Secure Multi-Party
Computation

Giulia Fanti
Fall 2019
Based on slides by Vitaly Shmatikov

Administrative

* HW4 due on Friday, 11:59 pm

e Additional OH on Friday (Sruti)

e Regular location and time

* Final project
* Presentations last week of class: Mon. Dec. 2 and Wed. Dec. 4

* Sign up here:
https://docs.google.com/spreadsheets/d/1ylz1MWLtIAJvxUkpTATOfVtagKabFQXanGh3waqolg-

tc/
* PLEASE ADD YOUR CANVAS GROUP NUMBER
* Final writeup due on Dec. 11, 11:59 pm EDT

https://docs.google.com/spreadsheets/d/1ylz1MWLtlAJvxUkpTAT0fVtqKabFQXanGh3wqo1g-tc/

In-class Quiz

* On Canvas

Last time: Hidden Services

Dr. Neal Krawetz v
& @hackerfactor

Just noticed that my Tor hidden service has been under a
DDoS for days -- and | never noticed. Someone is

seriously trying to take it offline. Hundreds of rendezvous
points negotiated per minute. (Zero impact on my server.)

8:33 pm - 15 Nov 2019 - TweetDeck

Explain this tweet

More explanation

Dr. Neal Krawetz @hackerfactor - 15h v
| think it's an attempt to take down access to the @internetarchive. |
provide the Tor onion service for IA, and it's that service which is under a
DDoS. He's using a newer version of the same technique that "Eddie" (i.e.,
Russian-based attackers) used.

O 1 5 Q 19 M

Dr. Neal Krawetz @hackerfactor - 12h v
. What a coincidence... One Tor relay has been requested as a rendezvous
node nearly 3x more than any other. And it has an uptime of only a few
hours before the attack began. Blocking it reduced DDoS by 70%.

Hey @torproject Here's a hostile relay:
metrics.torproject.org/rs.html#search...

Q () QO 6 T

Today’s material:
Secure Multi-Party Computation

What is it?
* How do we define security?

Examples

e Oblivious transfer
e Garbled circuits

* Focus on computational security

Secure Multi-Party Computation

* Framework for computation between parties who do not trust each
other

* Example: elections
* N parties, each one has a “Yes” or “No” vote
e Goal: determine the majority vote, without revealing how other people voted

* Example: auctions
* Each bidder makes an offer
e Goal: determine whose offer won without revealing losing offers

Verifiable Sealed-Bid Auction on the Ethereum Trustee: Full Privacy Preserving Vickrey
Blockchain Auction on top of Ethereum
Hisham S. Galal and Amr M. Youssef Hisham S. Galal and Amr M. Youssef

Concordia Institute for Information Systems Engineering,

Concordia Institute for Information Systems Engineering, C dia. Uni ity, Montréal, Quebéc, Canad
oncordia University, Montréal, Quebéc, Canada

Concordia University, Montréal, Quebéc, Canada

More Examples

* Example: distributed data mining

* Two companies want to compare their datasets without revealing them
* For example, compute the intersection of two customer lists

 Example: database privacy

* Evaluate a query on the database without revealing the query to the
database owner

* Evaluate a statistical query without revealing the values of individual
entries

Google open-sources cryptographic
tool to keep data sets private

3 by RAVIE LAKSHMANAN (SECURITY

A Couple of Observations

* We are dealing with distributed multi-party protocols
* “Protocol” describes how parties are supposed to exchange messages on
the network
 All of these tasks can be easily computed by a trusted third party

* Secure multi-party computation aims to achieve the same result without
involving a trusted third party

How to Define Security?

* Must be mathematically rigorous

* Must capture all realistic attacks that a malicious
participant may try to stage

e Should be “abstract”

* Based on the desired “functionality” of the protocol, not a
specific protocol

* Goal: define security for an entire class of protocols

ldeal Model

* Intuitively, we want the protocol to behave “as if” a trusted third party
collected the parties’ inputs and computed the desired functionality
e Computation in the ideal model is secure by definition!

f2(X1,%2)

A 4

In other words...

