18734: Foundations of Privacy

Database Privacy: k-anonymity and de-anonymization attacks

Anupam Datta CMU Fall 2016

Publicly Released Large Datasets

- Useful for improving recommendation systems, collaborative research
- Contain personal information
- Mechanisms to protect privacy, e.g. anonymization by removing names

movielens

helping you find the right movies

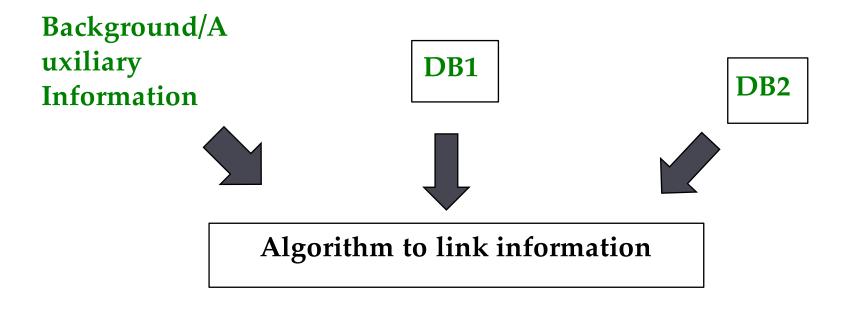
 Yet, private information leaked by attacks on anonymization mechanisms

Article Discussion

AOL search data leak

From Wikipedia, the free encyclopedia

Non-Interactive Linking



De-identified record

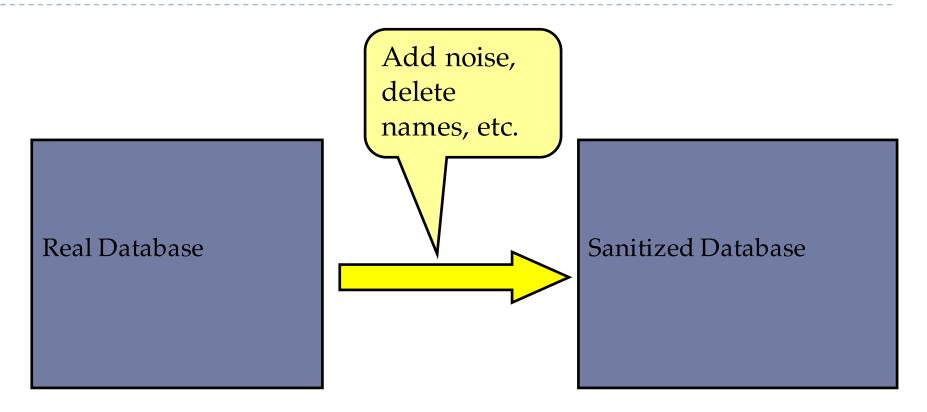
Roadmap

Motivation

Privacy definitions

- Netflix-IMDb attack
- Theoretical analysis
- Empirical verification of assumptions
- Conclusion

Sanitization of Databases



Health records

Census data

Protect privacy

Provide useful information (utility)

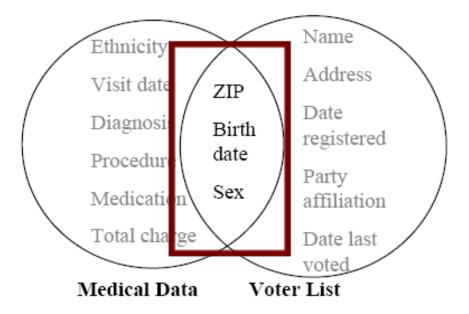
Database Privacy

Releasing sanitized databases

- 1. k-anonymity [Samarati 2001; Sweeney 2002]
- 2. Differential privacy [Dwork et al. 2006] (*future lecture*)

Re-identification by linking

Linking two sets of data on shared attributes may uniquely identify some individuals:



