Review of mathematical foundations for Machine Learning

September 22, 2017

Random Variables

Coin tossing experiment

- Experiment
- Toss a coin twice
- Sample space: Possible outcomes of an experiment
$-\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- Event: subset of possible outcomes
$-A=\{H H\}, B=\{H T, T H\}, C=\{T T\}$

Random Variable (RV)

- A random variable X is a function from the sample space to a real number
- X : (represents number of heads)
$-\{\mathrm{HH}\} \rightarrow 2$
$-\{\mathrm{HT}, \mathrm{TH}\} \rightarrow 1$
$-\{T T\} \rightarrow 0$
- $\operatorname{Pr}($ Experiment yields no heads $)=\operatorname{Pr}(\{T T\})=\operatorname{Pr}(X=0)$
- Discrete RV: takes on finite number of values
- Continuous RV: takes an uncountable number of values

Discrete RV

- Probability Mass Function (PMF) p_{x}
- Gives the probability that X will take on a particular value
- $\mathrm{p}_{\mathrm{x}}(\mathrm{a})=\operatorname{Pr}(\mathrm{X}=\mathrm{a})$
- $\sum_{i} p_{x}\left(a_{i}\right)=1$

Continuous RV

- Probability Density Function (PDF) f_{x}
- Non-negative function such that

$$
\operatorname{Pr}(\mathrm{a}<=\mathrm{X}<=\mathrm{b})=\int_{a}^{b} \mathrm{f}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}
$$

- The integral from $-\infty$ to $+\infty$ is 1
- $\operatorname{Pr}(X=a)=0$

Probability Distribution

- Assigns a probability to each event in the sample space

Discrete Uniform Distribution

Continuous Uniform Distribution

Laplace Distribution

$$
\mathrm{PDF}=\frac{1}{2 b} \exp \left(-\frac{|y-\mu|}{b}\right)
$$

μ : location parameter
b: scale parameter

Similar to PDF for normal distribution

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \sigma^{2} \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Slide credit: Amit Datta, Carnegie Mellon University

Linear Algebra Review

What is a Vector ?

- Directed line segment in N -dimensions
- Has "length" and "direction"
- $\mathbf{v}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{\top}$
- Geometry becomes linear algebra on vectors like v

Vector Addition

$$
\begin{aligned}
& \mathbf{u}=(\mathrm{u} 1, \mathrm{u} 2) \\
& \mathbf{v}=(\mathrm{v} 1, \mathrm{v} 2) \\
& \mathbf{u}+\mathbf{v}=(\mathrm{u} 1+\mathrm{v} 1, \mathrm{u} 2+\mathrm{v} 2)
\end{aligned}
$$

Scalar Product: $a v$

$$
a \mathbf{v}=a\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right)
$$

Changes only the length ("scaling"), but keep direction fixed.

Slide credit: Miao Tang, University of Delaware

Vectors: Dot Product

$$
A \cdot B=A^{T} B=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=a d+b e+c f \quad \begin{aligned}
& \text { Think of the dot product } \\
& \text { as a matrix multiplication }
\end{aligned}
$$

$$
\|A\|^{2}=A^{T} A=a a+b b+c c
$$

The magnitude is the dot product of a vector with itself

$$
A \cdot B=\|A\|\|B\| \cos (\theta)
$$

The dot product is also related to the angle between the two vectors

Inner (dot) Product: v.w or wTv

$$
v \cdot w=\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=x_{1} y_{1}+x_{2} \cdot y_{2}
$$

The inner product is a SCALAR
$v \cdot w=\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=\|v\| \cdot\|w\| \cos \alpha$

$$
v . w=0 \Leftrightarrow v \perp w
$$

If vectors \mathbf{v}, \mathbf{w} are "columns", then dot product is $\mathbf{w}^{\mathbf{T}} \mathbf{v}$

