Anonymous Communications: One-to-Many

Giulia Fanti
Fall 2019
Based in part on slides by Anupam Datta, Piotr Mardziel
Administrative

• HW4 due Nov. 22 (<2 weeks from now)
 • Please hold off on “Fairness in Classification” problem
 • HW3 grades out on Gradescope/Canvas

• Recitation on Friday (Sruti)
 • Anonymous communication

• If you want feedback on your project, please come to OH!
In-class Quiz

• On Canvas
Last time

• Review of equalized odds vs equal opportunity
 • Revisit geometric interpretation

• Disparate impact
 • Metric for measuring
 • How to prevent it
Today

• Overview of fairness techniques & how they relate to each other

• Wrap up Unit 2

• Start Unit 3 on Anonymous + Privacy-Preserving Communication
Mistake from last time

• Does equalized odds imply group fairness?
• Work it out with your partner

• Equalized Odds
\[P[\hat{Y} = 1 | A = 0, Y = y] = P[\hat{Y} = 1 | A = 1, Y = y] \]

• Group Fairness
\[P[\hat{Y} = 1 | A = 0] = P[\hat{Y} = 1 | A = 1] \]
How does this help explain the profit results from last time?

<table>
<thead>
<tr>
<th>Method</th>
<th>Profit (% relative to max profit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max profit</td>
<td>100</td>
</tr>
<tr>
<td>Race blind</td>
<td>99.3</td>
</tr>
<tr>
<td>Equal opportunity</td>
<td>92.8</td>
</tr>
<tr>
<td>Equalized odds</td>
<td>80.2</td>
</tr>
<tr>
<td>Group fairness (demographic parity)</td>
<td>69.8</td>
</tr>
</tbody>
</table>
Disparate impact (relaxed group fairness)

Individual Fairness

Equal Opportunity

Equalized Odds

Group Fairness (strict equality)

Disparate impact (relaxed group fairness)

Fairness: High-Level View

Metrics

Enforcement Algorithms
Fairness: High-Level View

Metrics
- **Modify Input Data**
 - “Certifying & Removing Disparate Impact”

Enforcement Algorithms
- **Train Fair Classifier**
 - “Fairness through awareness”
- **Modify Biased Model**
 - “Equality of opportunity in supervised learning”

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Prevents any future training from exhibiting bias
- Can enforce whatever fairness metric you want
- * Allows post-facto modifications to models
 * Requires less data access
- Can destroy data utility
- Requires you to know ahead of time protected features
- Can hurt utility
Unit II: Learning from Big Data
Summary of Concepts

<table>
<thead>
<tr>
<th>Privacy</th>
<th>Fairness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risks</td>
<td></td>
</tr>
<tr>
<td>Deanonymization</td>
<td>Bias in algorithms</td>
</tr>
<tr>
<td>Membership inference</td>
<td></td>
</tr>
<tr>
<td>Model inversion</td>
<td></td>
</tr>
<tr>
<td>Metrics</td>
<td>Group fairness</td>
</tr>
<tr>
<td>k-anonymity (and variants)</td>
<td>Individual fairness</td>
</tr>
<tr>
<td>Global (database) differential privacy</td>
<td>Disparate impact</td>
</tr>
<tr>
<td>Local differential privacy</td>
<td>Equalized odds</td>
</tr>
<tr>
<td>Mitigations</td>
<td>Equal opportunity</td>
</tr>
<tr>
<td>Data redaction</td>
<td>Data alterations</td>
</tr>
<tr>
<td>Data clustering</td>
<td>Classifier learning algos</td>
</tr>
<tr>
<td>DP mechanisms</td>
<td>Classifier modification algos</td>
</tr>
<tr>
<td>Federated learning</td>
<td></td>
</tr>
</tbody>
</table>
What should you be able to do?

- Identify privacy and fairness risks in ML/big data pipelines
 - Make a list of "things you should be worried about based on deanonymization approach"

- Propose mechanisms for mitigating those risks
 - E.g., design DP, unbiased learning pipelines
 - Implement such a pipeline (HW3, HW4)

- Evaluate the privacy (or fairness) vs utility cost of these mitigations
Next up:
Privacy-Preserving Communication

Unit III
Overview of the Unit

1. One-to-many communication
2. Point-to-point communication

Many techniques in both spaces rely on the same few algorithmic tools.
• Scenario: Suppose you need to send your passport via email

Now Google and Yahoo have your passport!
What can we do about this?

