Security and Fairness of Deep Learning

Machine Learning Basics

Spring 2020

Today

- The classification task
- Example solutions

— K-NN

- Linear Classification
- Regularization
- Loss functions
 - SVM loss
 - Cross Entropy loss

Image Classification

Image Classification

Image classification pipeline

- Input: A training set of N images, each labeled with one of K different classes.
- Learning: Use training set to learn classifier (model) that predicts what class input images belong to.
- **Evaluation:** Evaluate quality of classifier by asking it to predict labels for a new set of images that it has never seen before.

CIFAR-10 dataset

airplane	and a	N.		X	w	-	2	-17		-
automobile	-				-	Test			1-0	*
bird	No.	5	the			-	1	1	3	~
cat		E.	-	0		勉		A.	the second	-
deer	4	48	X	R		Y	Y	1	1	3
dog	¥4.	(·	T	N .	1			Te.	1	The
frog	-27	19			2			52		500
horse	Mr.	ts.	A	\mathcal{H}	1	ICAL	-	- the	6	1
ship			1	-	144	-	Z	15		-
truck				R.				Con .		diet.

- 60,000 tiny images that are 32 pixels high and wide.
- Each image is labeled with one of 10 classes

Nearest Neighbor Classification

The top 10 nearest neighbors in the training set according to "pixel-wise difference".

Pixel-wise difference

test image						training image					pixel-wise absolute value differences							
	56	32	10	18		10	20	24	17		46	12	14	1				
	90	23	128	133		8	10	89	100		82	13	39	33	150			
	24	26	178	200	-	12	16	178	170	=	12	10	0	30	→ 456			
	2	0	255	220		4	32	233	112		2	32	22	108				

L1 norm: (Manhattan Distance)

$$d_1(I_1, I_2) = \Sigma_p |I_1^p - I_2^p|$$

$$d_2(I_1, I_2) = \sqrt[2]{\Sigma_p(I_1^p - I_2^p)^2}.$$

K-Nearest Neighbor Classifier

Disadvantages of k-NN

 The classifier must *remember* all of the training data and store it for future comparisons with the test data. This is space inefficient because datasets may easily be gigabytes in size.

• Classifying a test image is expensive since it requires a comparison to all training images.

Linear Classification

Toward neural networks

• Logistic regression model

– A one-layer neural network

Training a logistic regression model
Introduction to gradient descent

• These techniques generalize to deep networks

Linear model

• Score function

Maps raw data to class scores

- Loss function
 - Measures how well predicted classes agree with ground truth labels
- Learning
 - Find parameters of score function that minimize loss function

Linear score function

$$f(x_i, W, b) = Wx_i + b$$

- x_i input image
- W weights
- b bias

Learning goal: Learn weights and bias that minimize loss

Using score function

Predict class with highest score

Addresses disadvantages of k-NN

 The classifier does not need to remember all of the training data and store it for future comparisons with the test data. It only needs the weights and bias.

• Classifying a test image is inexpensive since it just involves tensor multiplication. It does not require a comparison to all training images.

Linear classifiers as hyperplanes

Linear classifiers as template matching

• Each row of the weight matrix is a template for a class

 The score of each class for an image is obtained by comparing each template with the image using an *inner product* (or *dot product*) one by one to find the one that "fits" best.

Template matching example

Predict class with highest score (i.e., best template match)

Bias trick

 $f(x_i, W) = W x_i$

0.2	-0.5	0.1	2.0	56]	1.1		0.2	-0.5	0.1	2.0	1.1	56
1.5	1.3	2.1	0.0	231	+	3.2	\leftrightarrow	1.5	1.3	2.1	0.0	3.2	231
0	0.25	0.2	-0.3	24		-1.2		0	0.25	0.2	-0.3	-1.2	24
	V	V		2		b			b	2			
				x_i					n	ew, sin	gle W		1

 x_i

Linear model

• Score function

Maps raw data to class scores

- Loss function
 - Measures how well predicted classes agree with ground truth labels
- Learning
 - Find parameters of score function that minimize loss function

