Secure Multi-Party Computation

Giulia Fanti
Fall 2019
Based on slides by Vitaly Shmatikov
Administrative

• HW4 due on Friday, 11:59 pm

• Additional OH on Friday (Sruti)
 • Regular location and time

• Final project
 • Presentations last week of class: Mon. Dec. 2 and Wed. Dec. 4
 • Sign up here: https://docs.google.com/spreadsheets/d/1ylz1MWLtlAJvxUkpTAT0fVtqKabFQXanGh3wqo1g-tc/
 • PLEASE ADD YOUR CANVAS GROUP NUMBER
 • Final writeup due on Dec. 11, 11:59 pm EDT
In-class Quiz

• On Canvas
Last time: Hidden Services

Dr. Neal Krawetz
@hackerfactor

Just noticed that my Tor hidden service has been under a DDoS for days -- and I never noticed. Someone is seriously trying to take it offline. Hundreds of rendezvous points negotiated per minute. (Zero impact on my server.)

8:33 pm · 15 Nov 2019 · TweetDeck

Explain this tweet
More explanation

Dr. Neal Krawetz @hackerfactor · 15h
I think it's an attempt to take down access to the @internetarchive. I provide the Tor onion service for IA, and it's that service which is under a DDoS. He's using a newer version of the same technique that "Eddie" (i.e., Russian-based attackers) used.

Dr. Neal Krawetz @hackerfactor · 12h
What a coincidence... One Tor relay has been requested as a rendezvous node nearly 3x more than any other. And it has an uptime of only a few hours before the attack began. Blocking it reduced DDoS by 70%.

Hey @torproject Here's a hostile relay:
metrics.torproject.org/rs.html#search...
Today’s material:
Secure Multi-Party Computation

What is it?
• How do we define security?

Examples
• Oblivious transfer
• Garbled circuits

• Focus on computational security
Secure Multi-Party Computation

• Framework for computation between parties who do not trust each other

• Example: elections
 • N parties, each one has a “Yes” or “No” vote
 • Goal: determine the majority vote, without revealing how other people voted

• Example: auctions
 • Each bidder makes an offer
 • Goal: determine whose offer won without revealing losing offers

Verifiable Sealed-Bid Auction on the Ethereum Blockchain

Hisham S. Galal and Amr M. Youssef
Concordia Institute for Information Systems Engineering, Concordia University, Montréal, Québec, Canada

Trustee: Full Privacy Preserving Vickrey Auction on top of Ethereum

Hisham S. Galal and Amr M. Youssef
Concordia Institute for Information Systems Engineering, Concordia University, Montréal, Québec, Canada
More Examples

• Example: distributed data mining
 • Two companies want to compare their datasets without revealing them
 • For example, compute the intersection of two customer lists

• Example: database privacy
 • Evaluate a query on the database without revealing the query to the database owner
 • Evaluate a statistical query without revealing the values of individual entries
A Couple of Observations

• We are dealing with distributed multi-party protocols
 • “Protocol” describes how parties are supposed to exchange messages on the network

• All of these tasks can be easily computed by a trusted third party
 • Secure multi-party computation aims to achieve the same result without involving a trusted third party
How to Define Security?

• Must be mathematically rigorous
• Must capture all realistic attacks that a malicious participant may try to stage
• Should be “abstract”
 • Based on the desired “functionality” of the protocol, not a specific protocol
 • Goal: define security for an entire class of protocols
Ideal Model

- Intuitively, we want the protocol to behave “as if” a trusted third party collected the parties’ inputs and computed the desired functionality.
 - Computation in the ideal model is secure by definition!
In other words...

• A protocol is secure if it **emulates** an ideal setting where the parties hand their inputs to a “trusted party,” who locally computes the desired outputs and hands them back to the parties

[Goldreich-Micali-Wigderson 1987]
Adversary Models

• Some participants may be dishonest (corrupt)
 • If all were honest, we would not need secure multi-party computation

• Semi-honest (aka passive; honest-but-curious)
 • Follows protocol, but tries to learn more from received messages than he would learn in the ideal model

• Malicious
 • Deviates from the protocol in arbitrary ways, lies about his inputs, may quit at any point

• For now, focus on semi-honest adversaries and two-party protocols
Correctness and Security

• How do we argue that the real protocol “emulates” the ideal protocol?

