
Secure Multi-Party
Computation

Giulia Fanti
Fall 2019

Based on slides by Vitaly Shmatikov

Administrative

• HW4 due on Friday, 11:59 pm

• Additional OH on Friday (Sruti)
• Regular location and time

• Final project
• Presentations last week of class: Mon. Dec. 2 and Wed. Dec. 4

• Sign up here:
https://docs.google.com/spreadsheets/d/1ylz1MWLtlAJvxUkpTAT0fVtqKabFQXanGh3wqo1g-
tc/

• PLEASE ADD YOUR CANVAS GROUP NUMBER
• Final writeup due on Dec. 11, 11:59 pm EDT

https://docs.google.com/spreadsheets/d/1ylz1MWLtlAJvxUkpTAT0fVtqKabFQXanGh3wqo1g-tc/

In-class Quiz

• On Canvas

Last time: Hidden Services

Explain this tweet

More explanation

Today’s material:
Secure Multi-Party Computation
What is it?

• How do we define security?

Examples
• Oblivious transfer
• Garbled circuits

• Focus on computational security

slide 7

Secure Multi-Party Computation
• Framework for computation between parties who do not trust each

other
• Example: elections

• N parties, each one has a “Yes” or “No” vote
• Goal: determine the majority vote, without revealing how other people voted

• Example: auctions
• Each bidder makes an offer
• Goal: determine whose offer won without revealing losing offers

slide 8

More Examples
• Example: distributed data mining

• Two companies want to compare their datasets without revealing them
• For example, compute the intersection of two customer lists

• Example: database privacy
• Evaluate a query on the database without revealing the query to the

database owner
• Evaluate a statistical query without revealing the values of individual

entries

slide 9

A Couple of Observations
• We are dealing with distributed multi-party protocols

• “Protocol” describes how parties are supposed to exchange messages on
the network

• All of these tasks can be easily computed by a trusted third party
• Secure multi-party computation aims to achieve the same result without

involving a trusted third party

slide 10

How to Define Security?
• Must be mathematically rigorous
• Must capture all realistic attacks that a malicious

participant may try to stage
• Should be “abstract”

• Based on the desired “functionality” of the protocol, not a
specific protocol

• Goal: define security for an entire class of protocols

slide 11

Ideal Model
• Intuitively, we want the protocol to behave “as if” a trusted third party

collected the parties’ inputs and computed the desired functionality
• Computation in the ideal model is secure by definition!

A Bf2(x1,x2)f1(x1,x2)

x1 x2

slide 12

In other words…
• A protocol is secure if it emulates an ideal setting where the parties

hand their inputs to a “trusted party,” who locally computes the
desired outputs and hands them back to the parties

[Goldreich-Micali-Wigderson 1987]

A B
x1

f2(x1,x2)f1(x1,x2)

x2

slide 13

Adversary Models
• Some participants may be dishonest (corrupt)

• If all were honest, we would not need secure multi-party computation

• Semi-honest (aka passive; honest-but-curious)
• Follows protocol, but tries to learn more from received messages than he

would learn in the ideal model

• Malicious
• Deviates from the protocol in arbitrary ways, lies about his inputs, may quit at

any point

• For now, focus on semi-honest adversaries and two-party protocols

slide 14

Correctness and Security
• How do we argue that the real protocol “emulates” the ideal protocol?
• Correctness

• All honest participants should receive the correct result of evaluating
functionality f

• Because a trusted third party would compute f correctly

• Security
• All corrupt participants should learn no more from the protocol than what they

would learn in the ideal model
• What does a corrupt participant learn in ideal model?
• His own input and the result of evaluating f

slide 15

Simulation
• Corrupt participant’s view of the protocol = record of messages sent

and received
• In the ideal world, this view consists simply of his input and the result of

evaluating f

• How to argue that real protocol does not leak more useful information
than ideal-world view?

