Anonymous Communications: Point-to-Point

Giulia Fanti

Fall 2019

Based in part on slides by Anupam Datta, Piotr Mardziel

Administrative

- HW4 due Nov. 22 (<2 weeks from now)
 - "Fairness in Classification" problem updated on Canvas
- Recitation on Friday (Sruti)
 - New location tomorrow: Panther Hollow, CIC 4101
 - Anonymous communication
- If you want feedback on your project, please come to OH!

In-class Quiz

On Canvas

In-class activity: DC Nets

- One of you has been selected from each class as the "rep"
- If you are the rep and you are present in class, your goal is to broadcast a "1"

Shamir secret sharing vs. DC nets

	Shamir Secret Sharing	DC Nets
Goal	Hide message contents from any set of < k participants	Hide message author
Approach	Split data into shares that can only be reconstructed by k+ parties	Mask message through shared randomness that it not visible to all parties
Strengths	Information-theoretic secrecy	Information-theoretic anonymity
Weaknesses	Requires a lot of randomness	Requires a lot of randomness High communication cost Fragile to collisions

Why are DC nets more fragile than secret sharing?

- In DC nets the signal is only being injected in one of the observed symbols
 - Corruptions in that symbol cannot be recovered
 - No redundancy
 - Problem is more difficult
 - Similar adversarial model
 - More general task
- State-of-the-art DC-nets can support ~1,000 nodes

Privacy on Public Networks

- Internet is designed as a public network
 - Nearby computers can see your traffic
 - Routers see all traffic that passes through them
- Routing information is public
 - Packet headers identify source and destination
 - Even a passive observer can easily figure out who is talking to whom
- Encryption does not hide identities (e.g. DNSSEC, HTTPS)
 - Encryption hides payload, but not routing information

Applications of Anonymity (I)

- Privacy
 - Hide online transactions, web browsing, etc. from intrusive governments, marketers and archivists
- Untraceable electronic mail
 - Corporate whistle-blowers
 - Political dissidents
 - Socially sensitive communications (online AA meeting)
 - Confidential business negotiations
- Law enforcement and intelligence
 - Sting operations and honeypots
 - Secret communications on a public network

Applications of Anonymity (II)

- Digital cash
 - Electronic currency with properties of paper money (online purchases unlinkable to buyer's identity)
- Anonymous electronic voting
- Censorship-resistant publishing

What is Anonymity?

- Anonymity is the state of being not identifiable within a set of subjects
 - You cannot be anonymous by yourself!
 - Hide your activities among others' similar activities
- Unlinkability of action and identity
 - For example, sender and his email are no more related after observing communication than they were before
- Unobservability (hard to achieve)
 - Any item of interest (message, event, action) is indistinguishable from any other item of interest

Attacks on Anonymity

- Passive traffic analysis
 - Infer from network traffic who is talking to whom
 - To hide your traffic, must carry other people's traffic!
- Active traffic analysis
 - Inject packets or put a timing signature on packet flow
- Compromise of network nodes
 - Attacker may compromise some routers
 - It is not obvious which nodes have been compromised
 - Attacker may be passively logging traffic
 - Better not to trust any individual router
 - Assume that some <u>fraction</u> of routers is good, don't know which

Outline: Point-to-Point Communication

• Symmetric vs Public key cryptography

- Protocols for anonymous communication
 - High-latency
 - Chaum Mixes as a building block, onion routing
 - Low-latency
 - Optimized Onion Routing and Tor

Symmetric vs Public key crypto

- Symmetric
 - (Symmetric) key k
 - Message M
 - Encrypt: $Enc_k(M) \text{ or } \{M\}_k$
 - Decrypt: Dec_k(M)
 - Dec_k(Enc_k(M)) = M
 - Fast
- Public-private
 - Bob's public key: pk(B)
 - Bob's private key: pr(B)
 - $Dec_{pr(B)}(Enc_{pk(B)}(M)) = M$
 - $Dec_{pk(B)}(Enc_{pk(B)}(M)) \neq M$
 - Slow

Outline

- Symmetric vs Public-private key encryption
- Protocols for anonymous communication
 - High-latency
 - Chaum Mixes as a building block, onion routing
 - Low-latency
 - Optimized Onion Routing and Tor

Chaum's Mix

- Early proposal for anonymous email
 - David Chaum. "Untraceable electronic mail, return addresses, and digital pseudonyms". Communications of the ACM, February 1981.