* A protocol is secure if it emulates an ideal setting where the parties
hand their inputs to a “trusted party,” who locally computes the
desired outputs and hands them back to the parties

[Goldreich-Micali-Wigderson 1987]

f2(X1,%2)

A 4

Adversary Models

* Some participants may be dishonest (corrupt)
* |f all were honest, we would not need secure multi-party computation

* Semi-honest (aka passive; honest-but-curious)

* Follows protocol, but tries to learn more from received messages than he
would learn in the ideal model

 Malicious

* Deviates from the protocol in arbitrary ways, lies about his inputs, may quit at
any point

* For now, focus on semi-honest adversaries and two-party protocols

Correctness and Security

 How do we argue that the real protocol “emulates” the ideal protocol?

* Correctness

* All honest participants should receive the correct result of evaluating
functionality f

* Because a trusted third party would compute f correctly

* Security
 All corrupt participants should learn no more from the protocol than what they
would learn in the ideal model
* What does a corrupt participant learn in ideal model?

* His own input and the result of evaluating f

Simulation

e Corrupt participant’s of the protocol = record of messages sent
and received
* In the ideal world, this view consists simply of his input and the result of
evaluating f
* How to argue that real protocol does not leak more useful information
than ideal-world view?

* Key idea: simulation

* If real-world view (i.e., messages received in the real protocol) can be
simulated with access only to the ideal-world view, then real-world protocol is
secure

e Simulation must be indistinguishable from real view

Terminology

* Distance between probability distributions A and B

dist(4, B) = ;—2 IPr(A = x) - Pr(B = x)|

* Probability ensemble A. is a set of discrete probability distributions
* Index i ranges over some set [

* Function f(n) is negligible if it is asymptotically smaller than the inverse of
any polynomial

1
Ve €N, Im s.t.|[f(n)| < — Vn>m
n

Indistinguishability Notions

* Distribution ensembles A, and B, are equal if dist(4;,B;) = 0

* Distribution ensembles A, and B, are statistically close if dist(4;, B;)
is a negligible function of i

* Distribution ensembles A; and B; are computationally
indistinguishable (A, = B)) if, for any probabilistic polynomial-time
algorithm D,

Pr(D(4;) = 1) — Pr(D(B) = 1)|

is a negligible function of i

ldeal World

* Trusted party computes y = f (x4, X5), Suppose f() = (b, D),
sends result to each party. where b random bit.
f ()Af @ w
fv\\\ f o o B
Trusted Third

‘ Party
O 3.

=

Bob learns nothing about b.

Real World

* Propose a protocol m to implement functionality in the real world.

1. Alice draws b’ randomly.

5

y ya = Db’

PES)

bl

Intuitively, does this protocol securely
implement the desired functionality f?

SMC Definition

* Protocol for computing f (XA, XB) between A and B is secure if
there exist efficient simulator algorithms S, and Sg such that for all
input pairs (x,,Xg) :

 Correctness:

* Security:
 Let Real; (xu,xg) = {view,, viewg}, (v4, ¥g) denote the output after
running m honestly

* Let Idealf(xA;xB) = {simp (x4, ¥4), simp(xg, ¥p)}, (Va, ¥5)

* A protocol 7 securely realizes f if Real; (xa,xp) =~ Idealf(x,, xp)

Let’s look at our definition

|deal Real
* Correctness
fC)=(0) (ya=b',yg =0)
* Security (simy (@, b), simg (@, ©), b, D) (b',b",b", ®)
Ideals (x4, xp) = Real; (xa,xg) =
{sima (x4, ya), simp (x5, ¥5)}, (Va,¥p) ~ (Viewy, viewg}, (Va, ¥5)

These two joint distributions are
distinguishable!