- Password protect the file
- Secret sharing (Shamir, 1979)
 - Important idea
 - Generalizations are widely-used
1. Want to transmit:
 \[x \in S \]

2. Generate random shares
 \[z_1, z_2, z_3, \text{ where } z_i \sim \text{Unif}(S) \]
 s.t. \[z_1 + z_2 + z_3 = 0 \]

3. Send randomized data over network

\[\text{Sum} \rightarrow x \]
Properties of secret sharing

• Correctness
 • The destination always receives the desired message
 • Because the noise cancels out

• Information-theoretic secrecy w.r.t. up to $n - 1$ colluding relays
 • I.e., any colluding set of $\leq n - 1$ relays learns no information about x
 • Prove this with your partner
What are some weaknesses of this algorithm?

• Requires nodes to
 • Participate reliably
 • Obey protocol

• Assumes a certain topology between the source and destination

We can solve a lot of these problems with coding theory!
What is a (channel) code?

Source

| 1 0 1 0 |

Channel

| 1 0 x 0 |

Dest

Goal: Add **redundancy** to correct for errors!
First attempt: **Repetition coding**

Problem: Repetition coding adds a lot of overhead!
Second attempt: **Reed-Solomon Codes**

- Widely used in many applications (e.g., distributed storage, CDs)
- Let $x = (x_1, \ldots, x_k) \in F^k$ be the message
 1. Encode x in the coefficients of a degree $k - 1$ polynomial
 \[p(a) = \sum_{i=1}^{k} x_i a^{i-1} \]
 2. Evaluate $p(a)$ at $n \geq k$ different points a_1, \ldots, a_n of the field F

Q: How many points can be **erased** while still recovering x?
A: $n - k$ (because any $k + 1$ points will reconstruct $p(a)$)

Remark: RS Codes can also correct up to $\frac{n-k}{2}$ errors!
1. Want to transmit: \(x \in \mathbb{F}^k \)

2. Generate coded polynomial

\[
p(a) = \sum_{i=1}^{k} x_i a^{i-1}
\]

3. Evaluate \(p(a) \) at \(n \) points and transmit over network

Interpolate Polynomial

\(x \)
How can secret sharing help us with our email problem?
Related ideas are used often in security- or privacy-sensitive systems

- Bank safe deposit boxes
 - Require two keys to access

- Threshold cryptography
 - Used to ensure that any k-out-of-n parties can decrypt a secret (but no fewer)

- Next: Dining Cryptographer (DC) networks
Dining Cryptographers

• Make a message public in a perfectly untraceable manner (1988)

The Dining Cryptographers Problem:
Unconditional Sender and Recipient Untraceability

David Chaum
Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

• Information-theoretic anonymity guarantee
 • This is an unusually strong form of security: defeats adversary who has unlimited computational power

• Impractical, requires huge amount of randomness
 • In group of size N, need N random bits to send 1 bit
Three-Person DC Protocol

Three cryptographers are having dinner. Either NSA is paying for the dinner, or one of them is paying, but wishes to remain anonymous.

Cryptographers = clients
NSA pays/someone pays = 1 bit message
Three-Person DC Protocol

1. Each diner flips a coin and shows it to his left neighbor.
 • Every diner will see two coins: his own and his right neighbor’s

2. Each diner announces whether the two coins are the same.
 • If he is the payer, he lies (says the opposite).

3. Odd number of “same” \Rightarrow NSA is paying;
 • Even number of “same” \Rightarrow one of them is paying
 • But a non-payer cannot tell which of the other two is paying!
Non-Payer’s View: Same Coins

Without knowing the coin toss between the other two, non-payer cannot tell which of them is lying.
Non-Payer’s View: Different Coins

Without knowing the coin toss between the other two, non-payer cannot tell which of them is lying.

“same”

“same”

“same”

“same”

payer

payer

“different”

payer

payer
Superposed Sending

• This idea generalizes to any group of size N
• For each bit of the message, every user generates 1 random bit and sends it to 1 neighbor
 • Every user learns 2 bits (his own and his neighbor’s)
• Each user announces own bit XOR neighbor’s bit
• Sender announces own bit XOR neighbor’s bit XOR message bit
• XOR of all announcements = message bit
 • Every randomly generated bit occurs in this sum twice (and is canceled by XOR), message bit occurs once
DC-Based Anonymity is Impractical

- Requires secure pairwise channels between group members
 - Otherwise, random bits cannot be shared
- Requires massive communication overhead and large amounts of randomness
+ DC-net (a group of dining cryptographers) is robust even if some members collude
 - Guarantees perfect anonymity for the other members