Two loss functions

 Multiclass Support Vector Machine loss (SVM loss)

- Softmax classifier (multiclass logistic regression)
 - Cross-entropy loss function

SVM loss idea

The SVM loss is set up so that the SVM "wants" the correct class for each image to have a score higher than the incorrect classes by some fixed margin Δ

Scores

• Score vector

$$s = f(x_i, W)$$

• Score for j-th class

$$s_j = f(x_i, W)_j$$

SVM loss for i-th training example

Example

$$s = [13, -7, 11] \quad True \ class: y_i = 0 \quad \Delta = 10$$
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + \Delta)$$
$$L_i = \max(0, -7 - 13 + 10) + \max(0, 11 - 13 + 10)$$
$$= 0 + 8$$

An Issue

- Suppose $\Delta=10$
- If the difference in scores between a correct class and a nearest incorrect class is at least 15 for all examples, then multiplying all elements of W by 2 would make the new difference 30.

- $\lambda W where \, \lambda > 1 \, {\rm also}$ gives zero loss if W gives zero loss

Regularization

• Add a regularization penalty to the loss function

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

Multiclass SVM loss

Final classifier encouraged to take into account all input dimensions to small amounts rather than a few input dimensions very strongly

Multiclass SVM loss

$$L = \frac{1}{N} \sum_{i} \sum_{j \neq y_i} \left[\max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \Delta) \right] + \lambda \sum_{k} \sum_{l} W_{k,l}^2$$

Example

x = [1, 1, 1, 1] $w_1 = [1, 0, 0, 0]$ $w_2 = [0.25, 0.25, 0.25, 0.25]$ L2 penalty of $w_1 = 1.0$ L2 penalty of $w_2 = 0.25$

Final classifier encouraged to take into account all input dimensions to small amounts rather than a few input dimensions very strongly (compare to L1 penalty)

Two loss functions

• Multiclass Support Vector Machine loss

- Softmax classifier (multiclass logistic regression)
 - Cross-entropy loss function

Softmax classifier (multiclass logistic regression)

Pick class with highest probability

Logistic function

 $f(x) = \frac{L}{1 + e^{-k(x - x_0)}}$

Figure 1.19(a) from Murphy

Logistic regression example

 $\frac{L}{1+e^{-k(x-x_0)}}$

f(x)

Figure 1.19(b) from Murphy

Full loss for the dataset is the mean of over all training examples plus a regularization term

Interpreting cross-entropy loss

The cross-entropy objective *wants* the predicted distribution to have all of its mass on the correct answer.

Information theory motivation for cross-entropy loss

Cross-entropy between a true distribution p and an estimated distribution q

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$

• $H(p,q) = -E_x \log q(x)$

Information theory motivation for cross-entropy loss

The Softmax classifier is minimizing the cross-entropy between the estimated class probabilities ($q=e^{f_{y_i}}/\sum_j e^{f_j}$) and

the "true" distribution, which in this interpretation is the distribution where all probability mass is on the correct class

($p = [0, \ldots 1, \ldots, 0]$ contains a single 1 in the y_i position)

Quiz

H(p,p) = ?

(assuming p has probability 1 on a single class)

Quiz

H(p,p) = 0

(assuming p has probability 1 on a single class)

In general: H(p,p) = H(p)

Where H(p) is entropy of distribution p.

Learning task

 Find parameters of the model that minimize loss

• Looking ahead: Stochastic gradient descent

Looking ahead: linear algebra

- Images represented as tensors (3D arrays)
- Operations on these tensors used to train models
- Review basics of linear algebra
 - Chapter 2 of Deep Learning textbook
 - Will review briefly in class

Looking ahead: multivariate calculus

- Optimization of functions over tensors used to train models
- Involves basics of multivariate calculus
 - Gradients, Hessian
- Will review briefly in class

Acknowledgment

- Based on material from
 - Stanford CS231n <u>http://cs231n.github.io/</u>
 - Spring 2019 Course