87 % of US population uniquely identifiable by 5-digit ZIP, gender, DOB

K-anonymity

- Quasi-identifier: Set of attributes that can be linked with external data to uniquely identify individuals
- Make every record in the table indistinguishable from at least *k*-1 other records with respect to quasi-identifiers
- Linking on quasi-identifiers yields at least k records for each possible value of the quasi-identifier

K-anonymity and beyond

		Non-Sensitive		Sensitive	I 🗌			Non-Sensitive			Sensitive	
		Zip Code	Age	Nationality	Condition				Zip Code	Age	Nationality	Condition
	1	13053	28	Russian	Heart Disease			1	130**	< 30	*	Heart Disease
	2	13068	29	American	Heart Disease			2	130**	< 30	*	Heart Disease
	3	13068	21	Japanese	Viral Infection			3	130**	< 30	*	Viral Infection
	4	13053	23	American	Viral Infection			4	130**	< 30	*	Viral Infection
	5	14853	50	Indian	Cancer			5	1485*	≥ 40	*	Cancer
	б	14853	55	Russian	Heart Disease			б	1485*	≥ 40	*	Heart Disease
	7	14850	47	American	Viral Infection			7	1485*	≥ 40	*	Viral Infection
_	0	1/1850	40	American	Wirel Infection			0	1/195*	≥ 40	-1-	Wight Infection
	9	13053	31	American	Cancer			9	130**	3*	*	Cancer
	10	13053	37	Indian	Cancer			10	130**	3*	*	Cancer
	11	13068	36	Japanese	Cancer			11	130**	3*	*	Cancer
	12	13068	35	American	Cancer			12	130**	3*	*	Cancer

Figure 1. Inpatient Microdata

9

Figure 2. 4-anonymous Inpatient Microdata

Provides some protection: linking on ZIP, age, nationality yields 4 records

Limitations: lack of diversity in sensitive attributes, background knowledge, subsequent releases on the same data set

l-diversity, m-invariance, t-closeness, ...

Re-identification Attacks in Practice

Examples:

- Netflix-IMDB
- Movielens attack
- Twitter-Flicker
- Recommendation systems Amazon, Hunch,..

Goal of De-anonymization: To find information about a record in the released dataset

Roadmap

Motivation

- Privacy definitions
- Netflix-IMDb attack

- Theoretical analysis
- Empirical verification of assumptions
- Conclusion

11

Anonymization Mechanism

	Gladiator	Titanic	Heidi
Bob	5	2	1
Alice	3	2.5	2
Charlie	1.5	2	2

Each row corresponds to an individual

Each column corresponds to an attribute, e.g. movie

Delete name identifiers and add noise

		Gladiator	Titanic	Heidi
?	r ₁	4	1	0
	r ₂	2	1.5	1
	r ₃	0.5	1	1

De-anonymization Attacks Still Possible

Isolation Attacks

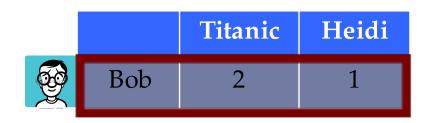
- Recover individual's record from anonymized database
- E.g., find user's record in anonymized Netflix movie database
- Information Amplification Attacks
 - Find more information about individual in anonymized database
 - E.g. find ratings for specific movie for user in Netflix database

Netflix-IMDb Empirical Attack [Narayanan et al 2008]

Anonymized Netflix DB

	Gladiator	Titanic	Heidi
r ₁	4	1	0
r ₂	2	1.5	1
r ₃	0.5	1	1

Publicly available IMDb ratings (noisy)



Used as auxiliary information

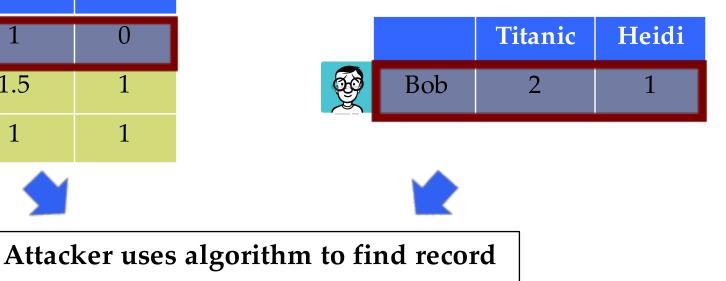
Isolation Attack!

