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Administrative
} Homework 2 deadline postponed 

} Monday, Sept. 30, midnight in PIT or SV, wherever you are 
enrolled

} Combination recitation/office hours: regular time on 
Friday, Sept. 27
} Come get help with AdFisher!

} When submitting, please mark your answers clearly on 
Gradescope! 
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In-class Quiz
} Take on Canvas

} Go over answers in class
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Last time
} Score function: Softmax classifier (linear classifier)

} Maps raw data to class scores
} Usually parametric

} Loss function (objective function): Cross-entropy loss
} Measures how well predicted classes agree with ground truth 

labels
} How good is our score function?

} Learning
} Find parameters of score function that minimize loss function



Learning task
} Find parameters of the model that make our loss as small 

as possible

} There are many different techniques for training models
} stochastic gradient descent is a popular one
} scikit-learn provides implementations 



The problem of optimization

Find the value of x where f(x) is minimum

Our setting: x represents weights (e. g. ,𝑊, 𝑏), f(x) 
represents loss function (e.g., average cross-entropy)

x

f(x)



Derivative of a function of single variable

df(x)

dx
= lim

h !0

f(x+ h)� f(x)

h



Finding minima

Increase x if derivative negative, decrease if positive
i.e., take step in direction opposite to sign of gradient
(key idea of gradient descent)

Animation courtesy of Christopher Gondek
https://www.youtube.com/watch?v=GCvWD9zIF-s

x

f(x)
𝑑𝑦
𝑑𝑥 = 0

𝑑𝑦
𝑑𝑥 < 0

𝑑𝑦
𝑑𝑥 > 0

https://www.youtube.com/watch?v=GCvWD9zIF-s


Classification pipeline

Training 
Data

Classifier

Test 
Data Classifier

Training 
algorithm

Prediction

Accurate?



Last time
} Score function: Softmax classifier (linear classifier)

} Maps raw data to class scores
} Usually parametric

} Loss function (objective function): Cross-entropy loss
} Measures how well predicted classes agree with ground truth 

labels
} How good is our score function?

} Learning: Gradient Descent  (or variants thereof)
} Find parameters of score function that minimize loss function



Acknowledgment
} Based on material from Stanford CS231n 

http://cs231n.github.io/



DEANONYMIZING DATASETS
Today
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Publicly Released Large Datasets
} Useful for improving 

recommendation systems, 
collaborative research

} Contain personal information

} Mechanisms to protect 
privacy, e.g. anonymization
by removing names

} Yet, private information 
leaked by attacks on 
anonymization mechanisms
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Non-Interactive Linking
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Algorithm to link information

De-identified record

DB2DB1
Background/
Auxiliary  
Information



Roadmap
} Motivation

} Privacy definitions 

} Netflix-IMDb attack

} Empirical results

} Conclusion
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Sanitization of Databases

Real Database Sanitized Database 

Health records

Census data

Add noise, 
delete 
names, etc. 

Protect privacy

Provide useful information 
(utility)
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Database Privacy
} Releasing sanitized databases

1. k-anonymity [Samarati 2001;  Sweeney 2002]
2. l-diversity [Machanavajjhala 2007]
3. t-closeness [Li 2007]
4. Differential privacy [Dwork et al. 2006] (future lecture)
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Re-identification by linking

Linking two sets of data on shared attributes may uniquely 
identify some individuals:

87 % of US population uniquely identifiable by 5-digit ZIP, gender, DOB 
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K-anonymity 
} Quasi-identifier: Set of attributes that can be linked with 

external data to uniquely identify individuals

} Given a quasi-identifier:
} Make every record in the table indistinguishable from 

at least k-1 other records with respect to quasi-
identifiers

} Linking on quasi-identifiers yields at least k records for 
each possible value of the quasi-identifier
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K-anonymity
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Equivalence class



What is the issue with k-anonymity?

Advantages: Provides some protection: linking on ZIP, age, nationality yields 4 
records
Limitations: lack of diversity in sensitive attributes, background knowledge, 
subsequent releases on the same data set

21



L-diversity
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} Given a k-anonymized table:
} Ensure that within an equivalence class, there are at least l 

“well-represented” values of the sensitive attribute

} k = 4
} l = ?