• Key idea: simulation
• If real-world view (i.e., messages received in the real protocol) can be

simulated with access only to the ideal-world view, then real-world protocol is
secure

• Simulation must be indistinguishable from real view

slide 16

Terminology
• Distance between probability distributions A and B

dist 𝐴, 𝐵 =
1
2
+
,

|Pr(𝐴 = 𝑥) – Pr(𝐵 = 𝑥)|

• Probability ensemble Ai is a set of discrete probability distributions
• Index i ranges over some set 𝐼

• Function f(n) is negligible if it is asymptotically smaller than the inverse of
any polynomial

∀𝑐 ∈ ℕ, ∃𝑚 𝑠. 𝑡. 𝑓 𝑛 <
1
𝑛A

∀𝑛 > 𝑚

slide 17

Indistinguishability Notions
• Distribution ensembles Ai and Bi are equal if dist 𝐴C, 𝐵C = 0

• Distribution ensembles Ai and Bi are statistically close if dist 𝐴C, 𝐵C
is a negligible function of 𝑖

• Distribution ensembles 𝐴𝑖 and 𝐵𝑖 are computationally
indistinguishable (Ai » Bi) if, for any probabilistic polynomial-time
algorithm 𝐷,

|Pr(𝐷(𝐴C) = 1) − Pr(𝐷(𝐵C) = 1)|
is a negligible function of 𝑖

• Trusted party computes 𝑦 = 𝑓(𝑥I, 𝑥J),
sends result to each party.

Trusted Third
Party

𝑓 I = 𝑏

Ideal World
Suppose 𝑓 = (𝑏, ∅),
where 𝑏 random bit.

Bob learns nothing about 𝑏.

𝑓 J = ∅

Real World

• Propose a protocol 𝜋 to implement functionality in the real world.

𝑦I = 𝑏′ 𝑦J = ∅

1. Alice draws 𝑏′ randomly.

𝑏′

Intuitively, does this protocol securely
implement the desired functionality 𝑓?

slide 20

SMC Definition
• Protocol 𝜋 for computing 𝑓(𝑋𝐴, 𝑋𝐵) between A and B is secure if

there exist efficient simulator algorithms SA and SB such that for all
input pairs (xA,xB) :

• Correctness: (yA,yB) » f(xA,xB)
• Security:

• Let RealT xV, xW = viewV, viewW , (𝑦I, 𝑦J) denote the output after
running 𝜋 honestly

• Let Ideal[𝑥I, 𝑥J = simV 𝑥I, 𝑦I , simW 𝑥J, 𝑦J , (𝑦I, 𝑦J)

• A protocol 𝜋 securely realizes 𝑓 if RealT xV, xW ≈ Ideal[𝑥I, 𝑥J

Let’s look at our definition

• Correctness

• Security

Ideal Real

𝑦I = 𝑏^, 𝑦J = ∅𝑓 = 𝑏, ∅

𝑏^, 𝑏^, 𝑏^, ∅(simI ∅, 𝑏 , simJ ∅, ∅ , 𝑏, ∅)

RealT xV, xW =
viewV, viewW , (𝑦I, 𝑦J)

Ideal[𝑥I, 𝑥J =
simV 𝑥I, 𝑦I , simW 𝑥J, 𝑦J , (𝑦I, 𝑦J)

These two joint distributions are
distinguishable!

slide 22

Oblivious Transfer (OT)

• Fundamental SMC primitive

Alice Bob
b0, b1

bi

i = 0 or 1

Alice inputs two bits, Bob inputs the index of one of Alice’s bits
Bob learns his chosen bit, Alice learns nothing

– Alice does not learn which bit Bob has chosen
– Bob does not learn the value of the bit that he did not choose

Generalizes to bitstrings, M instead of 2, etc.

[Rabin 1981]

slide 23

One-Way Trapdoor Functions
• Intuition: one-way functions are easy to compute,

but hard to invert (skip formal definition)
• We will be interested in one-way permutations

• Intution: one-way trapdoor functions are one-way
functions that are easy to invert given some extra
information called the trapdoor

Euler’s Theorem

• THM: If 𝑎 and 𝑛 are relatively prime, and 𝜙 𝑛 is Euler’s totient function (#
of numbers that are relatively prime with n), then

𝑎a(b) ≡ 1 mod n.