Problem Statement

Anonymized database

	Gladiator	Titanic	Heidi
\mathbf{r}_1	4	1	0
r ₂	2	1.5	1
r ₃	0.5	1	1

Auxiliary information about a record (noisy)



Attacker's goal: Find r₁ or record similar to Bob's record Enhance theoretical understanding of why empirical de-anonymization attacks work

Research Goal

Characterize classes of auxiliary information and properties of database for which re-identification is possible

Roadmap Motivation

Privacy definitions

- Netflix-IMDb attack
- Theoretical analysis

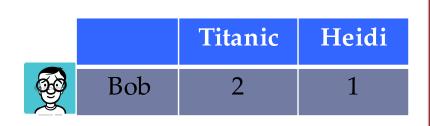
- Empirical verification of assumptions
- Conclusion

Netflix-IMDb Empirical Attack [Narayanan et al 2008]

Anonymized Netflix DB

	Gladiator	Titanic	Heidi
r_1	4	1	0
r_2	2	1.5	1
r ₃	0.5	1	1

Publicly available IMDb ratings (noisy)



Used as auxiliary information

Weighted Scoring Algorithm

What does **auxiliary information** about a record mean?

How do you measure similarity of this record with Bob's record? (Similarity Metric)

Definition: Asymmetric Similarity Metric

	Gladiator v ₁	Titanic v ₂	Heidi v ₃
У	5	0	-
r	0	2	3

Individual Attribute Similarity

$$T(y(i), r(i)) = 1 - \frac{|y(i) - r(i)|}{p(i)}$$
$$T(y(v_1), r(v_1)) = 1 - \frac{|5 - 0|}{5} = 0$$

p(i): range of attribute i

Similarity Metric

$$S(y,r) = \sum_{i \in \text{supp}(y)} \frac{T(y(i),r(i))}{|\operatorname{supp}(y)|}$$

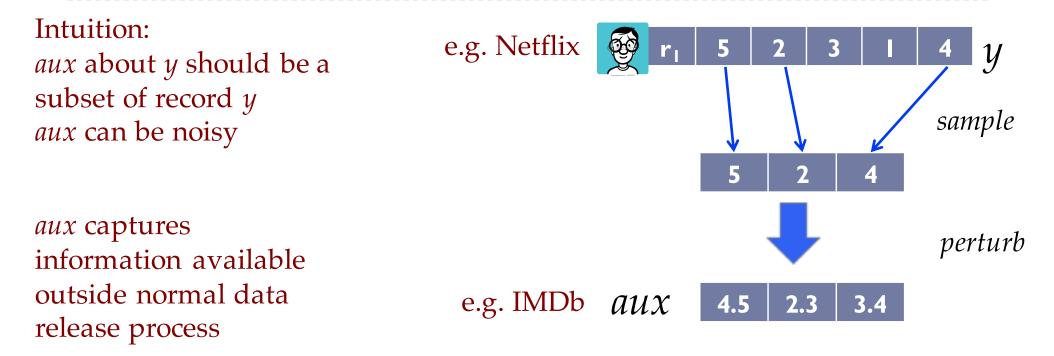
supp(y): non null attributes in y

Intuition: Measures how closely two people's ratings match on one movie Movie (i)T(y(i), r(i))Gladiator0Titanic0.6Heidi0

