
Homework 3 Part 1

18739 Spring 2020

Due: Thursday, March 26, 2020 10:20am PST / 1:20pm EST

Academic Integrity Policy

This is an individual homework. Discussions are encouraged but you should write down your own code and
answers. No collaboration on code development is allowed. We refer to CMU’s Policy on Cheating and
Plagiarism (https://www.cmu.edu/policies/). Any code included in your submission will be examined
under Similarity Check automatically.

Late Day Policy

Your solutions should be uploaded to Gradescope (https://www.gradescope.com/) by the deadline. You
have 8 late days in total to spend during the whole course but no more than 3 days can be applied to any
one homework.

Written Exercises

If a homework contains written exercises, you will need to submit a .pdf file. Please indicate your Andrew
ID and name on the first page. We will not accept hard-copies and do not hand-write your answers. Latex
(Overleaf: https://www.overleaf.com) and Markdown are two recommended languages to generate the
clean layout but you are free to use other software. You will need to submit the written part to HomeworkX-
PDF on Gradescope, separately from you code submission.

Coding Exercises

Submit the coding portions of homeworks to Gradescope according to the following procedure:

1. Compress your .py and other requested files into a zip file called submission.zip (No other name is
allowed otherwise Gradescope will fail to grade your submission). Do NOT put all files into a folder
first and compress the folder. Create the zip file directly on the top of all required files. Each
homework will specify the .py and other files expected to be included in the zip.

2. Submit submission.zip to Gradescope. Your code implementation will be auto-graded by Gradescope
and you have an infinite number of submissions before the deadline but only the last submission will
count towards the grading. Allow the server to take some time (around 2 min) for execution, which
means that do not submit until the last moment when everyone is competing for resources.

1

https://www.cmu.edu/policies/
https://www.gradescope.com/
https://www.overleaf.com

Contents

1 Gradient-Based Attribution Methods 2

1.1 Saliency Map . 3

1.2 Integrated Gradient . 4

1.3 Saliency in Linear Models . 5

Before you start

In this homework, we provide you with a pretrained VGG161 network for classifying a subset2 of ImageNet3.
You will build explanations for this model in the homework. We provide the following helper functions in
hw3_utils.py in the Part One.

1. get_model: tf.Session -> vgg16 returns a class containing the architecture of VGG16.

2. get_tensor_names: () -> List[str] returns names of all tensors in the current graph.

3. ImageNet_name2idx: str -> int returns the index of a class if given a name.

4. ImageNet_idx2name: int -> str returns the name of a class if given an index.

5. binary_mask: ndarray, ndarray -> ndarray overlays the attribution map on the input image to
differentiate input features according to the attribution scores. You could use the default argument or
adjust them after you carefully read the docstrings.

6. We also import from tensorflow a few useful methods for processing images: img_to_array, load_img,
resize_images. You can see their use for running the VGG16 network at the bottom of vgg16.py.
You might need to install the pillow (which provides PIL) pip package to make use of these methods.

Also, make sure you have installed PIL, tqdm and scipy in addition to the environment we use in the
homework one. You can run the following commands to install these packages in conda:

conda install scipy tqdm

conda install -c anaconda pillow

1 Gradient-Based Attribution Methods

In this part, we are going to implement two gradient-based attribution methods that interpret the feature
importance by attribution scores.

1https://arxiv.org/pdf/1409.1556.pdf
2http://image-net.org/challenges/LSVRC/2014/browse-synsets
3http://image-net.org/index

2

https://arxiv.org/pdf/1409.1556.pdf
http://image-net.org/challenges/LSVRC/2014/browse-synsets
http://image-net.org/index

1.1 Saliency Map

Sailency Map [1] compute the local gradient of a class of interest w.r.t an input to find the attribution scores.
Moreover, current work has found that the product of input × grad produces clearer visualization result. In
the homework, we use the following definition for Saliency Map:

Definition 1 (Saliency Map). Consider a model y = f(x) that takes an input x ∈ Rd and outputs y, a
distribution of scores for each class. We denote the yc = fc(x) as the scores for the class c. The Saliency
Map Sc(x) for class c is defined as

Sc(x) = x� Oxfc(x) (1)

where � denotes the element-wise multiplication.