• Correctness
 • All honest participants should receive the correct result of evaluating functionality f
 • Because a trusted third party would compute f correctly

• Security
 • All corrupt participants should learn no more from the protocol than what they would learn in the ideal model
 • What does a corrupt participant learn in ideal model?
 • His own input and the result of evaluating f
Simulation

- Corrupt participant’s view of the protocol = record of messages sent and received
 - In the ideal world, this view consists simply of his input and the result of evaluating f
- How to argue that real protocol does not leak more useful information than ideal-world view?
- Key idea: simulation
 - If real-world view (i.e., messages received in the real protocol) can be simulated with access only to the ideal-world view, then real-world protocol is secure
 - Simulation must be indistinguishable from real view
Terminology

• **Distance** between probability distributions A and B

\[
\text{dist}(A, B) = \frac{1}{2} \sum_{x} |\Pr(A = x) - \Pr(B = x)|
\]

• **Probability ensemble** \(A_i\) is a set of discrete probability distributions
 • Index \(i\) ranges over some set \(I\)

• Function \(f(n)\) is **negligible** if it is asymptotically smaller than the inverse of any polynomial

\[
\forall c \in \mathbb{N}, \exists m \text{ s. t. } |f(n)| < \frac{1}{n^c} \quad \forall n > m
\]
Indistinguishability Notions

• Distribution ensembles A_i and B_i are equal if $\text{dist}(A_i, B_i) = 0$

• Distribution ensembles A_i and B_i are statistically close if $\text{dist}(A_i, B_i)$ is a negligible function of i

• Distribution ensembles A_i and B_i are computationally indistinguishable ($A_i \approx B_i$) if, for any probabilistic polynomial-time algorithm D,

\[|\Pr(D(A_i) = 1) - \Pr(D(B_i) = 1)| \]

is a negligible function of i
Ideal World

• Trusted party computes $y = f(x_A, x_B)$, sends result to each party.

Suppose $f(\) = (b, \emptyset)$, where b random bit.

Bob learns nothing about b.

$f(\)_A = b$

$f(\)_B = \emptyset$
Real World

• Propose a protocol π to implement functionality in the real world.

1. Alice draws b' randomly.

$\gamma_A = b'$

$\gamma_B = \emptyset$

Intuitively, does this protocol securely implement the desired functionality f?
SMC Definition

- Protocol π for computing $f(XA, XB)$ between A and B is secure if there exist efficient simulator algorithms S_A and S_B such that for all input pairs (x_A, x_B):

 - **Correctness:** $(y_A, y_B) \approx f(x_A, x_B)$

 - **Security:**
 - Let $\text{Real}_\pi (x_A, x_B) = \{\text{view}_A, \text{view}_B\}, (y_A, y_B)$ denote the output after running π honestly
 - Let $\text{Ideal}_f (x_A, x_B) = \{\text{sim}_A (x_A, y_A), \text{sim}_B (x_B, y_B)\}, (y_A, y_B)$

 - A protocol π securely realizes f if $\text{Real}_\pi (x_A, x_B) \approx \text{Ideal}_f (x_A, x_B)$
Let’s look at our definition

<table>
<thead>
<tr>
<th>Ideal ((f(\) = (b, \emptyset)))</th>
<th>Real (((y_A = b', y_B = \emptyset)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Correctness</td>
<td>(f(\) = (b, \emptyset))</td>
</tr>
<tr>
<td>• Security</td>
<td>((\text{sim}_A (\emptyset, b), \text{sim}_B (\emptyset, \emptyset), b, \emptyset))</td>
</tr>
<tr>
<td>Ideal(_f (x_A, x_B) =) {\text{sim}_A (x_A, y_A), \text{sim}_B (x_B, y_B)}, (y_A, y_B))</td>
<td>Real(_\pi (x_A, x_B) =) {\text{view}_A, \text{view}_B}, (y_A, y_B))</td>
</tr>
</tbody>
</table>

These two joint distributions are distinguishable!
Oblivious Transfer (OT)

- Fundamental SMC primitive

Alice inputs two bits, Bob inputs the index of one of Alice’s bits
Bob learns his chosen bit, Alice learns nothing
- Alice does not learn which bit Bob has chosen
- Bob does not learn the value of the bit that he did not choose

Generalizes to bitstrings, M instead of 2, etc.