0.6/2 = 3

Intuition: Measures how closely two people's ratings match S(y,r) overall

Definition: Auxiliary Information



Bound level of perturbation in *aux*

 $\gamma \in [0,1]$ (m, γ)-perturbed auxiliary information

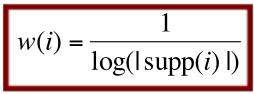
$$\forall i \in \operatorname{supp}(aux) T(y(i), aux(i)) \ge 1 - \gamma$$

| supp(aux)| = m = no. of non null attributes in au

Weighted Scoring [Narayanan et al 2008, Frankowski et al 2006]

Intuition: The fewer the number of people who watched a movie, the rarer it is

Weight of an attribute *i*



 $|\sup p(i)| = no.$ of non null entries in column *i*

Use weight as an indicator of rarity

Score gives a weighted average of how closely two people match on every movie, giving higher weight to rare movies

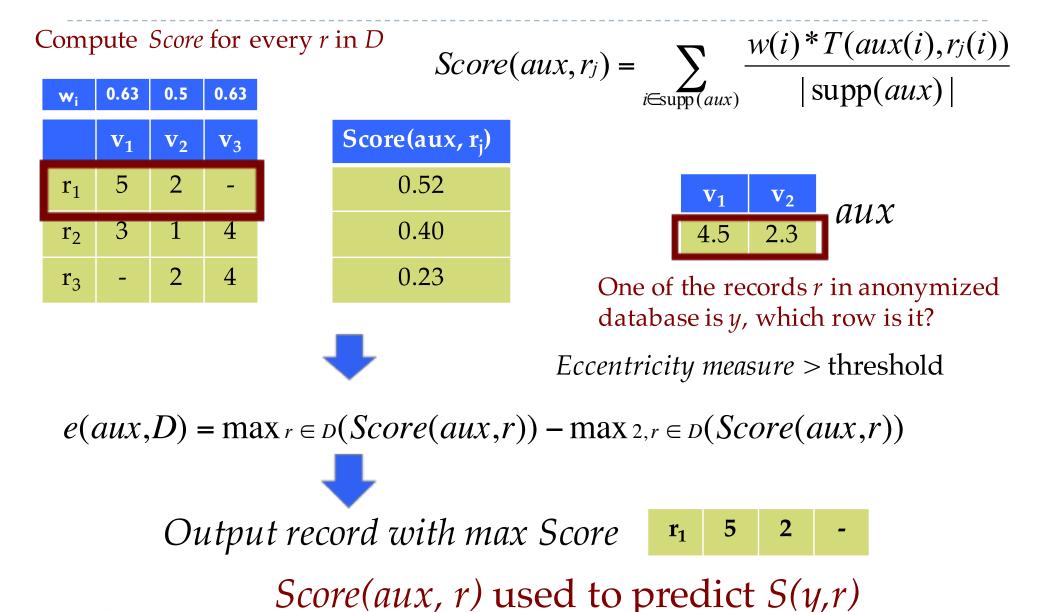
Scoring Methodology

$$Score(aux, r_j) = \sum_{i \in \text{supp}(aux)} \frac{w(i) * T(aux(i), r_j(i))}{|\operatorname{supp}(aux)|}$$

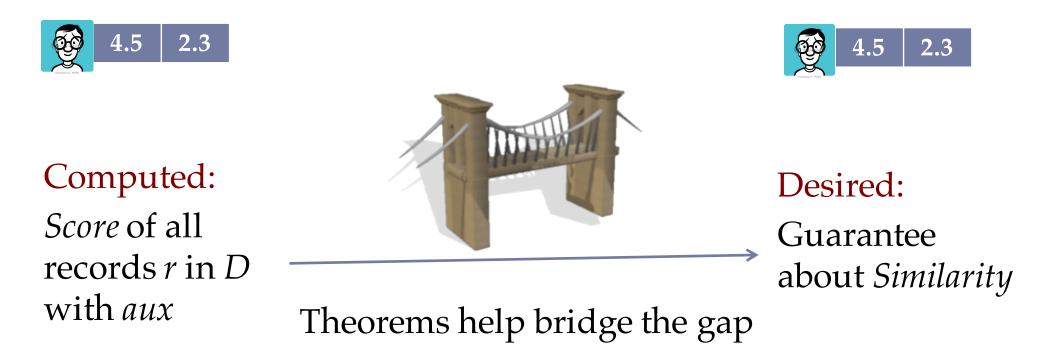
 $|\sup(aux)| = m = no.$ of non null attributes in aux

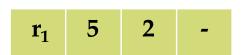
Compute *Score* for every record *r* in anonymized DB to find out which one is closest to target record *y*

Weighted Scoring Algorithm [Narayanan et al 2008]



Where do Theorems Fit?