Before spam, people thought anonymous email was a good idea ©

- Public key crypto + trusted re-mailer (Mix)
 - Untrusted communication medium
 - Public keys used as persistent pseudonyms
- Modern anonymity systems use Mix as the basic building block

Basic Mix Design

Anonymous Return Addresses

Mix Cascade

- Messages are sent through a sequence of mixes
 - Can also form an arbitrary network of mixes ("mixnet")
- Some of the mixes may be controlled by attacker, but even a single good mix guarantees anonymity
- Pad and buffer traffic to foil correlation attacks

What are some downsides of mix networks?

- Susceptible to timing attacks
- Latency can be high
 - Must wait for "enough" inputs before the mix relays traffic
- These challenges led to 2nd commonly-used anonymous routing technique

Idea: Randomized Routing

- Hide message source by routing it randomly
 - Popular technique: Crowds, Freenet, Onion routing
- Routers don't know for sure if the apparent source of a message is the true sender or another router

Onion Routing [Reed, Syverson, Goldschlag '97]

- Sender chooses a random sequence of routers
 - Some routers are honest, some controlled by attacker
 - Sender controls the length of the path

- Routing info for each link encrypted with router's public key
- Each router learns only the identity of the next router

Disadvantages of Basic Mixnets/Onion Routing

- Public-key encryption and decryption at each mix/router are computationally expensive
- Basic mixnets have high latency
 - Ok for email, not Ok for anonymous Web browsing
- Challenge: low-latency anonymity network

Outline

- Symmetric vs Public-private key encryption
- Protocols for anonymous communication
 - High-latency
 - Chaum Mixes as a building block, onion routing
 - Low-latency
 - Optimized Onion Routing and Tor

- Second-generation onion routing network
 - http://tor.eff.org
 - Developed by Roger Dingledine, Nick Mathewson and Paul Syverson
 - Specifically designed for low-latency anonymous Internet communications
- Running since October 2003
- Thousands of nodes, 2MM+ users
- "Easy-to-use" client proxy
 - Freely available, can use it for anonymous browsing

Tor Circuit Setup

• Client proxy establishes symmetric session keys with onion routers

- Routing info for each link encrypted with router's public key
- Each router learns only the identity of the next router *and symmetric key with source*

Using a Tor Circuit

- Client applications connect and communicate over the established Tor circuit
 - Note onion now uses only symmetric keys for routers

Note onion now uses only symmetric keys for routers

Tor Management Issues

- Many applications can share one circuit
 - Multiple TCP streams over one anonymous connection
- Tor router doesn't need root privileges
 - Encourages people to set up their own routers
 - More participants = better anonymity for everyone
- Directory servers
 - Maintain lists of active onion routers, their locations, current public keys, etc.
 - Control how new routers join the network
 - "Sybil attack": attacker creates a large number of routers
 - Directory servers' keys ship with Tor code

Common misconception: Onion routing = Mix networks

Me, an anonymity researcher, hiding under the bed:

 \sim

Armed robber:

Me:

Armed robber:

Me:

Armed robber: I think TOR is the best MIX network

Me: first of all I can hear you incorrectly spelling those with all caps, and also Tor is not a mi..shit twitter.com/jessamyn/statu...

Deployed Anonymity Systems

- Free Haven project has an excellent bibliography on anonymity
- Tor (http://tor.eff.org)
 - Overlay circuit-based anonymity network
 - Best for low-latency applications such as anonymous Web browsing
- Mixminion (http://www.mixminion.net)
 - Network of mixes
 - Best for high-latency applications such as anonymous email

Outline

- Symmetric vs Public-private key encryption
- Protocols for anonymous communication
 - High-latency
 - Chaum Mixes as a building block, onion routing
 - Low-latency
 - Optimized Onion Routing and Tor

A simple idea: Basic Anonymizing Proxy

- Channels appear to come from proxy, not true originator
- Appropriate for Web connections etc.: SSL, TLS (Lower cost symmetric encryption)
- Example: Anonymizer (developed at CMU!)
- Simple, focuses lots of traffic for more anonymity
- Main disadvantage: Single point of failure, compromise, attack

Extension: Location Hidden Servers

- Goal: deploy a server on the Internet that anyone can connect to without knowing where it is or who runs it
- Accessible from anywhere
- Resistant to censorship
- Can survive full-blown DoS attack
- Resistant to physical attack
 - Can't find the physical server!

• Commonly referred to as... the dark web

Creating a Location Hidden Server

Using a Location Hidden Server

In-Class Demo: Accessing Hidden Services

- Many news organizations have started offering hidden services
- New York Times
 - <u>https://www.nytimes3xbfgragh.onion/</u>

How would you attack this?

- Try to DoS the rendevouz point?
 - Client can switch rendezvous
- DoS an introduction point?
 - Server can switch introduction points
- DoS the lookup server?
 - This is probably the weakest link