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Administrative

* HW4 out today

* Fairness + anonymous communication (next unit)
* You will have ~3 weeks

* Presentations starting on Wednesday

* Upload your slides to Canvas by midnight the night before so we can
download them in the morning

 Sign up for groups on Canvas so that we can assign group grades
* Presentation rubric on Canvas!
* Volunteer in SV to share their laptop on Wednesday?



In-class Quiz

* On Canvas



Last time

e Group fairness
* Statistical parity
* Demographic parity
* Ensures that same ratio of people from each group get the “desirable”
outcome

* Individual fairness
* Ensures that similar individuals are treated similarly
e Can learn a fair classifier by solving linear program



Today

 When does individual fairness imply group fairness?
* Connections to differential privacy

* How do we take already-trained classifiers and make them fair?



Paper from last time:

Fairness Through Awareness

Cynthia Dwork* Moritz Hardt"  Toniann Pitassi* Omer Reingold®
Richard Zemell

November 30, 2011



Classifier Vendor
(e.g. tracking network) (e.g. capital one)

M-V -0 é jﬁ O—-A

Define distributions
over each set:

S(x) = Ps(x)

x €V c R4

V: Individuals O: outcomes  A: actions



Individual fairness formulation:

B R Bew Vo)
X
s.t. HMx — My” <d(x,y) Vx,yeEV
constraint

Q: What are the downsides to this formulation?

- Need a similarity metric between users

- Very high-dimensional LP may be difficult to solve
- Classifier must be trained a priori with fairness




When does Individual Fairness imply Group Fairness?

Suppose we enforce a metric d.

Question: Which groups of individuals receive
(approximately) equal outcomes?

s
b2 L B AR
— e N b
A . | " Y
N
5
|




How different are Sand 77

Earthmover Distance:

“Cost” of transforming one distribution
to another, by "moving” probability
mass (“earth”).

dEM(S,T)= miny, Z h(fB,y)d(iB,y)

z,yeVv
s.t. Z h(z,y) =S(z), Vze S
yev
Z h(y,x) =T(x), Ve eT
h(x,y) — how much yev

probability of x in S to h(z,y) >0
movetoyinT




Example: Compute Earth-Mover’s Distance

e On document cam

dem(S,T) = miny Y h(z,y)d(z,y)
z,yev

s.t. Z h(z,y) =S(z), Vze S
yev

> h(y,z)=T(z), VzeT

yev
h(z,y) >0



dz2:(S,T) = miny, ZV h(z,y)d(z,y)
st. gh(m, y) = S(z)
E h(y,z) = T(x)
26(;/ y) >0
bias(d, S, T) = max P[M(x) = o|x € S] — P[M(x) = o|x € T]

M:d—-Lipschitz model




Some observations

bias(d,S,T) = M:d_Liprsrlﬁﬁz el P[M(x) =o|x € S] —P[M(x) = o|x € T]

Theorem:
Any Lipschitz mapping M satisfies group fairness up to bias(d, S, T).

e By definition, the bias is the maximum deviation from group fairness that
can be achieved!

* Indeed, for TV distance between distributions and binary classification,
biaS(d, S, T) — dEM(SI T)

» Takeaway message: If your groups are very far away (in EMD), the
Lipschitz condition can only get you so far in terms of group fairness!



Connections to Differential Privacy

I’S\l/laX Ex-vEo-m, [U(x,0)]

s.t. ||Mx —M,||<d(x,y) Vx,y€EV

What if we don’t use TV distance for ||M, — My”?

A P(a) Q(a)
IP = Qll> 2 suplog (max {Q(a) ’ P(a)})

A mapping M satisfies e-differential privacy iff it satisfies the Lipschitz
property!



Summary: Individual Fairness

* Formalized fairness property based on treating similar individuals
similarly
* Incorporated vendor’s utility
* Explored relationship between individual fairness and group fairness
* Earthmover distance



Individual fairness formulation:

B R Bew Vo)
X
s.t. HMx — My” <d(x,y) Vx,yeEV
constraint

Q: What are the downsides to this formulation?

- Need a similarity metric between users

- Very high-dimensional LP may be difficult to solve
- Classifier must be trained a priori with fairness




Lots of open problems/direction

 Metric

* Social aspects, who will define them?
* How to generate metric (semi-)automatically?