Theorem 1: When Isolation Attacks work?

Theorem 2: Why Information Amplification Attacks work?

Theorem 1: When Isolation Attacks work?

Intuition: If eccentricity is high, algorithm always finds the record corresponding to auxiliary information! If Eccentricity: Highest score -

aux is (m, γ) -perturbed Eccentricity threshold > γ M

γ: Indicator of perturbation in aux
M : Average of weights in aux
Ŏ : Record output by algorithm
y : Target record

score

Second highest

then

 $Score(aux, \breve{O}) = Score(aux, y)$

If \breve{O} is the only record with the highest score then $\breve{O} = y$

Theorem IV.1 Let y denote the target record from a given database D. Let aux_y denote (m, γ) -perturbed auxiliary information about record y. If the eccentricity measure $e(aux_y, D) >$ γM where $M = \frac{\sum_{i \in supp(aux_y)} w_i}{|supp(aux_y)|}$ is the scaled sum of weights of attributes in aux_y , then 1) $\max_{r \in D}(Score(aux_y, r)) = Score(aux_y, y)$. 2) Additionally, if only one record has maximum score value $= Score(aux_y, y)$, then the record o returned by the algorithm is the same as target record y.

A. Datta, D. Sharma and A. Sinha. Provable De-anonymization of Large Datasets with Sparse Dimensions. In proceedings of *ETAPS First Conference on Principles of Security and Trust (POST 2012)*

Theorem 1: When Isolation Attacks work?

Theorem 2: Why Information Amplification Attacks work?

Intuition: Why Information Amplification Attacks work?

- If two records agree on rare attributes, then with high probability they agree on other attributes too
- Use intuition to find record r similar to aux on many rare attributes (using aux as 'proxy' for y)

Intuition: Why Information Amplification Attacks work?

If a high fraction of attributes in *aux* are rare, then any record *r* that is similar to *aux*, is similar to *y*

Similarity > 0.65

Theorem 2: Why Information Amplification Attacks work?

Define Function

If a high **fraction** of attributes in *aux* are **rare**, then any record *r* $f_D(\eta_1, \eta_2, \eta_3)$ **similar to** *aux*, is **similar to** *y*

- Measure overall similarity between target record *y* and *r* that depends on:
 - η_1 : Fraction of rare attributes in *aux*
 - η_2 : Lower bound on similarity between *r* and *aux*
 - η_3 : Fraction of target records for which guarantee holds

 $S(y,r) \geq f_D(\eta_1,\eta_2,\eta_3)$

Theorem 2: Why Information Amplification Attacks work?

Using Function

$$f_D(\eta_1,\eta_2,\eta_3)$$

 $S(y,r) \geq f_D(\eta_1,\eta_2,\eta_3)$

Theorem gives guarantee about similarity of record output by algorithm with target record

