
18734 Homework 4

Due: 3 pm Eastern, 12 noon Pacific, Nov 13

Problem 1: l-diversity and t-closeness (25 marks)

We discussed an attack on k-anonymity in class, which led to the development of l-diversity. How-
ever, l-diversity also suffers from an attack, which you will explore in the first part of this question.
t-closeness is a further refinement of l-diversity.

1. Read the intersection attack and the definition of l-diversity in this paper http://www.cse.
psu.edu/~kasivisw/kdd.pdf. First, explain what l-diversity means. It may help to choose
a small example table and choose values of l and s from the definition of l-diversity to check
the requirements of being l-diverse. Next, explain why the intersection attack works against
l-diversity by showing an example. (The example in the paper is not using an l-diverse
database, but, it is possible to construct one).

2. Next, look at the paper on t-closeness. (http://www.cs.purdue.edu/homes/ninghui/papers/
t_closeness_icde07.pdf) It talks about shortcomings of l-diversity. Explain the skewness
and similarity attacks that the paper describes, by showing examples different from the one
in the paper.

Problem 2: Laplace mechanism (25 marks)

In this question, we will take a closer look at a mechanism for achieving ε-differential privacy for
query functions countP (which returns the number of entries in a database with property P) and
max − salary − at − Berkeley (which returns the maximum salary of faculty and staff at UC
Berkeley). This mechanism, denoted κf for query function f , computes f(X) and adds noise with
a Laplace distribution with variance σ2 (note variance is the whole square of standard deviation)
that depends on the sensitivity of the function and the differential privacy parameter ε. State
precisely any additional assumptions you make to answer the questions below.

1. Calculate the sensitivity ∆countP and ∆max−salary−at−Berkeley for the query functions.
Calculate the variances of the distributions from which noise is added in order to achieve ε-
differential privacy with ε = 0.00001 and ε = 0.001 for both query functions. Now let’s try
to understand these results qualitatively. For the “same level of privacy”, which function
requires “more noise” to be added? For a fixed function, how does the “noise distribution
change” in order to achieve “higher levels of privacy”? Your answers should make precise all
the terms in quotes.

1

http://www.cse.psu.edu/~kasivisw/kdd.pdf
http://www.cse.psu.edu/~kasivisw/kdd.pdf
http://www.cs.purdue.edu/homes/ninghui/papers/t_closeness_icde07.pdf
http://www.cs.purdue.edu/homes/ninghui/papers/t_closeness_icde07.pdf

2. Let D1 = {AP ;B;CP } and D2 = {AP ;B;CP ;DP } be two neighboring databases where an
element of the form XP has the property P (e.g., AP has property P , but B does not).
Calculate the values of countP (D1) and countP (D2). Recall that κf (D) = f(D) + Y where
Y ∼ Laplace(∆f/ε), i.e., Y is a random variable that follows a Laplace distribution with
mean 0 and variance 2(∆f/ε)2. Calculate Pr(κcountP (D1) ∈ (2.3, 2.7]) and Pr(κcountP (D2) ∈
(2.3, 2.7]) and verify that their ratio is less than eε. Notice that you are verifying that the
differential privacy definition is satisfied for S = (2.3, 2.7]. You can use ε = 0.001 in your
calculations.
Hint: Look up the Wikipedia page for Laplace distribution.

Problem 3 (50 marks)

Additional files required for this homework are available at https://www.ece.cmu.edu/~ece734/
homeworks/hw4-files.zip.

In this question, we are going to work through how deanonymization works on databases. We
will work with a subset of the original Netflix database. You are given a set of 15 movies in the
folder movies. The identifiers for these movies are [03124, 06315, 07242, 16944, 17113, 10935, 11977,
03276, 14199, 08191, 06004, 01292, 15267, 03768, 02137]. The movies folder contains csv files for
each movie. Each line of the csv file has three entries: a user id, the date of rating, and the rating
provided.

Learning Objectives: The problems in the part are based on the paper ‘Provable De-
anonymization of Large Datasets with Sparse Dimensions’ 1. We will refer to the paper through all
problems in this part. In Problem 1, we will perform an attack along the lines of the original Netflix-
IMDB deanonymization attack. In particular, we will learn how to identify a user by utilizing noisy
and incomplete auxiliary information. In Problem 2, we will analyze a theorem that enables such
attacks (called Isolation Attacks) under certain assumptions about the dataset and the auxiliary
information. In Problem 3, we will connect the findings from the above two problems. Specifically,
we will empirically calculate the fraction of users for whom the assumptions in the above theorem
hold. In order to do so, we will use the attack technique used in Problem 1.

Starter Code: You may use the provided starter code (in Python) for this homework.
The script reads each file from the movies folder and populates the database db. db is a Python
dictionary. Dictionaries consist of pairs (called items) of keys and their corresponding values. To
brush up your knowledge of the Python dictionary data-structure, please view this tutorial2. Each
element of db is the tuple 〈user-id, movie-dict〉. movie-dict is also a dictionary representing the
user’s ratings, with each item being the tuple 〈movie-id, rating〉).

It is not compulsory that you use the starter code provided. You can use any programming
language of your choice (among C/C++/Java/Python).

