Security and Fairness of Deep Learning

Backpropagation

Spring 2020

Story so far

* Image classification problem

* Linear models
e Score function
* Loss function
* Learning

* Learning as optimization
* Gradient descent (batch, mini-batch, stochastic)

Today

* Learning as optimization
* Gradient descent (batch, mini-batch, stochastic)
* Require computing gradients
* Backpropagation
e Technique for computing gradients recursively
* Key technique for training deep networks

Gradients

eConsider f(X) = f(xq, x5, .., X5p)

: ‘:
Nttt e%ed
TR S5 ‘

N Rt
i QOB
ATTITRTN

af (X) 9f(X) af(X)
‘Vf(X) o axy dx- 00Xy |

Computing gradients analytically

of _, 0 _
or Y oy

flz,y) =zy — T

of of
aajvay]_[y?x]

Vf

| — |

Derivatives measure sensitivity

r=4y=-3 flz,y)=—12 %:_3

If we were to increase x by a tiny amount, the effect on the
whole expression would be to decrease it (due to the negative
sign), and by three times that amount.

A composed function

f(x,y,2) = (x +y)z

g=x+y f=qz

Chain rule

g_@fﬁq
Or Oq Ox

Chain rule applied
fx,y,z) = (x+y)z
f=qz q=x+Y

Of _ % _

Ay
0q - oz

df 0f dq
Or Oq Ox

Chain rule on example function

set some inputs

i

= -2; y=5; z = -4

perform the forward pass
q=x+vy # q becomes 3
f=q* z # £ becomes -12

perform the backward pass (backpropagation) in reverse order:

first backprop through f = g * z

dfdz = q # df/dz = q, so gradient on z becomes 3

dfdg = z # df/dg = z, so gradient on g becomes -4

now backprop through q = x + y

dfdx = 1.0 * dfdq # dq/dx = 1. And the multiplication here is the chain rule!
dfdy = 1.0 * dfdq # dgq/dy = 1

Backpropagation illustrated

Forward pass

Backward pass

_ Of Of dq
a—:Z
5 X -2 q
_ 0
g=x+y Y9 _ %9 _ H
- 1 7 1 :>}C£>ql|

_ of _ of _
J=qz g - oz 1

of Of Of
ox’ Oy’ 0z

C'ompute :

Backpropagation: key local step

<

/ — activations
“local gradient”
= &
aL
0]
% A
oL

gradients

Backpropagation: key ideas

* Gradients computed locally
e Gradient of interest computed by recursive applications of chain rule

Backpropagation in practice

e Staged computation
e Carefully decompose complex function to easily compute gradients

Backpropagation in practice

 Staged computation example

_ x+o(y)
ey = o+ @+ v
of 1 (z+ &

Backpropagation in practice

e Staged computation example:
decomposing for forward pass

r + o(y)
o(x) + (x +y)?

flz,y) =

Flog) - 2D s 7Y
N 2
rf"/)—r(x*v) [B
(}_ﬂ __i__
[e
& ’x—f—f(?)
r(x)= ——=
Jh &
Xry = L Sak g 2-
xfy‘;ﬁ = C‘fﬁ)
d{ — f(1?+7‘fJ‘Z-H’

Backpropagation in practice

e Staged computation example:
backward pass

./,B_I_O-(y) Ql‘nv‘d,w
faw) =)

o(z) + (r +y)°

Backward pass reuses variables computed in
forward pass (cache them!)

Backpropagation in practice

e Staged computation example: forward pass code

<
nmn
|
IS

sigy = 1.0 / (1 + math.exp(-y))
num = X + sigy

sigx = 1.0 / (1 + math.exp(-Xx))
Xpy = X +y

Xpysqr = Xpy**2

den = sigx + xXpysqr

invden = 1.0 / den

f = num * invden

Chain rule, generalized

f(x,y,2) = (v +y)z
a=z+y

f=uqz

In general:

f(aq,a,,...,a,)

ﬁ_@f@q +0
Or Oq Ox

af_afaq+afaz
dx 0q 0x

Jdf 0f day
dx 0da, Ox

df da,
+0a2 0x T

oo

of da,

da, 0x

Backpropagation in practice

* Staged computation example: backward pass code

dw in code
denotes

of
ow

dnum = invden

dinvden = num

dden = (-1.0 / (den**2)) * dinvden

dsigx = (1) * dden
dxpysgr = (1) * dden

dxpy = (2 * xpy) * dxpysqr

dx = (1) * dxpy
dy = (1) * dxpy

dx += ((1 - sigx) * sigx) * dsigx

dx += (1) * dnum
dsigy = (1) * dnum

dy += ((1 - sigy) * sigy) * dsigy

Gradients for vectorized code

(X,y,z are now This is now the
vectors) Jacobian matrix
T (derivative of each

element of z w.r.t. each

element of x)
“local gradient”
=
~3 :\6
¥ Z
aL
0z

Gradients for vectorized code

e Details of
e Jacobian matrix
e Chain rule with vectors and matrices

* Work out on paper

* Review notes: http://cs231n.stanford.edu/vecDerivs.pdf

http://cs231n.stanford.edu/vecDerivs.pdf

Acknowledgment

Based in part on material from
e Stanford CS231n http://cs231n.github.io/
* Spring 2019 course

http://cs231n.github.io/

Patterns in backward flow

x 3.00

0.00

* add gate: distributes gradient equally to its inputs
* max gate: routes gradient of output to max input
* mul gate: swaps input activations and multiplies by gradient