Slide credit: Miao Tang, University of Delaware

Matrix

- A matrix is a set of elements, organized into rows and columns

Basic Matrix Operations

Addition, Subtraction, Multiplication:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a-e & b-f \\
c-g & d-h
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]} \\
& \text { Multiply each row } \\
& \text { by each column }
\end{aligned}
$$

Matrix Times Matrix

$\mathbf{L}=\mathbf{M} \cdot \mathbf{N}$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
l_{11} & l_{12} & l_{13} \\
l_{21} & l_{22} & l_{23} \\
l_{31} & l_{32} & l_{33}
\end{array}\right]=\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right] \cdot\left[\begin{array}{ccc}
n_{11} & n_{12} & n_{13} \\
n_{21} & n_{22} & n_{23} \\
n_{31} & n_{32} & n_{33}
\end{array}\right]} \\
& \quad l_{12}=m_{11} n_{12}+m_{12} n_{22}+m_{13} n_{32}
\end{aligned}
$$

- Is $A B=B A$?

Multiplication

Multiplication

- Is $A B=B A$?

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{cc}
a e+b g & \ldots \\
\ldots & \ldots .
\end{array}\right]\left[\begin{array}{cc}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
e a+f c & \ldots \\
\ldots & \ldots
\end{array}\right]
$$

- Matrix multiplication AB :
- Apply transformation B first, then transform using A
- Not commutative

Matrix operating on vectors

- Matrix is like a function that transforms the vectors on a plane
- Matrix operating on a general point => transforms x - and y-components
- System of linear equations: matrix holds the coefficients
- $x^{\prime}=a x+b y$
- $y^{\prime}=c x+d y$

Logistic Regression and AdFisher

AdFisher

Different

 Outcome?Slide Credit: Amit Datta

Determining whether the difference in outcomes is statistically significant

- AdFisher splits the measurements collected into training and testing subsets.
- Examines the training subset to select a classifier that distinguishes between the measurements taken from each group.
- Uses logistic regression for classification.

Logistic Regression

- Technique for classification
- Know as "regression" because a linear model is fit to the feature space
- Probabilistic method of classification
- Models relationship between set of variables
- Binary variables: Allergic to peanuts
- Categorical: types of cancer such as brain cancer / leukemia / lymphoma / melanoma / etc
- Continuous: weight / height

Ways to express probability

- $\operatorname{Pr}(E 1)=p$
- $\operatorname{Pr}(E 2)=1-p=q$
- Express $\operatorname{Pr}(E 1)$ as:

	Notation	Range		
standard	p	0	0.5	1
odds	p / q	0	1	$+\infty$
Log(odds)	$\log (\mathrm{p} / \mathrm{q})$	$-\infty$	0	$+\infty$

Log(odds)

- If neither event is favored:
$-\log ($ odds $)=\log (0.5 / 0.5)=\log (1)=0$
- If event E1 is favored over event E2:
$-\log ($ odds of E1) $=\log (p / q)=\log (0.8 / 0.2)=\log (4)$
$-\log ($ odds of $E 2)=\log (q / p)=\log (0.8 / 0.2)=-\log (4)$
- Useful in domains where relative probabilities are small

Log(odds) to logistic functions

$$
\begin{aligned}
& z=\log \left(\frac{p}{1-p}\right) \\
& \frac{p}{1-p}=e^{z} \\
& p=\frac{e^{z}}{1+e^{z}}=\frac{1}{1+e^{-z}}
\end{aligned}
$$

Slide credit: J. Jeffry Howbert, University of Washington

Using a logistic regression model

- Model a vector B in d-dim features space
- For a point \mathbf{x} in feature space, project it onto \mathbf{B} to convert it into a real number it into a real number z in the range in the range $-\infty$ to $+\infty$
- Map z to range $[0,1]$ using logistic function

$$
p=\frac{e^{z}}{1+e^{z}}=\frac{1}{1+e^{-z}}
$$

- Prediction from a logistic regression model can be viewed as a probability of class membership

Training a logistic regression model

- Optimize vector B
- Ensures the model gives the best possible reproduction of training set labels
- Usually done by numerical approximation of maximum likelihood