3A: An attack (15 marks)

Starter code for this problem is provided in link.py.
You are given the auxiliary information for one user. The auxiliary information contains noisy

ratings given by the user for 12 of the 15 movies. You can think of these being perturbed ratings

1http://www.andrew.cmu.edu/user/divyasha/dss-post12.pdf
2http://www.tutorialspoint.com/python/python_dictionary.htm

2

https://www.ece.cmu.edu/~ece734/homeworks/hw4-files.zip
https://www.ece.cmu.edu/~ece734/homeworks/hw4-files.zip
http://www.andrew.cmu.edu/user/divyasha/dss-post12.pdf
http://www.tutorialspoint.com/python/python_dictionary.htm

given by a user on IMDB. This auxiliary information is provided in Table 1 and in the variable aux

in link.py. You, as the attacker, want to identify the user id for whom the auxiliary information
is provided.

movie rating movie rating movie rating movie rating

14199 4.5 17113 4.2 06315 4.0 01292 3.3
11977 4.2 15267 4.2 08191 3.8 16944 4.2
07242 3.9 06004 3.9 03768 3.5 03124 3.5

Table 1: Auxiliary information for the target user.

(a) Using Definition 4 of the paper, complete the function compute weights() and compute the
weights of each movie. Tabulate the weights obtained for each movie. This should be a table
with 15 movie-ids and their corresponding weights.

(b) How many users are present in the database? Using Definition 7 in the paper, complete the
function score() and compute the scores of the auxiliary information with respect to every
user’s ratings in the database.

What is the highest score? What is the second highest score?

(c) What is the user-id of the user with the highest score? Write out the ratings of this user from
the database, and verify if they are similar to the ratings in the auxiliary information.

3B: Verify correctness of linking using Theorem 2 (20 marks)

Starter code for this problem is provided in theorem.py.
In the previous problem, we were able to link the auxiliary information with a record in the

anonymized database. But, we are not sure if the link we found is correct. Theorem 2 on Page 8
of the paper gives guarantees about the correctness of the linking, given two assumptions:

• The auxiliary information is (m, γ)-perturbed.

• The eccentricity measure (Definition 8 in the paper) is greater than γM whereM =

∑
i∈supp(auxy) wi

|supp(auxy)|
is the scaled sum of weights of attributes in auxy

(a) Given that the auxiliary information in Table 1 is generated from using m = 12 and γ = 0.1,
check if the eccentricity assumption holds. What does this say about your attack in 3A? Were you
able to correctly link the auxiliary information with the deanonymized database?

We will now find for what proportion of the records, does the eccentricity assumption hold for
each of γ ∈ {0.1, 0.2} and m ∈ {8, 10}. For each record in the database, create auxiliary information
using the function create aux(). This function is provided in the starter code. It takes as input
a record (an element of db), and parameters m and gamma and returns a random subset of m
movies from the set of movies the user has seen, and adds noise bounded by gamma to each rating.
To create (m, γ)-perturbed auxiliary information for a user, the user must have seen at least m
movies. So, you must filter out all users who have rated less than m movies. The create aux()

3

function checks for requirement and throws an error if this condition is not met. create aux()

adds noise to the ratings in the auxiliary information using the function add noise(). If you are
using the starter code, then do not change the random.seed() - your results will be verified based
on the random numbers generated using that seed. If you are not using the starter code, you can
add γ-bounded noise in the same manner as in the starter script, however we expect the random
number generator to be different. In that case, your implementation will be manually checked for
correctness.

(b) For each of m ∈ {8, 10}, how many user-records remain after filtering?

To compute the proportion of user records for which the assumptions hold, we will carry out
the following. For each user-record in the database:

1. Create auxiliary information aux using m and γ.

2. Check if the eccentricity assumption holds for aux and the database.

Since there is some randomness in creating each aux, we will repeat the above process several times,
and compute the average proportion over several runs.

(c) Compute the proportion (averaged over 5 runs) of user-records for which the eccentricity as-
sumption holds for each of γ ∈ {0.1, 0.2} and m ∈ {8, 10}. Plot the proportions in a bar-diagram
along the lines of Figure 1 on page 15 of the paper. The figure should have 4 bars. (You do not
have to worry about t.) REMEMBER: the proportion is over the number of records remaining
after filtering.

3C: Proving a modified Theorem 2 (15 marks)

Read Theorem 2 on Page 8 from the paper. Consider a different definition for perturbation:

Definition 1 ((m, ζ)-perturbed auxiliary information) Auxiliary information about record y ∈
D, denoted by auxy, contains perturbed values of m non-null attributes sampled from attributes in
record y. auxy is defined to be (m, ζ)-perturbed if ∀i ∈ supp(auxy).T (y(i), auxy(i)) ≥ ζ where
0 ≤ ζ ≤ 1.

And a different definition of weight.

Definition 2 (α-weight of an attribute) The scaled weight of an attribute i is denoted by w∗i
and is defined as w∗i = α

log2 |supp(i)|
.

Now, note a variant of Theorem 2, using modified definitions of perturbation and weight:

Theorem Let y denote the target record from given database D. Let auxy denote (m, ζ)-perturbed
auxiliary information about record y. If the eccentricity measure e(auxy, D) > βM where M =∑

i∈supp(auxy) w∗i
|supp(auxy)| is the scaled sum of α-weights of attributes in auxy, then

1. maxr∈D(Scorew(auxy, r)) = Scorew(auxy, y).

2. Additionally, if only one record has maximum score value = Scorew(auxy, y), then the record
returned by the algorithm o is the same as target record y.

4

The proof of the original Theorem 2 is done by contradiction. Prove the modified Theorem 2
along the same lines. In doing so, find the value of β in the lower bound for eccentricity so that
the theorem holds.

Submission

You have to submit three files:

1. Merge all the written parts into a single pdf file 〈your andrew id〉 HW4.pdf.

2. Rename the program file (.c/.cpp/.java/.py) you used for 3A as
〈your andrew id〉 link.〈extension〉.

3. Rename the program file (.c/.cpp/.java/.py) you used for 3B as
〈your andrew id〉 theorem.〈extension〉.

Put these three files into 〈your andrew id〉 HW4 folder, zip the folder into 〈your andrew id〉 HW4.zip
and submit the zip file on Canvas.

5

