18734: Foundations of Privacy

# Introduction to Machine Learning

Giulia Fanti Based on slides by Anupam Datta CMU

Fall 2019

# Administrative

• HW2 due on Friday, Sept 27

– 12 pm ET/12 pm PT

- My OH this week TIME CHANGE
  - Tuesday, 5pm ET/2pm PT, CIC 2118
  - Right after Sruti's OH
  - SV: Join the Google hangout on the course website
- Wednesday lecture by Sruti

# Survey Results

#### Things I can change

- Posting lecture slides before class
- Try to be extra explicit about why math is related to privacy problem
  - Use only privacy-related examples
- Format of math derivations
  - Document cam
  - Tablet

#### Things I cannot change

- Math
  - Can try to change the title to "Mathematical Foundations of Privacy" next time
- Discussion of research topics
  - Techniques are still being developed
- Video recordings
  - I don't control the A/V situation

#### 10-minute quiz

On Canvas

# End of Unit 1

- Privacy perspective
  - Ways to audit privacy policies
  - Insider
    - Enforcing use restrictions (MDPs)
    - Legalease + Grok
  - Outsider
    - XRay
    - Information Flow experiments
- Tools/concepts we have seen
  - Randomized sampling for group testing
  - Markov decision processes (MDPs)
  - Statistical significance tests
  - Lattices

# Unit 2: Protecting Privacy and Fairness in Big Data Analytics

- Machine learning
- What are common privacy risks?
- What are common fairness risks?
- How do we fix each?

#### **INTRO TO MACHINE LEARNING**

# This Lecture

- Basic concepts in classification
- Illustrated with simple classifiers
  - K-Nearest Neighbors
  - Linear Classifiers

 Note: Start exploring <u>scikit-learn</u> or TensorFlow/PyTorch if you are planning to use ML in your course project

# Image Classification

#### **Image Classification**



# Image classification pipeline

- Input: A training set of *N* images, each labeled with one of *K* different classes.
- Learning: Use training set to learn classifier (model) that predicts what class input images belong to.
- Evaluation: Evaluate quality of classifier by asking it to predict labels for a new set of images that it has never seen before.

# **Classification pipeline**



# CIFAR-10 dataset



- 60,000 tiny images that are 32 pixels high and wide.
- Each image is labeled with one of 10 classes

# **Nearest Neighbor Classification**



The top 10 nearest neighbors in the training set according to "pixel-wise difference".

# Pixel-wise difference



L1 norm: 
$$d_1(I_1, I_2) = \Sigma_p |I_1^p - I_2^p|$$

L2 norm: 
$$d_2(I_1, I_2) = \sqrt[2]{\Sigma_p(I_1^p - I_2^p)^2}$$

# **K-Nearest Neighbor Classifier**



# Disadvantages of k-NN

- The classifier must *remember* all of the training data and store it for future comparisons with the test data. This is space inefficient because datasets may easily be gigabytes in size.
- Classifying a test image is expensive since it requires a comparison to all training images.
- k-NN does not work well in high dimensions

### Linear Classification

# Linear model

- Score function
  - Maps raw data to class scores
  - Usually parametric
- Loss function (objective function)
  - Measures how well predicted classes agree with ground truth labels
  - How good is our score function?
- Learning
  - Find parameters of score function that minimize loss function

### Linear score function

 $f(\mathbf{x}_i, W, b) = W\mathbf{x}_i + b$ 

- $x_i \in \mathbb{R}^n$  input image
- $W \in \mathbb{R}^{m \times n}$  weights
- $b \in R^m$  bias

Learning goal: Learn weights and bias that minimize loss

# Using score function



Predict class with highest score

# Addresses disadvantages of k-NN

- The classifier does not need to remember all of the training data and store it for future comparisons with the test data. It only needs the weights and bias.
- Classifying a test image is inexpensive since it just involves matrix multiplication. It does not require a comparison to all training images.
- Does this solve the curse of dimensionality?

# Linear classifiers as hyperplanes



#### Linear classifiers as template matching

• Each row of the weight matrix is a template for a class

 The score of each class for an image is obtained by comparing each template with the image using an *inner product* (or *dot product*) one by one to find the one that "fits" best.

# Template matching example



Predict class with highest score (i.e., best template match)

# **Bias trick**

 $f(x_i, W) = W x_i$ 



# Linear model

• Score function

Maps raw data to class scores

- Loss function
  - Measures how well predicted classes agree with ground truth labels
- Learning
  - Find parameters of score function that minimize loss function

#### Logistic function



Figure 1.19(a) from Murphy

#### Logistic regression example



Figure 1.19(b) from Murphy

# Softmax classifier (multiclass logistic regression)



Pick class with highest probability



Full loss for the dataset is the mean of  $L_i$ over all training examples plus a regularization term

### Interpreting cross-entropy loss

The cross-entropy objective *wants* the predicted distribution to have all of its mass on the correct answer.

# Information-theoretic motivation for cross-entropy loss

Entropy of a distribution *p* 

$$H(p) = -\sum_{x} p(x) \log p(x) = E[-\log p(x)]$$

*Q*: What is the entropy of distribution with pmf  $p = [0 \ 0 \ 1 \ 0 \ 0]$ 

A: 0

*Q*: What is the entropy of distribution with pmf 
$$p = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}]$$

A: 2

# Information-theoretic motivation for cross-entropy loss

**Cross-entropy** between a true distribution p and an estimated distribution q

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$
  
What is the cross-entropy  $H(p,p)$ ?  
 $H(p)$ 

*Q*: What if *p* = [0 0 0 1 0 0]? *A*: 0

*Q:* 

*A*:

# Information theory motivation for cross-entropy loss

The Softmax classifier is minimizing the cross-entropy between the estimated class probabilities (  $q = e^{f_{y_i}} / \sum_j e^{f_j}$  ) and

the "true" distribution, which in this interpretation is the distribution where all probability mass is on the correct class

(  $p = [0, \ldots, 1, \ldots, 0]$  contains a single 1 in the  $y_i$  position)



matrix multiply + bias offset



Average over all n samples

# What have we done here?

- Seen how to take a score function and integrate it into a loss function
- Seen very important loss function called crossentropy loss

Very widely used in neural networks

- Loss function tells us how good/bad our score function is
- What's missing?