So if 𝑟 ≡ 1𝑚𝑜𝑑 𝜙 𝑛 , then 𝑟 = 𝑘 ⋅ 𝜙 𝑛 + 1. We have

𝑎lmod n = 𝑎mnoa(b)mod n
≡ 𝑎 ⋅ 𝑎o a b mod n

≡ 𝑎 mod n

One-way Trapdoor Function: Example

• Example: if 𝑛 = 𝑝𝑞 where 𝑝 and 𝑞 are large primes and 𝑒 is relatively
prime to j(n), 𝑓𝑒, 𝑛 𝑚 = 𝑚s mod 𝑛 is easy to compute, but it is
believed to be hard to invert

• Given the trapdoor 𝑑 s.t. 𝑑𝑒 ≡ 1 mod 𝜙(𝑛), fe,n(m) is easy to invert
because 𝑓s,b 𝑚 t ≡ 𝑚𝑒 𝑑 mod 𝑛 ≡ 𝑚 mod 𝑛

• Why?

slide 26

Hard-Core Predicates
• Let 𝑓: 𝑆®𝑆 be a one-way function on some set 𝑆
• 𝐵: 𝑆®{0,1} is a hard-core predicate for 𝑓 if

• there is a bit of information about 𝑥 such that learning this bit from 𝑓(𝑥) is as
hard as inverting 𝑓

• 𝐵(𝑥) is easy to compute given 𝑥Î𝑆
• If an algorithm, given only 𝑓(𝑥), computes 𝐵(𝑥) correctly with prob > ½+
e, it can be used to invert 𝑓(𝑥) easily

• Goldreich-Levin theorem
• 𝐵(𝑥, 𝑟) = 𝑟•𝑥 is a hard-core predicate for 𝑔(𝑥, 𝑟) = (𝑓(𝑥), 𝑟)

• 𝑓(𝑥) is any one-way function, 𝑟•𝑥 = (𝑟1𝑥1)Å … Å (𝑟𝑛𝑥𝑛)

slide 27

Oblivious Transfer Protocol
• Assume the existence of some family of one-way

trapdoor permutations

A B

Chooses his input i (0 or 1)

Chooses random r0,1, x, ynot i
Computes yi = F(x)

Chooses a one-way permutation
F and corresponding trapdoor T

F

r0, r1, y0, y1

b0Å(r0•T(y0)), b1Å(r1•T(y1))
Computes miÅ(ri•x)

= (biÅ(ri•T(yi)))Å(ri•x)
= (biÅ(ri•T(F(x))))Å(ri•x) = bi

slide 28

y0 and y1 are uniformly random regardless of
A’s choice of permutation F (why?)
Therefore, A’s view is independent of B’s input i.

Proof of Security for B

A B
Chooses random r0,1, x, ynot i

Computes yi = F(x)

F

r0, r1, y0, y1

b0Å(r0•T(y0)), b1Å(r1•T(y1))
Computes miÅ(ri•x)

slide 29

Proof of Security for A (Sketch)

Sim B
Random r0,1, x, ynot iyi = F(x)

F

r0, r1, y0, y1

b0Å(r0•T(y0)), b1Å(r1•T(y1))

• Need to build a simulator whose output is
indistinguishable from B’s view of the protocol

Chooses random F,
random r0,1, x, ynot i
computes yi = F(x),

sets mi=biÅ(ri•T(yi)),
random mnot i

Knows i and bi (why?)

The only difference between simulation and real protocol:
In simulation, mnot i is random (why?)
In real protocol, mnot i=bnot iÅ(rnot i•T(ynot i))

slide 30

Proof of Security for A (Cont’d)
• Why is it computationally infeasible to distinguish random m and

m’=bÅ(r•T(y))?
• b is some bit, r and y are random, T is the trapdoor of a one-way trapdoor

permutation

• (r•x) is a hard-core bit for g(x,r)=(F(x),r)
• This means that (r•x) is hard to compute given F(x)

• If B can distinguish m and m’=bÅ(r•x’) given only y=F(x’), we obtain a
contradiction with the fact that (r•x’) is a hard-core bit

• Proof omitted