Oblivious Transfer (OT)

[Rabin 1981]
* Fundamental SMC primitive

Alice inputs two bits, Bob inputs the index of one of Alice’s bits

Bob learns his chosen bit, Alice learns nothing
— Alice does not learn which bit Bob has chosen
— Bob does not learn the value of the bit that he did not choose

Generalizes to bitstrings, M instead of 2, etc.

One-Way Trapdoor Functions

* Intuition: one-way functions are easy to compute, L g N @7 >
but hard to invert (skip formal definition) ' B
* We will be interested in one-way Input Folash Output

<

Impossible

_ . (f,1)=Gen (1"
* Intution: one-way trapdoor functions are one-way DR

functions that are easy to invert given some extra easy
information called the trapdoor

Euler’s Theorem

* THM: If a and n are relatively prime, and ¢(n) is Euler’s totient function (#
of numbers that are relatively prime with n), then

a®™ =1 mod n.

Soifr =1mod ¢p(n),thenr =k - p(n) + 1. We have

a"mod n = att**Mmod n
=q- (ak)¢(n)mod n
= a modn

One-way Trapdoor Function: Example

* Example: if n = pg where p and g are large primes and e is relatively
prime to ¢(n), is easy to compute, but it is
believed to be hard to invert

e Given the trapdoor d s.t. , T n(m) is easy to invert
because f, ,(m)4 = (m¢)?modn = m mod n

e Why?

Hard-Core Predicates

* Let f: S—S5 be a one-way function on some set S
* B: §—{0,1} is a hard-core predicate for f if

* there is a bit of information about x such that learning this bit from f (x) is as
hard as inverting f

* B(x) is easy to compute given xe§

* If an algorithm, given only f (x), computes B(x) correctly with prob > 14 +
g, it can be used to invert f(x) easily

 Goldreich-Levin theorem

* B(x,r) = rex is a hard-core predicate for g(x,r) = (f(x),7r)
* f(x)is any one-way function, rex = (r1x1) @ ... ® (r.x,)

Oblivious Transfer Protocol

* Assume the existence of some family of one-way
trapdoor permutations

Chooses a one-way permutation

F and corresponding trapdoor T Chooses his input i (0 or 1)

 \ F R\

>
Chooses random rg 1, X, Yot

Computes'y; = F(x)
For 1, Yor Y1

bo@(roeT(Yo)), b1®(r1eT(y1)) N

Computes m@(riex)
_/\

A

= (bi@(rieT(y:)))®(rex)
= (bi®(reT(F(x))))®(riex) = b;

Proof of Security for B

>
Chooses random rg 1, X, Yot

Computes'y; = F(x)
For 1, YOI Y1

bo®(ro-T(y6{\b1@(r1-T(y1))

/ ~ Computes m,@(r.ox)

Yo and y; are uniformly random regardless of
A's choice of permutation F (why?)
Therefore, A's view is independent of B’s input i.

Proof of Security for A (Sketch)

* Need to build a simulator whose output is
indistinguishable from B’s view of the protocol

Knows i and b; (why?) -

Random rg 1, X, Yoot
yi = F(X)

Chooses random F,

random rq 1, X, Ynoti
For M1, Yor Y1

computes y; = F(x),
sets m=b,®(reT(y;)), —
random my;
bo®(roeT(Yo)), b1®(r1eT(y1))
A —_—

The only difference between simulatiop and real protocol:

In simulation, m.;; is random (why?)
In real protocol, M. i=bnot @ (Mot i@ T(Ynor i)

Proof of Security for A (Cont’d)

* Why is it computationally infeasible to distinguish random m and
m’=b®D(reT(y))?
* bis some bit, rand y are random, T is the trapdoor of a one-way trapdoor
permutation
* (rex) is a hard-core bit for g(x,r)=(F(x),r)
e This means that (rex) is hard to compute given F(x)
* If B can distinguish m and m’=b®(rex’) given only y=F(x’), we obtain a

contradiction with the fact that (rex’) is a hard-core bit
* Proof omitted

