
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Outside  
world

[1] Barreno, Nelson, Joseph, and Tygar, 2010. 
[2] Biggio, Nelson, and Laskov, 2012.
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Test data

Outside  
world

[1] Barreno, Nelson, Joseph, and Tygar, 2010. 
[2] Biggio, Nelson, and Laskov, 2012.

Training 
data

Model

Correct 
prediction



Biggio et al., Poisoning attacks against support vector machines, 2012 
Xiao et al., Is feature selection secure against training data poisoning?, 2015 
Mei and Zhu, Using machine teaching to identify optimal training-set attacks 
on machine learners, 2015 
Mozaffari-Kermani et al., Systematic poisoning attacks on and defenses for 
machine learning in healthcare, 2015 
Burkard and Lagesse, Analysis of causative attacks against SVMs learning 
from data streams, 2017 
…

Cretu et al., Casting out demons: Sanitizing training data for anomaly sensors, 
2008 
Rubinstein et al,. Antidote: Understanding and defending against poisoning of 
anomaly detectors, 2009 
Laishram and Phoha, Curie: A method for protecting SVM classifier from 
poisoning attack, 2016 
Chen, He, and Hsu, Chen, He, and Hsu, Data sanitization against adversarial 
label contamination based on data complexity, 2017 
…



Given a defense and a dataset,  
can we bound the damage that any attacker can do?

vs.
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Which training points were most 
responsible for this prediction?

How would the prediction 
change if we upweighted each 

training point?
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Future work
• Real-world problems: hospitals (interpretability, 

uncertainty) 

• Real-world models: scale [1], non-convexity, SGD 

• Studying global perturbations 

• Connections to reliability and privacy [2] 

• Influence as part of the objective [3]

[1] Wojnowicz et al., 2016 
[2] Wang, 2017 
[3] Ross, Hughes, Doshi-Velez, 2017



Thank you
Github: https://bit.ly/gt-influence 

CodaLab: https://bit.ly/cl-influence 
Paper: https://arxiv.org/abs/1703.04730 

pangwei@cs.stanford.edu

This presentation uses images from the Noun Project: 

Question by Valeriy  | Box by Rockicon | Magnifying Glass by il Capitano | services by IconsGhost  | Ghost by Bakunetsu Kaito  
Neural Network by Knut M. Synstad | Poisoned Dagger by Ben Davis | world by Aleksandr Vector | Shield by Nikita Kozin 

Percy Liang Koda
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