18734: Foundations of Privacy

Privacy-preserving Release of Statistics: Differential Privacy

Giulia Fanti Slides by Anupam Datta CMU

Fall 2019

Administrative Stuff

- HW2 due tonight at midnight on Gradescope
 - Upload pdf with everything except AdFisher code and logs to Gradescope
 - Upload AdFisher code and logs to Canvas

• Note on Piazza use

Quiz

• On Canvas

Privacy-Preserving Statistics: Non-Interactive Setting

Goals:

- Accurate statistics (low noise)
- Preserve individual privacy (what does that mean?)

Database D maintained by trusted curator

- Census data
- Health data
- Network data

Some possible approaches

• Anonymize data

- Re-identification, information amplification

• Summary statistics

Differencing attack

Privacy-Preserving Statistics: Interactive Setting

Goals:

- Accurate statistics (low noise)
- Preserve individual privacy (what does that mean?)

Database D maintained by trusted curator

- Census data
- Health data
- Network data
- •

Classical Intuition for Privacy

- "If the release of statistics S makes it possible to determine the value [of private information] more accurately than is possible without access to S, a disclosure has taken place." [Dalenius 1977]
 - Privacy means that anything that can be learned about a respondent from the statistical database can be learned without access to the database
- Similar to semantic security of encryption

Impossibility Result

- "<u>Theorem</u>": For any reasonable definition of breach, if sanitized database contains information about database, then there exists an adversary and an auxiliary information generator that causes a breach with some nontrivial probability.
- Example
 - Terry Gross is two inches shorter than the average Lithuanian woman
 - DB allows computing average height of a Lithuanian woman
 - This DB breaks Terry Gross's privacy according to this definition... even if her record is <u>not</u> in the database!

Dwork and Naor. On the Difficulties of Disclosure Prevention in Statistical Databases or The Case for Differential Privacy. 2016

8

Takeaway message

• Our privacy definitions must account for auxiliary information.

• Recall: Netflix paper

Differential Privacy: Idea

[Dwork, McSherry, Nissim, Smith 2006]

Released statistic is about the same if any individual's record is removed from the database

An Information Flow Idea

Changing input databases in a specific way changes output statistic by a small amount

Not Absolute Confidentiality

Does not guarantee that Terry Gross's height won't be learned by the adversary

Differential Privacy: Definition

Randomized sanitization function κ has ε -differential privacy if for all data sets D_1 and D_2 differing by at most one element and all subsets S of the range of κ ,

$$\Pr[\kappa(D_1) \in S] \le e^{\varepsilon} \Pr[\kappa(D_2) \in S]$$

Answer to query # individuals with salary > \$30K is in range [100, 110] with approximately the same probability in D_1 and D_2

Check your understanding

Randomized sanitization function κ has ϵ -differential privacy if for all data sets D_1 and D_2 differing by at most one element and all subsets S of the range of κ ,

 $\Pr[\kappa(D_1) \in S] \le e^{\varepsilon} \Pr[\kappa(D_2) \in S]$

- What does differential privacy mean when $\epsilon = 0$?
- What range of values can ϵ take?

Achieving Differential Privacy: Interactive Setting

How much and what type of noise should be added?

Example: Noise Addition

- Say we want to release a summary f(x) ∈ ℝ^p
 > e.g., proportion of diabetics: x_i ∈ {0,1}, f(x) = ¹/_n ∑ x_i
- Simple approach: add noise to f(x)
 ➤ How much noise is needed?
- Intuition: f(x) can be released accurately when f is insensitive to individual entries x_1, x_2, \ldots, x_n

Slide: Adam Smith

Global Sensitivity

Exercise

- Function f: # individuals with salary > \$30K
- Global Sensitivity of f = ?

• Answer: 1

Exercise 2

- Function $f(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$, where $x_i \in S$
- Global Sensitivity of f = ?

• Answer:
$$\frac{|\max(S)|}{n}$$

Background on Probability

Continuous Probability Distributions

• Probability density function (PDF), f_X

$$\Pr[a \le X \le b] = \int_a^b f_X(x) \, dx.$$

- Example distributions
 - Normal, exponential, Gaussian, Laplace

Laplace Distribution

Source: Wikipedia

We use Lap(b) to denote the 0-mean version of this

Achieving Differential Privacy

Laplace Mechanism

Laplace Mechanism: Proof Idea

Theorem: If $A(x) = f(x) + Lap\left(\frac{GS_f}{\epsilon}\right)$, then A is ϵ -differentially private.

Laplace distribution $Lap(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$

 $h(y+\delta)$ h(y) y

Work with your neighbors to prove the Theorem.

Hint: Compute
$$\frac{f_{A(x)}(t)}{f_{A(x')}(t)}$$