Roadmap Motivation

Privacy definitions

Netflix-IMDb attack

Theoretical analysis

Empirical verification of assumptions

Conclusion

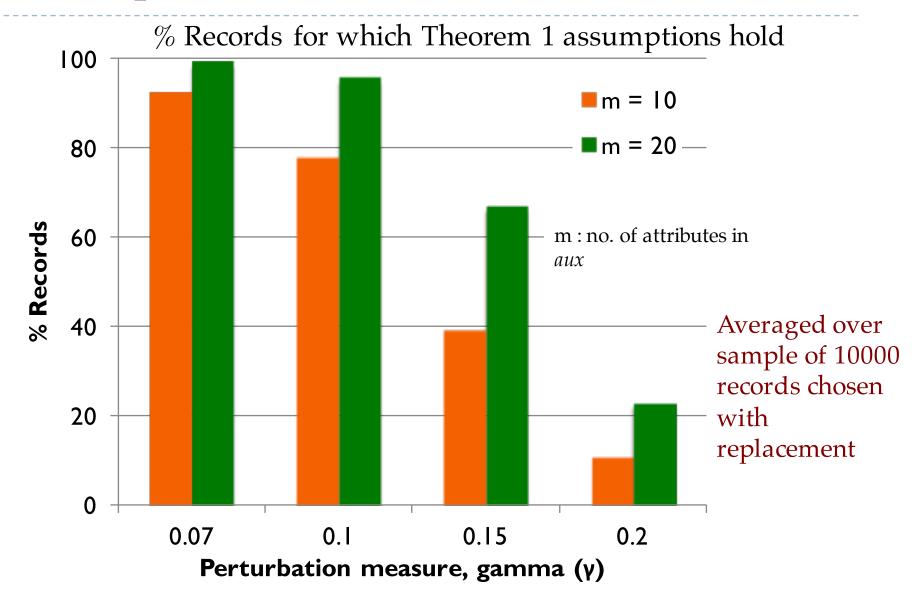
Empirical verification

 Use `anonymized' Netflix database with 480,189 users and 17,770 movies

- Percentage values claimed in our results = percentage of records not filtered out because of
 - insufficient attributes required to form aux OR
 - insufficient rare or non-rare attributes required to form aux

A. Datta, D. Sharma and A. Sinha. Provable De-anonymization of Large Datasets with Sparse Dimensions. In proceedings of *ETAPS First* Conference on Principles of Security and Trust (POST 2012)

Do Assumptions hold over Netflix Database?

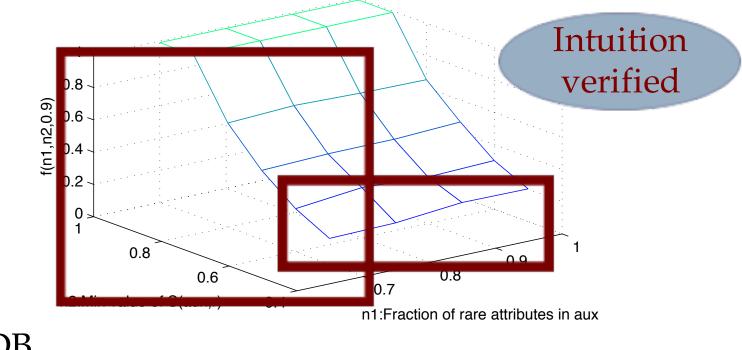


34 A. Datta, D. Sharma and A. Sinha. Provable De-anonymization of Large Datasets with Sparse Dimensions. In proceedings of *ETAPS First Conference on Principles of Security and Trust (POST 2012)*

Does Intuition about f_D hold for Netflix Database?

 $f_D(\eta_1, \eta_2, \eta_3)$ can be evaluated given D

$$S(y,r) \ge f_D(\eta_1,\eta_2,\eta_3)$$



For Netflix DB,

 $f_D(\eta_1, \eta_2, \eta_3)$ is monotonically increasing in η_1 and η_2 and tends to 1 as η_2 increases

Roadmap

Motivation

- Privacy definitions
- Netflix-IMDb attack
- Theoretical analysis
- Empirical verification of assumptions
- Conclusion

Conclusion

Naïve anonymization mechanisms do not work

- We obtain provable bounds about, and verify empirically, why some de-anonymization attacks work in practice
- Even perturbed auxiliary information can be used to launch de-anonymization attacks if:
 - *Database* has many **rare dimensions** and
 - Auxiliary information has information about these rare dimensions

Questions?