What is the issue with l-diversity?
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Limitations: 
} Values of the sensitive attribute within one equivalence class may have semantic 

similarity; can infer some property of the sensitive attribute (i.e., stomach-related 
disease)

} Could have high k and low l, resulting in a high occurrence of one value of the 
sensitive attribute in the equivalence class. 



T-closeness
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} Given a k-anonymized and l-diverse table:
} Ensure that the distance between the distribution of each 

sensitive attribute in the eq. class and the distribution of 
the attribute value in the whole table is ≤ t

} Salary: t = 0.167
} Disease: t = 0.278



Re-identification Attacks in Practice
Examples: 
} Netflix-IMDB
} Movielens attack
} Twitter-Flicker 
} Recommendation systems – Amazon, Hunch,..

Goal of De-anonymization:  To find information about a 
record in the released dataset
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Roadmap
} Motivation

} Privacy definitions 

} Netflix-IMDb attack

} Empirical results

} Conclusion
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Anonymization Mechanism
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Gladiator Titanic Heidi

Bob 5 2 1

Alice 3 2.5 2

Charlie 1.5 2 2

Gladiator Titanic Heidi

r1 4 1 0

r2 2 1.5 1

r3 0.5 1 1

Delete name identifiers and 
add noise

Each row 
corresponds to an 
individual

Each column 
corresponds to an 
attribute, e.g. movie

Anonymized
Netflix DB



De-anonymization Attacks Still Possible

} Isolation Attacks
} Recover individual’s record from anonymized database
} E.g., find user’s record in anonymized Netflix movie 

database

} Information Amplification Attacks
} Find more information about individual in anonymized

database
} E.g. find ratings for specific movie for user in Netflix 

database
28



Netflix-IMDb Empirical Attack [Narayanan et al 2008]
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Weighted Scoring Algorithm

r1 4 1 0

Anonymized Netflix DB Publicly available IMDb ratings 
(noisy)

Used as auxiliary information

Gladiator Titanic Heidi

r1 4 1 0

r2 2 1.5 1

r3 0.5 1 1

Titanic Heidi

Bob 2 1

Isolation Attack!



Netflix-IMDb Empirical Attack [Narayanan et al 2008]
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Weighted Scoring Algorithm

r1 4 1 0

Anonymized Netflix DB Publicly available IMDb ratings 
(noisy)

Used as auxiliary information

Gladiator Titanic Heidi

r1 4 1 0

r2 2 1.5 1

r3 0.5 1 1

Titanic Heidi

Bob 2 1

How do you 
measure similarity 
of this record with 
Bob’s record?
(Similarity Metric)

What does auxiliary 
information about a 
record mean?



Definition: Auxiliary Information
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r1 5 2 3 1 4 y

5

sample

4.5 2.3 3.4

perturb

5 25 2 4

Intuition: 
• aux about y should 

be a subset of 
record y

• aux can be noisy

auxaux captures 
information available 
outside normal data 
release process

e.g. IMDb

e.g. Netflix



Problem Statement
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Attacker uses weighted scoring 
algorithm to find record

Attacker’s goal: Given an anonymized database D and 
auxiliary record aux(r’), find r ∈ D such that r and r’ are 
similar.

Anonymized database Auxiliary information about a 
record (noisy)Gladiator Titanic Heidi

r1 4 1 0

r2 2 1.5 1

r3 0.5 1 1

Titanic Heidi

Bob 2 1



Weighted Scoring [Narayanan et al 2008, Frankowski et al 2006]
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Weight of an attribute iIntuition: The fewer 
the number of people 
who watched a 
movie, the rarer it is  

Scoring MethodologyScore gives a weighted 
average of how closely two 
people match on every 
movie, giving higher 
weight to rare movies 

Compute Score for every record r in anonymized DB to 
find out which one is closest to target record y. 

(aux is derived from y)

|supp(aux)| = m = no. of non null attributes in aux

|supp(i)| = no. of non null entries in column i
Use weight as an indicator of rarity

Score aux, 𝑟9 = :
;∈<=>>(?=@)

𝑤 𝑖 Sim(aux;, 𝑟;9)

𝑤 𝑖 =
1

log supp(𝑖)



Weighted Scoring Algorithm [Narayanan et al 2008]
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v1 v2 v3

r1 5 2 -

r2 3 1 4

r3 - 2 4

r1 5 2 -

v1 v2

4.5 2.3

wi 0.63 0.5 0.63

Choose a threshold 𝜙: Eccentricity

Score(aux, rj)

0.52

0.40

0.23

aux

Compute Score for every r in D

One of the records r in anonymized 
database is y. Which row is it?

