Security and Fairness of Deep Learning

Backpropagation

Spring 2020



Story so far

* Image classification problem

* Linear models
e Score function
* Loss function
* Learning

* Learning as optimization
* Gradient descent (batch, mini-batch, stochastic)



Today

* Learning as optimization
* Gradient descent (batch, mini-batch, stochastic)
* Require computing gradients
* Backpropagation
e Technique for computing gradients recursively
* Key technique for training deep networks



Gradients

eConsider f(X) = f(xq, x5, .., X5p)
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Computing gradients analytically
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Derivatives measure sensitivity
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If we were to increase x by a tiny amount, the effect on the
whole expression would be to decrease it (due to the negative
sign), and by three times that amount.



A composed function

f(x,y,2) = (x +y)z

g=x+y f=qz



Chain rule
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Chain rule applied
fx,y,z) = (x+y)z
f=qz q=x+Y
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Chain rule on example function

# set some inputs

i

= -2; y=5; z = -4

# perform the forward pass
q=x+vy # q becomes 3
f=q* z # £ becomes -12

# perform the backward pass (backpropagation) in reverse order:

# first backprop through f = g * z

dfdz = q # df/dz = q, so gradient on z becomes 3

dfdg = z # df/dg = z, so gradient on g becomes -4

# now backprop through q = x + y

dfdx = 1.0 * dfdq # dq/dx = 1. And the multiplication here is the chain rule!
dfdy = 1.0 * dfdq # dgq/dy = 1



Backpropagation illustrated

Forward pass

Backward pass
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Backpropagation: key local step
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Backpropagation: key ideas

* Gradients computed locally
e Gradient of interest computed by recursive applications of chain rule



Backpropagation in practice

e Staged computation
e Carefully decompose complex function to easily compute gradients



Backpropagation in practice

 Staged computation example
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Backpropagation in practice

e Staged computation example:
decomposing for forward pass
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Backpropagation in practice

e Staged computation example:
backward pass
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Backward pass reuses variables computed in
forward pass (cache them!)



Backpropagation in practice

e Staged computation example: forward pass code
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sigy = 1.0 / (1 + math.exp(-y))
num = X + sigy

sigx = 1.0 / (1 + math.exp(-Xx))
Xpy = X +y

Xpysqr = Xpy**2

den = sigx + xXpysqr

invden = 1.0 / den

f = num * invden



Chain rule, generalized

f(x,y,2) = (v +y)z
a=z+y

f=uqz

In general:
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Backpropagation in practice

* Staged computation example: backward pass code

dw in code
denotes

of
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dnum = invden

dinvden = num

dden = (-1.0 / (den**2)) * dinvden

dsigx = (1) * dden
dxpysgr = (1) * dden

dxpy = (2 * xpy) * dxpysqr

dx = (1) * dxpy
dy = (1) * dxpy

dx += ((1 - sigx) * sigx) * dsigx

dx += (1) * dnum
dsigy = (1) * dnum

dy += ((1 - sigy) * sigy) * dsigy



Gradients for vectorized code

(X,y,z are now This is now the
vectors) Jacobian matrix
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Gradients for vectorized code

e Details of
e Jacobian matrix
e Chain rule with vectors and matrices

* Work out on paper

* Review notes: http://cs231n.stanford.edu/vecDerivs.pdf



http://cs231n.stanford.edu/vecDerivs.pdf

Acknowledgment

Based in part on material from
e Stanford CS231n http://cs231n.github.io/
* Spring 2019 course



http://cs231n.github.io/

Patterns in backward flow
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* add gate: distributes gradient equally to its inputs
* max gate: routes gradient of output to max input
* mul gate: swaps input activations and multiplies by gradient