Coding Exercise 1. [4 points] Implement Def 1 within the SaliencyMap class of hw3_attribution.py.
The main method is __call__ but you will also need to implement _define_ops, which is called only a single
time, to add any tensorflow operations into the computational graph you find necessary and store them in
the class self. The method __call__ should not create any operations.

Hints:

• The expected Saliency Map output on a weasel (laska.png of class "weasel") and a camel (camel.png
of class "Arabian camel, dromedary, Camelus dromedarius") towards their respective classes’ scores
(pre-softmax) are given below. The left image is the input, the middle is the saliency, the right is the
saliency-masked input.

0 100 200

0

50

100

150

200

0 100 200

0

50

100

150

200

0 100 200

0

50

100

150

200

0 100 200

0

50

100

150

200

0 100 200

0

50

100

150

200

0 100 200

0

50

100

150

200

• For testing, use the pre-softmax scores instead of the post-softmax probability as the target of the
explanation. You can use the names of tensors to get access to the input/output of a TensorFlow
graph.

Written Exercise 2. [1 points] Discuss and justify the use of pre-softmax score.

Written Exercise 3. [1 points] What would be a possible drawback of multiplying the input with the gradient
?

3

1.2 Integrated Gradient

Integrated Gradient [3] aims to solve the vanishing gradient problem in Saliency Map, while it satisfies several
desirable axioms.

Definition 2 (Integrated Gradient). Consider a model y = f(x) that takes an input x ∈ Rd and outputs y,
a distribution of scores for each class. We denote the yc = fc(x) as the scores for the class c and xb as the
baseline input. The Integrated Gradient IGc(x, xb) for class c is defined as

IGc(x, xb) = (x− xb)�
∫ 1

0

Oxfc(xb + t(x− xb))dt (2)

where � denotes the element-wise multiplication. In the implementation, we use the following equation to
approximate Eq. 2.

IGc(x, xb) ≈ (x− xb)�
1

N

N∑
i=1

Oxfc

(
xb + (x− xb)

i

N

)
(3)

where N is the number of steps used for the approximation.

Coding Exercise 4. [6 points] Implement Def. 2 within the IntegratedGrad class of hw3_attribution.py
(use the pre-softmax score as well). You should implement three kinds of baseline input: black for black
image, white for white image and random for random noise sampled from an isotropic Gaussian with zero
mean and standard deviation of 0.1. You should not create any computational graph nodes in __call__.

Hints:

• The expected Integrated Gradients attribution of a weasel and a camel on their respective classes’
scores (pre-softmax) are given below. The left image is the input, the middle is the saliency, the right
is the saliency-masked input.

0 100 200

0

50

100

150

200

0 100 200

0

50

100

150

200

0 100 200

0

50

100

150

200

0 100 200

0

50

100

150

200

0 100 200

0

50

100

150

200

0 100 200

0

50

100

150

200

4

Written Exercise 5. [1 points] Explain the completeness axiom which Integrated Gradient satisfies.

Written Exercise 6. [2 points] Given a model y = min(2x1 + 3x2, 1) and a baseline x1 = x2 = 0, compute
the integrated gradient for point x1 = 2, x2 = 1.

1.3 Saliency in Linear Models

Given linear model for d-dimensional inputs defined by the C-class score function f(x) def= Wx+b, analytically
derive the attribution of score fc(x) in terms of vectors x, b and matrix W according to:

Written Exercise 7. [2 points] Saliency Map method.

Written Exercise 8. [3 points] Integrated Gradients method with baseline xb = ~0.

Also:

Written Exercise 9. [2 points] Is it useful to ask for the same according to the Influence Directed Expla-
nations method as described by Leino et al. [2] ?

Submission

Submission guidelines will be included in Part 2.

References

[1] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert Mueller. How to explain individual classification decisions, 2009.

[2] Klas Leino, Linyi Li, Shayak Sen, Anupam Datta, and Matt Fredrikson. Influence-directed explanations
for deep convolutional networks. arXiv preprint arXiv:1802.03788, 2018.

[3] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. arXiv
preprint arXiv:1703.01365, 2017.

5

	Gradient-Based Attribution Methods
	Saliency Map
	Integrated Gradient
	Saliency in Linear Models