Score aux, 𝑟 = :
;∈<=>>(?=@)

𝑤 𝑖 Sim(aux;, 𝑟;)

If (max
J∈K

𝑆𝑐𝑜𝑟𝑒 𝑎𝑢𝑥, 𝑟 −𝑚𝑎𝑥2JU∈K𝑆𝑐𝑜𝑟𝑒(𝑎𝑢𝑥, 𝑟′))/2 > 𝜙

output record with highest score
Else

no match



Main Result
} Definition. A database is 𝜃, 𝜔 -deanonymized w.r.t.

auxiliary information aux if there exists an algorithm A 
which, on inputs D and aux(r) where 𝑟 is sampled 
uniformly from D outputs 𝑟′ such that 

Pr Sim 𝑟, 𝑟9 ≥ 𝜃 ≥ 𝜔.

} Theorem. Let 0 < 𝜖, 𝛿 < 1 and let D be the database. 

Let aux consist of at least 𝑚 ≥ ^_` ab^_` c
b ^_`(dbe)

randomly  

selected attributes of target record r, with 
Sim aux;, 𝑟; ≥ 1 − 𝜖 ∀𝑖 ∈ 𝑠𝑢𝑝𝑝(𝑎𝑢𝑥). Then D can be 
1 − 𝜖 − 𝛿, 1 − 𝜖 -deanonymized w.r.t. aux.
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Roadmap
} Motivation

} Privacy definitions 

} Netflix-IMDb attack

} Empirical results

} Conclusion
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Empirical Results
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Adversary knows exact ratings and 
approximate dates.

Same parameters as previous graph, but 
the adversary must also detect when the 
target record is not in the sample



Empirical Results
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Adversary knows exact ratings but 
does not know dates at all.

Effect of knowing less popular movies 
rated by victim. Adversary knows 
approximate ratings (±1) and dates 
(14- day error).



Empirical results
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Effect of increasing error in Aux. in terms of how many 
movies are correct at all



Roadmap
} Motivation

} Privacy definitions 

} Netflix-IMDb attack

} Empirical results

} Conclusion
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Conclusion
} Naïve anonymization mechanisms do not work

} Even perturbed auxiliary information can be used to 
launch de-anonymization attacks if:
} Database has many rare dimensions and 
} Auxiliary information has information about these rare 

dimensions 
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Summary
} Anonymity via sanitization

} Offline sanitization
} Online sanitization (next lecture)

} Privacy definitions
} k-anonymity
} l-diversity
} t-closeness
} m-invariance
} ...
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Summary
} Deanonmyization attacks

} Isolation
} Amplification

} Measuring attack success without ground truth
} Measurables

} similarity
} eccentricity
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Deanonymization
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Ground Truth Y

Auxiliary AuxSanitized R

sanitization 
process

aux
r

y

similarity
scoring

perturb



Isolation attack
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Ground Truth Y

Auxiliary AuxSanitized R

perturbsanitization 
process

aux
r’

r

y

isolation
attack

ec
ce

nt
ri

ci
ty

similarity

sim
ilar

ity



Amplification attack
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Ground Truth Y
i

5

4

Auxiliary AuxSanitized R
ii

5

4

perturb
sanitization 
process

aux
assumed identity r

actual identity r*

y

amplification
attack

y*
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Anonymization settings

Offline/non-interactive
release sanitized dataset

Online/interactive
sanitize queries

Privacy definitions

k-anonymity
Minimum anonymity set size 

l-diversity
Minimum sensitive range size

T-closeness
Minimum variation of distribution of 
sensitive attribute
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Assumptions and Experimental Measurements
Given aux in Aux, isolate r in D closest to it

Modeling
Y -- Ground Truth records (NOT KNOWN)
R -- Sanitized records
Aux -- Auxiliary records

Measurements
e – eccentricity

best isolate r vs second best r’

Deanonymization attacks

Isolation
Link auxiliary aux in A to r in R.
Is aux is same identity as g.t. y à r ?

Amplification
Use R to find values of fields not in aux
Are predicted values close to g.t. y ? 


