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Random Variables

Slide credit: Amit Datta, Carnegie Mellon University



Coin tossing experiment

• Experiment

– Toss a coin twice

• Sample space: Possible outcomes of an 
experiment

– S = {HH, HT, TH, TT}

• Event: subset of possible outcomes

– A = {HH}, B = {HT, TH}, C = {TT}

Slide credit: Amit Datta, Carnegie Mellon University



Random Variable (RV)

• A random variable X is a function from the sample space 
to a real number

• X : (represents number of heads) 
– {HH}  2
– {HT, TH}  1
– {TT}  0

• Pr(Experiment yields no heads) = Pr({TT}) = Pr(X=0) 

• Discrete RV: takes on finite number of values
• Continuous RV: takes an uncountable number of values

Slide credit: Amit Datta, Carnegie Mellon University



Discrete RV

• Probability Mass Function (PMF) pX

– Gives the probability that X will take on a 
particular value

• pX(a) = Pr(X=a)

• ∑ipX(ai) = 1

Slide credit: Amit Datta, Carnegie Mellon University



Continuous RV

• Probability Density Function (PDF) fX

– Non-negative function such that

Pr(a<=X<=b) =     fX(x)dx

• The integral from -∞ to +∞ is 1

• Pr(X=a) = 0

Slide credit: Amit Datta, Carnegie Mellon University



Probability Distribution

• Assigns a probability to each event in the 
sample space

Slide credit: Amit Datta, Carnegie Mellon University



Discrete Uniform Distribution
pX(X)

Slide credit: Amit Datta, Carnegie Mellon University



Continuous Uniform Distribution
fX(X)

Slide credit: Amit Datta, Carnegie Mellon University



Laplace Distribution

10

PDF = 

μ: location parameter
b: scale parameter

Similar to PDF for normal distribution

Slide credit: Amit Datta, Carnegie Mellon University



Linear Algebra Review

Slide credit: Miao Tang, University of Delaware



What is a Vector ?

• Directed line segment in N-dimensions
– Has “length” and “direction”

• v = [a  b  c]T

– Geometry becomes linear algebra 
on vectors like v
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Vector Addition

u = (u1, u2)
v = (v1, v2)

u + v = (u1+v1, u2+v2)

Slide credit: Miao Tang, University of Delaware



Scalar Product: av
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Changes only the length (“scaling”), but keep direction fixed.
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Vectors: Dot Product
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Think of the dot product 
as a matrix multiplication

The magnitude is the dot 
product of a vector with itself

The dot product is also related to the 
angle between the two vectors

Slide credit: Miao Tang, University of Delaware



Inner (dot) Product: v.w or wTv

v

w



22112121 .),).(,(. yxyxyyxxwv 

The inner product is a SCALAR
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wvwv  0. 

If vectors v, w are “columns”, then dot product is wTv

Slide credit: Miao Tang, University of Delaware



Matrix

• A matrix is a set of elements, organized into 
rows and columns
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Basic Matrix Operations
Addition, Subtraction, Multiplication: 
creating new matrices (or functions)
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Add elements

Subtract elements

Multiply each row 

by each column
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Matrix Times Matrix

NML 
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Multiplication
• Is AB = BA?  

Slide credit: Miao Tang, University of Delaware



Multiplication
• Is AB = BA?  

• Matrix multiplication AB: 
– Apply transformation B first, then transform using A

• Not commutative
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Matrix operating on vectors
• Matrix is like a function that transforms the vectors on a plane
• Matrix operating on a general point => transforms x- and y-components
• System of linear equations: matrix holds the coefficients

• x’ = ax + by 
• y’ = cx + dy 
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Logistic Regression and AdFisher



AdFisher

Ad EcosystemWeb Browsing Ads

Control

Experimental

Different 
Outcome?
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Determining whether the difference in 
outcomes is statistically significant

• AdFisher splits the measurements collected 
into training and testing subsets.

• Examines the training subset to select a 
classifier that distinguishes between the 
measurements taken from each group.

• Uses logistic regression for classification. 

Slide credit: J. Jeffry Howbert, University of Washington



Logistic Regression

• Technique for classification 
– Know as “regression” because a linear model is fit 

to the feature space 

– Probabilistic method of classification

• Models relationship between set of variables
– Binary variables: Allergic to peanuts 

– Categorical: types of cancer such as brain cancer / 
leukemia / lymphoma / melanoma / etc

– Continuous: weight / height 

Slide credit: J. Jeffry Howbert, University of Washington



Ways to express probability

• Pr(E1) = p

• Pr(E2) = 1 – p = q

• Express Pr(E1) as:

Notation Range

standard p 0 0.5 1

odds p/q 0 1 +∞

Log(odds) log (p/q) -∞ 0 +∞

Slide credit: J. Jeffry Howbert, University of Washington



Log(odds)

• If neither event is favored: 

– log(odds) = log(0.5/0.5) = log(1) = 0

• If event E1 is favored over event E2:

– Log(odds of E1) = log(p/q) = log(0.8/0.2) = log(4)

– Log(odds of E2) = log(q/p) = log(0.8/0.2) = -log(4)

• Useful in domains where relative probabilities 
are small

Slide credit: J. Jeffry Howbert, University of Washington



Log(odds) to logistic functions

Slide credit: J. Jeffry Howbert, University of Washington



Using a logistic regression model

• Model a vector B in d-dim features space
• For a point x in feature space, project it onto B to 

convert it into a real number it into a real number 
z in the range in the range - ∞ to + ∞

• Map z to range [0,1] using logistic function

• Prediction from a logistic regression model can be 
viewed as a probability of class membership

Slide credit: J. Jeffry Howbert, University of Washington



Training a logistic regression model

• Optimize vector B

• Ensures the model gives the best possible 
reproduction of training set labels 

• Usually done by numerical approximation of 
maximum likelihood

Slide credit: J. Jeffry Howbert, University of Washington


