Local Differential Privacy

Giulia Fanti

Slides based in part on material by Ananth Raghunathan

Fall 2019
Administrative

- HW3 out
 - Differential privacy and deanonymization

- Recitation on Friday
 - Local differential privacy (Sruti)

- Interesting talks
 - Today @ 5.30 Posner160, “Facebook Data Privacy. + Design”
 - Thursday 10/10 @ noon, Hamburg Hall 1002, “Next Generation Privacy Reviews”, Dhanuja Shaji, SNAP

- Project budget
 - If you need money for your project (e.g. for datasets) send me an email with the amount you need and link to purchase
Canvas quiz

- 10 minutes
Different models

- **Global (database) differential privacy**

 Analyst
 \[
 \text{Query } f(\cdot) \quad f(D) + \text{noise}
 \]
 Sensitive Database

- **Local differential privacy**

 Users
 \[
 U_i = X_i + N_i
 \]
 Aggregator
 Database
 Output statistics
 \[
 f(U_1, \ldots, U_n)
 \]
Local Differential Privacy

We say mechanism Q is ϵ-locally differentially private if

$$\sup_{s,x,x' \in X} \frac{Q(S|X = x)}{Q(S|X = x')} \leq e^{\epsilon}.$$
Randomized Response

- “Are you now, or have you ever been, a member of the communist party?”

- Flip a coin, in private
- If the coin comes up heads, respond “Yes”
- Otherwise, tell the truth

- Estimate true “yes” ratio with
 \[\text{# of “Yes” responses} - 0.5 \]
Real-World Application: RAPPOR

- Google wanted to detect hijacking of browser settings
 - Measure proportion of homepages
 - … without collecting everyone’s data in plaintext

- RAPPOR
 - First internet-scale deployment of differential privacy
 - Open-source
Traditional best practices

- Collect user data
- Scrub IP addresses, timestamps, etc.

- Keep central database of scrubbed data (e.g., 2 weeks)
 - Keep only aggregates of older data

- Report aggregates of data over threshold (e.g., 10 users)

- Can be the best approach for opt-in, low-sensitivity data
RAPPOR

- Learn statistics with differential privacy

RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response

Úlfar Erlingsson
Google, Inc.
ulfar@google.com

Vasyl Pihur
Google, Inc.
vpihur@google.com

Aleksandra Korolova
University of Southern California
korolova@usc.edu

- **Pros:**
 - Strong privacy guarantees
 - Robust to hackers, subpoenas, etc.

- **Cons:**
 - How do you collect string-valued data with LDP?
Bloom Filters

We use k hash functions.

Here $k = 2$
Let’s add differential privacy

- **User side: Randomized response**

 - “Chrome”
 - Choose which bits will stay
 - Randomize remaining bits

 - Send to aggregator

 - w.p. $1 - f$, report true bit
 - w.p. f, report random bit

 - e.g., let $f = \frac{1}{2}$
Let’s add differential privacy

What privacy guarantee does this give you?

\[\epsilon = 2 \ln \left(\frac{\left(1 - \frac{f}{2}\right)}{\frac{f}{2}} \right) \]

Mechanism
w.p. 1 – f, report true bit
w.p. f, report random bit
Aggregator

Sums up bit vectors

Decodes vector
Decoding Bloom Filter

- **Aggregator knows:**
 - Mapping from words to bits

```
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Chrome&quot;</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>&quot;Firefox&quot;</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>&quot;Opera&quot;</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

- Aggregate sum of reported (noisy) vectors
- Value of parameter f
In-Class Exercise

- Step 1: Go to https://forms.gle/vtsZaTv8CnqqyYsS6 and record your operating system.

- Step 2: Create RAPPOR-randomized bits for your OS, and submit them at the same link.

 (wait for class to synchronize)

- Step 3: Form teams of 2-3 students. Try to recover the original distribution. (don’t look at RAPPOR paper for this!) Submit your guess here (one per group!): https://forms.gle/CDWPkD6GVPpyYFMx7
Different Techniques

Let

- $Y \in \mathbb{R}^d$ denote the observed Bloom filter
- $A \in \mathbb{R}^{d \times n}$ the matrix mapping words to initial (unnoised) bits
- $X \in \mathbb{R}^n$ the vector of all real word counts

Linear regression:

$$\min_{X \in \mathbb{R}^n} \|Y - AX\|_2$$

LASSO

$$\min_{X \in \mathbb{R}^n} \|Y - AX\|_2^2 + \lambda \|X\|_1$$

Hybrid

- Find support of X via LASSO
- Solve linear regression to find weights
Chrome homepages estimated by RAPPOR
What is the downside of LDP?

- Higher ϵ requires more data
 - Train models
 - Release statistics with given accuracy

- How much more?