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Why Interpretable Methods

e Safety -- Is this car safe to ride in?




Why Interpretable Methods

Trust -- How can | trust you?

Example #3 of 6

True Class: ‘ Atheism

CCOCDO

Algorithm 1
Words that Al considers important: Predicted:

mean Prediction correct:
anyone| J
this
Koresh|
through
Document

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

Algorithm 2
Words that A2 considers important: Predicted:

Posting ’ Atheism

Host| Prediction correct:
Re| J
by
in
Nntp
Document

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: &

(image from Rebeiro et al.)




Why Interpretable Methods

e Learn -- How can | become a better Go player?




Why Interpretable Methods

e Improve -- How can | improve my model performance?

L STATISTICAL LEARNING \

Conmape sy
oo bt %)h l Interpretable Tool

These training images have
multiple correct labels.

LAYERS




Types of Interpretable Models

Before Training During Training

Dataset analysis

Model
-y ’3;‘ ~ ———— Class: Dog

Model: classified as a
dog since it looks like
other dogs.

Interpretable Model

After Training

Model
- ’S;‘~ —— Class: Dog
Post-hoc Explanation: the
model classify this as a
dog because ...

Post-hoc Explanation



Types of Interpretable Models

Local Explanations

=g

XA Model
-"" {\ " ) Class: Dog

Why is this image classified as a dog?

Global Explanations

B~ Model
L%L —————> C(Class: Cat

—_— Model
WEL) - ———— Class: Dog

&
p— % Model
&7 ——— Class: Car

How did the model classify the images?



Types of Interpretable Models

Feature-based explanations Instance-based explanations

Model Model

— E , © ———— Class: Dog — E , * ———> Class: Dog
This picture is classified as a dog because of This picture is classified as a dog because of

the bright pixels are used by the model: these training images are labeled as dogs:




Types of Interpretable Models

e Our model can be used in several settings:
o Can be seen as an interpretable model and a post-hoc explanation.
o Can be used as a global explanation and a local explanation.
o |Is mainly an instanced-based explanation, but can be combined with

feature-based explanations.



Representer Theorem for RKHS

Theorem 1 (The Representer Theorem). Let k be a kernel on X and let F be its associated RKHS. Fiz

X1,...,Tn € X, and consider the optimization problem
min D(f(#1),...,f(#n)) + P(|I£11%), (2)

where P is nondecreasing and D depends on f only though f(x1),...,f(xn). If (2) has a minimizer, then it
has a minimizer of the form f = > a;k(-,x;) where a; € R. Furthermore, if P is strictly increasing, then

=1
every solution of (2) has this form.



Representer Point Selection for Explaining Deep Neural Network

e \We can show that

for some positive p, p, p, ... and negative n, n,n, ... and a kernel function k.
This shares the form of Representer Theorem in RKHS space.



Representer Point Selection for Explaining Deep Neural Network

set of representer points in the training set.

test id3092
grizzly bear predicted as
grizzly bear

train id13033
grizzly bear predicted as
grizzly bear

dusihuprnr L

train id21249
polar bear predicted as
polar bear

POSITIVE Example

NEGATIVE Example
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train id12728

grizzly bear predicted as

grizzly bear
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train id1228
beaver predicted as

beaver

NEGATIVE Example
J T N

We enhance the understanding of a neural network prediction by pointing to a

train id12742
grizzly bear predicted as
grizzly bear

POSITIVE Example

train id20730
pig predicted as
pig

NEGATIVE Example



Intuition

e Most neural networks can be seen as first performing feature extraction and
then performing classification.

e We can view the dot product of the features between two data point as a
similarity measure (or a kernel function).

e \We show that the prediction of a data point can be written as a linear
combination of the similarity between the data point and training instances
(under certain conditions).