* Earthmover characterization when probability metric
is not statistical distance

* Next: How can we compute a fair classifier from an
already-computed unfair one?



More definitions of fair classifiers

* NeurlPS 2016

Equality of Opportunity in Supervised Learning

Moritz Hardt Eric Price* Nathan Srebro
Google UT Austin TTI-Chicago
mémrtz.org ecprice@cs.utexas.edu nati@ttic.edu



X1
xn
Protected /

attribute 4

Individual’s True Learned New (fair)
Data label Classifier Classifier



Equalized odds

* Consider binary classifiers
* We say a classifier ¥ has equalized odds if for all true labels y,

Q: How would this definition look if we only wanted to enforce group
fairness?

A:P|Y =1|A=0]=P|V =1]4 = 1]



Equal opportunity

e Suppose Y = 1 is the desirable outcome
* E.g., getting a loan

* We say a classifier Y has equal opportunity if
PlY =11A=0Yy=1|=P[Y =1]1A=1Y = 1]
Interpretation: True positive rate is the same for both classes

Weaker notion of fairness = can enable better utility



How can we create a predictor that meets
these definitions?

* Key property: Should be oblivious

« A property of predictor Y is oblivious if it only depends on the joint
distribution of (Y,A, Y)

e What does this mean?

* It does not depend on training data X



Need 4 parameters to define Y from (¥, 4)

Protected attribute 4

0

_ ~ Poo = P(Y =1|A=0,Y =0) Por =P(Y =1A=1,Y =0)
Predicted Label Y :

1 pio=P(Y =1]4A=0,Y =1) p.=PY =1A=1Y =1)



Once our py;’s are defined...

* How do we check that equalized odds are Eatisfied?
Va(Y) 2 (P{¥ =11A=0a,Y =0}, P{Y =1|A=qa Y = 1})

Compute y4(Y) and ¥, (Y). (Depends on joint distribution of (Y,A, 17) )
They should be equal (to satisfy equalized odds)

Q: What condition do we need for an equal opportunity classifier?

A: The 2" entries of ¥, (Y) and yO(Y) should match



Geometric Interpretation via ROC curves

For equal odds, result lies For equal opportunity, results lie
BN Achievable region (A=0) 10 _below all ROC curves. 10 on the same horizontal line
Achievable region (A=1) 08 08

BN Overlap S >

+ ResultforY=Y < 06} < 06

X ResultforY=1-Y — 04} ~ 04

% Equal-odds optimum > 02 > 02

@® Equal opportunity (A=0) & a
| @ Equal opportunity (A=1) 90 0z 04 06 o8 1o B0 o0z 04 06 08 10

PriY=1|A Y =0] P[Y=1|AY=0]



Write equalized odds as an optimization

* Let’s define a loss function f(Yp, Y) describing loss of utility from
using Y, instead of ¥

* Now we can optimize: min Eé(?p, Y)
p

s.t. 0(Yp) = 71(Yp)
Vy a0 < pya < 1

* Objective and constraints are both linear in vector of p values!



What about continuous values?

* E.g., suppose we use a numeric credit score R to predict binary value
Y

* You can threshold the score to get a comparable definition of
equalized odds

e If R satisfies equalized odds, then so does any predictor ¥ =
I{R > t}, where t is some threshold



Case study: FICO Scores

* Credit scores R range from 300 to 850
* Binary variable Y = whether someone will default on loan
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Experiment

* False positive — giving a loan to someone who will default
* False negative — not giving a loan to someone who will not default
* Loss function = false positives are 4.5x as expensive as false negatives

Baselines

Max profit — no fairness constraint
Race blind — uses same FICO threshold for all groups

Groug fairness — picks for each group a threshold such that the fraction of group
members that qualify for loans is the same

Equal opportunity — picks a threshold for each group s.t. fraction of non-defaulting
group members is the same

Equalized odds — requires both the fraction of non-defaulters that qualify for loans
and the fraction of defaulters that qualify for loans to be constant across groups



Fraction non-defaulters

ROC Curve Results

getting loan
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Profit Results
(Method | Profit (% relative to max profit) |

Max profit 100
Race blind 99.3
Equal opportunity 92.8
Fair by some _
definition Equalized odds 80.2

Group fairness (demographic parity) 69.8



