Anonymous Communications: One-to-Many

Giulia Fanti

Fall 2019

Based in part on slides by Anupam Datta, Piotr Mardziel

Administrative

- HW4 due Nov. 22 (<2 weeks from now)
 - Please hold off on "Fairness in Classification" problem
 - HW3 grades out on Gradescope/Canvas
- Recitation on Friday (Sruti)
 - Anonymous communication
- If you want feedback on your project, please come to OH!

In-class Quiz

• On Canvas

Last time

- Review of equalized odds vs equal opportunity
 - Revisit geometric interpretation
- Disparate impact
 - Metric for measuring
 - How to prevent it

Today

- Overview of fairness techniques & how they relate to each other
- Wrap up Unit 2
- Start Unit 3 on Anonymous + Privacy-Preserving Communication

Mistake from last time

- Does equalized odds imply group fairness?
- Work it out with your partner
- Equalized Odds $P[\hat{Y} = 1 | A = 0, Y = y] = P[\hat{Y} = 1 | A = 1, Y = y]$
- Group Fairness

$$P[\hat{Y} = 1 | A = 0] = P[\hat{Y} = 1 | A = 1]$$

How does this help explain the profit results from last time?

Method	Profit (% relative to max profit)
Max profit	100
Race blind	99.3
Equal opportunity	92.8
Equalized odds	80.2
Group fairness (demographic parity)	69.8

Fairness: High-Level View

Fairness: High-Level View

	Metrics		Enforcement Algorithms	
	Modify Input Data	Train Fair Classifier	Modify Biased Model	
	"Certifying & Removing Disparate Impact"	"Fairness through awareness"	"Equality of opportunity in supervised learning"	
Pros	Prevents any future training from exhibiting bias	Can enforce whatever fairness metric you want	 * Allows post-facto modifications to models * Requires less data access 	
Cons	Can destroy data utility	Requires you to know ahead of time protected features	Can hurt utility	

Unit II: Learning from Big Data Summary of Concepts

	Privacy	Fairness
Risks	 Deanonymization Membership inference Model inversion 	- Bias in algorithms
Metrics	 k-anonymity (and variants) Global (database) differential privacy Local differential privacy 	 Group fairness Individual fairness Disparate impact Equalized odds Equal opportunity
Mitigations	 Data redaction Data clustering DP mechanisms Federated learning 	 Data alterations Classifier learning algos Classifier modification algos

What should you be able to do?

- Identify privacy and fairness risks in ML/big data pipelines
 - Make a list of "things you should be worried about based on deanonymization approach"
- Propose mechanisms for mitigating those risks
 - E.g., design DP, unbiased learning pipelines
 - Implement such a pipeline (HW3, HW4)
- Evaluate the privacy (or fairness) vs utility cost of these mitigations

Next up: Privacy-Preserving Communication

Overview of the Unit

Many techniques in both spaces rely on the same few algorithmic tools.

• Scenario: Suppose you need to send your passport via email

What can we do about this?

- Password protect the file
- Secret sharing (Shamir, 1979)
 - Important idea
 - Generalizations are widely-used

Shamir Secret Sharing

Properties of secret sharing

- Correctness
 - The destination always receives the desired message
 - Because the noise cancels out
- Information-theoretic secrecy w.r.t. up to n-1 colluding relays
 - I.e., any colluding set of $\leq n 1$ relays learns no information about x
 - Prove this with your partner

What are some weaknesses of this algorithm?

- Requires nodes to
 - Participate reliably
 - Obey protocol
- Assumes a certain topology between the source and destination

We can solve a lot of these problems with coding theory!

What is a (channel) code?

Goal: Add **redundancy** to correct for errors!

First attempt: Repetition coding

Problem: Repetition coding adds a lot of overhead!

Second attempt: Reed-Solomon Codes

- Widely used in many applications (e.g., distributed storage, CDs)
- Let $x = (x_1, ..., x_k) \in F^k$ be the message
- 1. Encode x in the coefficients of a degree k 1 polynomial

$$p(a) = \sum_{i=1}^{\kappa} x_i a^{i-1}$$

2. Evaluate p(a) at $n \ge k$ different points a_1, \dots, a_n of the field F

Q: How many points can be **erased** while still recovering x? A: n - k (because any k + 1 points will reconstruct p(a))

Remark: RS Codes can also correct up to $\frac{n-k}{2}$ errors!

Shamir Secret Sharing, Version 2

How can secret sharing help us with our email problem?

Related ideas are used often in security- or privacy-sensitive systems

- Bank safe deposit boxes
 - Require two keys to access
- Threshold cryptography
 - Used to ensure that any k-out-of-n parties can decrypt a secret (but no fewer)
- Next: Dining Cryptographer (DC) networks

Dining Cryptographers

• Make a message public in a perfectly untraceable manner (1988)

The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability

David Chaum Centre for Mathematics and Computer Science, Kruislan 413, 1098 SJ Amsterdam, The Netherlands

- Information-theoretic anonymity guarantee
 - This is an unusually strong form of security: defeats adversary who has **unlimited** computational power
- Impractical, requires huge amount of randomness
 - In group of size N, need N random bits to send 1 bit

Three-Person DC Protocol

Three cryptographers are having dinner.Either NSA is paying for the dinner, orone of them is paying, but wishes to remain anonymous.

Cryptographers = clients NSA pays/someone pays = 1 bit message

Cryptographer 3

Three-Person DC Protocol

- 1. Each diner flips a coin and shows it to his left neighbor.
 - Every diner will see two coins: his own and his right neighbor's
- 2. Each diner announces whether the two coins are the same.
 - If he is the payer, he lies (says the opposite).
- 3. Odd number of "same" \Rightarrow NSA is paying;
 - Even number of "same" \Rightarrow one of them is paying
 - But a non-payer cannot tell which of the other two is paying!

Non-Payer's View: Same Coins

Non-Payer's View: Different Coins

Superposed Sending

- This idea generalizes to any group of size N
- For each bit of the message, every user generates 1 random bit and sends it to 1 neighbor
 - Every user learns 2 bits (his own and his neighbor's)
- Each user announces own bit XOR neighbor's bit
- Sender announces own bit XOR neighbor's bit XOR message bit
- XOR of all announcements = message bit
 - Every randomly generated bit occurs in this sum twice (and is canceled by XOR), message bit occurs once

DC-Based Anonymity is Impractical

x Requires secure pairwise channels between group members

- Otherwise, random bits cannot be shared
- x Requires massive communication overhead and large amounts of randomness
- + DC-net (a group of dining cryptographers) is robust even if some members collude
 - Guarantees perfect anonymity for the other members