lllustration

Training Data Test Data

all +azl i +a,,|

Global Importance of Samples

(o, a0 Test Output

i ak(x;, x,)
i=1

Representer Values



Formal Theorem Statement

Theorem 3.1. Let us denote the neural network prediction function by y; = o(®(x;,®)), where
®(x;,®) = O.f; and f; = P2(x;,0,). Suppose O is a stationary point of the optimization
problem: argmine { £ 37 L(x;, i, ©)) + 9([|©1]])}, where g(||®4[]) = A[©4][2 for some A >
0. Then we have the decomposition:

o(x;,0") = Z k(x¢, X, ;)

1 aL(xa Y i ,e)
—2\n 64’()(,‘ ,9)

where o; =
given X;.

and k(x4,X;, ;) = @; sz f;, which we call a representer value for x;



Proof

e Proof is simple. By taking the gradient to be 0, the weight of last fully connected
layer can be written as linear combination of training point features.

e Therefore, the prediction of the testing point is a linear combination of dot
product of testing and training point features.



Theorem Interpretation

e The prediction of a testing point is determined by its similarity to positive
training images and negative training images. If the feature is closer to
positive training images and further away from negative training images, the
prediction score will be higher and vice versa.




Some Use Cases

Training an Interpretable Model with L2 Regularization

1 ‘
e = arg min - Z L(yl (I)(xia @)) + )\H@le



Some Use Cases

Post-hoc Analysis of a Given Pre-trained Model
. 1 n 5
©" € argngn {; Z L(®(xi, Ogiven), P(xi, ©)) + Al[©1 ||"}

for any ©* € arg ming L(®(x;, O iven ), P(xi, ©)),
we have o(®(x;, ©)) = a(P(xi, Oyiven))-



Experiments

Visualizations of Positive/Negative Representer Points
Misclassification Analysis

Sensitivity Map Decomposition

Dataset Debugging

Computational Cost / Numerical Stability

ok owbdh-=

Datasets: CIFAR10, Animals with Attributes (AwWA)



Positive and Negative Representer Points (1)

o(x;,0%) = Z a,-tﬁ

N

Global sample importance Feature similarity

- Positive Representer Points (Excitatory)
- Positive global sample importance + Positive feature similarity
- Negative global sample importance + Negative feature similarity
- Negative Representer Points (Inhibitory)
- Negative global sample importance + Positive feature similarity
- Positive global sample importance + Negative feature similarity



Positive and Negative Representer Points (2

- Visualization on AwWA Dataset

test id3092 train id13033 train id12728 train id12742 test id5727 train id23304 train id23687 train id23336
grizzly bear predicted as grizzly bear predicted as grizzly bear predicted as grizzly bear predicted as rhinoceros predicted as rhinoceros predicted as rhinoceros predicted as rhinoceros predicted as
grizzly bear grizzly bear grizzly bear grizzly bear rhinoceros rhinoceros rhinoceros rhinoceros
) g @ ) 2 2 2 ——
o Q Qo
£ £ ER E E E
© © © g Q Q L
o o o v i a
w w w
g s s > > > [0
E E E El E E
0 0 0 ) 0 0
oL 9 9 ©larns 9 © lities'she e
train id21249 train id1228 train id20730 train id8471 train id29490 train id8518
polar bear predicted as beaver predicted as pig predicted as elephant predicted as zebra predicted as elephant predicted as

polar bear elephant elephant

NEGATIVE Ex.ample
NEG{}TIVI? Examele
NEGATIVE Example
NEGATIVE Example
NEGATIVE Example
NEGATIVE Example



Making Sense of Misclassifications

- Can we understand why the model made a misclassification?

Test Points with Labels Antelope

test id7
predicted as deer
true label is antelope

train id29372 train id688
predicted as zebra predicted as deer
true label is zebra true label is antelope

train id8090
predicted as elephant
true label is elephant

train id29208
predicted as zebra
true label is zebra

® Misclassified as Other ® Misclassified as Deer
© Correctly Classified
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Sensitivity Map Decomposition (1)

- Sensitivity Map: indication of how each feature influences the prediction

- Saliency maps (Simonyan et al. 2013), LRP (Bach et al. 2015), Integrated Gradients
(Sundararajan et al. 2017), SmoothGrad (Smilkov et al. 2017) etc.