[Rabin 1981]
One-Way Trapdoor Functions

• Intuition: one-way functions are easy to compute, but hard to invert (skip formal definition)
 • We will be interested in one-way permutations

• Intuition: one-way trapdoor functions are one-way functions that are easy to invert given some extra information called the trapdoor
Euler’s Theorem

• THM: If \(a \) and \(n \) are relatively prime, and \(\phi(n) \) is Euler’s totient function (# of numbers that are relatively prime with \(n \)), then

\[
a^{\phi(n)} \equiv 1 \mod n.
\]

So if \(r \equiv 1 \mod \phi(n) \), then \(r = k \cdot \phi(n) + 1 \). We have

\[
ar^r \mod n = a^{1+k\phi(n)} \mod n
\equiv a \cdot (a^k)^{\phi(n)} \mod n
\equiv a \mod n
\]
One-way Trapdoor Function: Example

• Example: if \(n = pq \) where \(p \) and \(q \) are large primes and \(e \) is relatively prime to \(\varphi(n) \), \(f_{e,n}(m) = m^e \mod n \) is easy to compute, but it is believed to be hard to invert.

• Given the trapdoor \(d \) s.t. \(de \equiv 1 \mod \varphi(n) \), \(f_{e,n}(m) \) is easy to invert because \(f_{e,n}(m)^d \equiv (m^e)^d \mod n \equiv m \mod n \).

• Why?
Hard-Core Predicates

• Let $f: S \rightarrow S$ be a one-way function on some set S

• $B: S \rightarrow \{0,1\}$ is a **hard-core predicate** for f if
 • there is a bit of information about x such that learning this bit from $f(x)$ is as hard as inverting f
 • $B(x)$ is easy to compute given $x \in S$
 • If an algorithm, given only $f(x)$, computes $B(x)$ correctly with prob $> \frac{1}{2} + \varepsilon$, it can be used to invert $f(x)$ easily

• Goldreich-Levin theorem
 • $B(x, r) = r \cdot x$ is a hard-core predicate for $g(x, r) = (f(x), r)$
 • $f(x)$ is any one-way function, $r \cdot x = (r_1x_1) \oplus ... \oplus (r_nx_n)$
Oblivious Transfer Protocol

- Assume the existence of some family of one-way trapdoor permutations

A

\[
\text{Chooses a one-way permutation } F \text{ and corresponding trapdoor } T
\]

B

\[
\begin{align*}
\text{Chooses his input } i \text{ (0 or 1)} \\
\text{Chooses random } r_{0,1}, x, y_{not,i} \\
\text{Computes } y_i = F(x)
\end{align*}
\]

\[
\begin{align*}
\text{Computes } m_i \oplus (r_i \cdot x) \\
= (b_i \oplus (r_i \cdot T(y_i))) \oplus (r_i \cdot x) \\
= (b_i \oplus (r_i \cdot T(F(x)))) \oplus (r_i \cdot x) = b_i
\end{align*}
\]
Proof of Security for B

A

F

B

Chooses random $r_{0,1}$, x, $y_{\not=i}$
Computes $y_i = F(x)$

r_0, r_1, y_0, y_1

$b_0 \oplus (r_0 \cdot T(y_0))$, $b_1 \oplus (r_1 \cdot T(y_1))$
Computes $m_i \oplus (r \cdot x)$

y_0 and y_1 are uniformly random regardless of A’s choice of permutation F (why?)
Therefore, A’s view is independent of B’s input i.
Proof of Security for A (Sketch)

- Need to build a simulator whose output is indistinguishable from B’s view of the protocol

Choose random F, random $r_{0,1}$, x, $y_{\neq i}$, computes $y_i = F(x)$, sets $m_i = b_i \oplus (r_i \cdot T(y_i))$, random $m_{\neq i}$

Knows i and b_i (why?)

The only difference between simulation and real protocol:
- In simulation, $m_{\neq i}$ is random (why?)
- In real protocol, $m_{\neq i} = b_{\neq i} \oplus (r_{\neq i} \cdot T(y_{\neq i}))$
Proof of Security for A (Cont’d)

• Why is it computationally infeasible to distinguish random m and $m’=b\oplus(r\cdot T(y))$?
 • b is some bit, r and y are random, T is the trapdoor of a one-way trapdoor permutation

• $(r\cdot x)$ is a hard-core bit for $g(x,r)=(F(x),r)$
 • This means that $(r\cdot x)$ is hard to compute given $F(x)$

• If B can distinguish m and $m’=b\oplus(r\cdot x’)$ given only $y=F(x’)$, we obtain a contradiction with the fact that $(r\cdot x’)$ is a hard-core bit
 • Proof omitted