Samples taken from Simonyan et al., Sundararajan et al.



Sensitivity Map Decomposition (2)

- Can we decompose sensitivity map using representer values, in terms of
each training points?

N " ID(x;, 0F)  «  OfTf
B(x,. OF) = £Tf o\, ) Pt
(e, ) Z“ t = o, Z“’ 0%,

LN

Sensitivity map

Weighted sum of sensitivity maps
specific to each training points



Sensitivity Map Decomposition (3)

s ik K00 train id29490 train id29746 train id29708 train id29372 train id29142

zebra predicted as zebra zebra predicted as zebra zebra predicted as zebra zebra predicted as zebra zebra predicted as zebra zebra predicted as zebra
uael . 2 SO e

Decomposed Attribution

Decomposed Attribution Decomposed Attribution

Decomposed Attribution

Decomposed Attribution

train id18232
moose precﬂued as moose

train id18411 train id18051 train id18079
moose predicted as moose moose predicted as moose moose predicted as moose
]

train id18082
moose predicted as moose

Test image id4399
moose pre 3s moose

Sensitivity Map on Test Decomposed Mmbutmn Decomposed Attribution Decomposed Attribution Decomposed Attribution Decomposed Attribution




Dataset Debugging (1)
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correction i

Sample
v importance

u Data

accuracy

‘N
~
..
~
‘N
|

- Given a training dataset with corrupted labels, can we correct them?
- And with the corrected dataset, can we increase the test accuracy?



Dataset Debugging (2)

- Result on CIFAR10

- Binary classification of class automobile vs horse
- Logistic regression model
- Select training points with higher absolute value of «;

05
—&— Influence
064 | =% Random
—e— Ours g 04
X
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054 00
000 005 010 015 020 025 030 035 040 000 005 010 015 020 025 030 035 040
Fraction of train data checked Fraction of train data checked



Computational Cost and Numerical Stability (1)

- Can the values be computed in an efficient manner?
Important for scaling up / real-time computation

- Are computed values numerically stable?
Possible issues with downstream tasks



Computational Cost and Numerical Stability (2)

- Computational cost result on CIFAR10 and AwA dataset

- Randomly selected 50 test points to compute influence function / representer values for all
training points.

Influence Function Representer Points
(Koh et al. 2017) (Ours)

Dataset Computation Computation

CIFAR10 267.08 + 248.20 7.09+0.76 0.10 £0.08
AwA 0 172.71 £ 32.63 12.41 £2.37 0.19 £0.12

Measured in seconds



Computational Cost and Numerical Stability (3)

- Numerical stability result on CIFAR10 dataset
- Randomly selected 1000 test points to compute influence function / representer values for all
training points

Distribution of Maximum Absolute Distribution of Maximum Absolute
Training Representer Values Training Influences
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Summary

- We prove that the deep neural network prediction of a test point can be
decomposed into a linear combination of representer values of each training
point.

- We illustrate the usefulness of the formulation in various use cases.

- We show that it is computationally efficient and suitable for real-time
applications.



For more information ...

- Paper on Arxiv : https://arxiv.org/pdf/1811.09720.pdf
- Code on Github : https://github.com/chihkuanyeh/Representer Point Selection



https://arxiv.org/pdf/1811.09720.pdf
https://github.com/chihkuanyeh/Representer_Point_Selection

Questions
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Appendix

Proof. Note that for any stationary point, the gradient of the loss with respect to ®; is equal to 0.

We therefore have

_ZBL XirYi, )+2A@*:0 s @*: 1 aL x27yl7

00, ‘m — 00,

where a; = — 53— 65((;2;:’: "éc;)) by the chain rule. We thus have that

B(x:,0") = O, = Y _ k(x:, %, 04),

=1

where k(x¢, X;, ;) = aifiT f; by simply plugging in the expression (1) into (2).

)



