Review of mathematical foundations for Machine Learning

September 23, 2016

Administrative

- HW2 out, due Oct 3 at 9am Pacific / 12 noon Eastern
- Project Proposals next Monday, Sep 26
- Add your group members names and topic to the spreadsheet (link on piazza)
- 5 min per group
 - 3 min for presentation
 - 2 min for Q & A
- Presentation slides: preliminary submission on September 26, 12 noon Pacific /
 3pm Eastern
 - Does not have to be the final version
 - You may use your laptop to present the final version in class, this is for backup on mine in case of technical issues to avoid delays
- Written project proposal (1-2 pages) due September 26, 8:59pm Pacific / 11:59 pm
 Eastern
- If experimenting on real websites, please obey their terms of use
- More details on Piazza

Random Variables

Slide credit: Amit Datta, Carnegie Mellon University

Coin tossing experiment

- Experiment
 - Toss a coin twice
- Sample space: Possible outcomes of an experiment
 - $-S = \{HH, HT, TH, TT\}$
- Event: subset of possible outcomes
 - $-A = \{HH\}, B = \{HT, TH\}, C = \{TT\}$

Random Variable (RV)

- A random variable X is a function from the sample space to a real number
- X: (represents number of heads)
 - $\{HH\} \rightarrow 2$
 - $-\{HT, TH\} \rightarrow 1$
 - $-\{TT\} \rightarrow 0$
- Pr(Experiment yields no heads) = Pr({TT}) = Pr(X=0)
- Discrete RV: takes on finite number of values
- Continuous RV: takes an uncountable number of values

Discrete RV

- Probability Mass Function (PMF) p_X
 - Gives the probability that X will take on a particular value

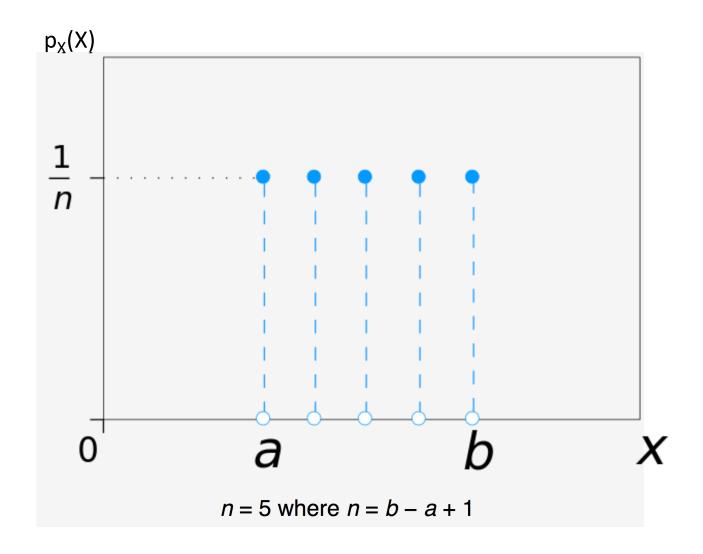
•
$$p_X(a) = Pr(X=a)$$

•
$$\sum_{i} p_X(a_i) = 1$$

Continuous RV

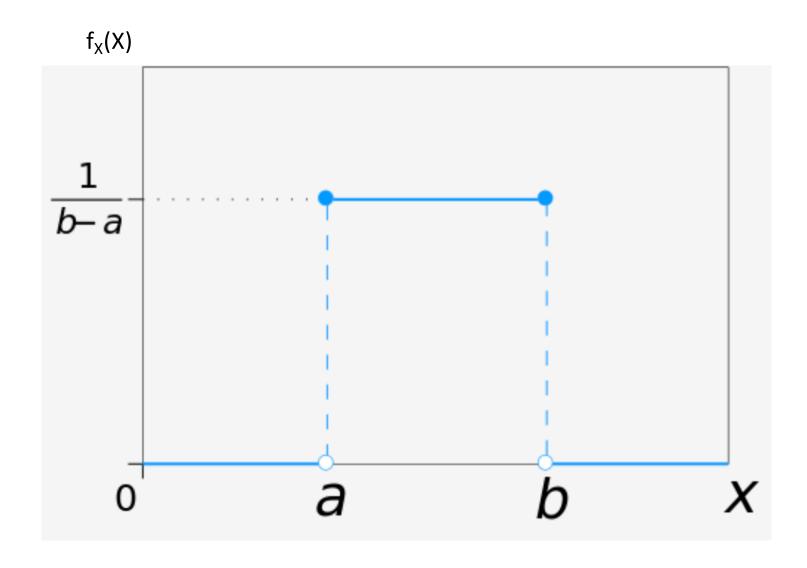
- Probability Density Function (PDF) f_X
 - Non-negative function such that

$$Pr(a <= X <= b) = \int_a^b f_X(x) dx$$


The integral from -∞ to +∞ is 1

• Pr(X=a) = 0

Probability Distribution


Assigns a probability to each event in the sample space

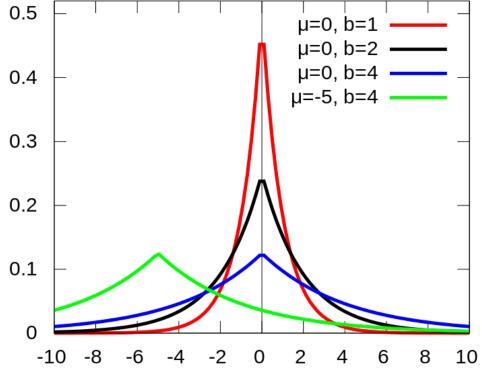
Discrete Uniform Distribution

Slide credit: Amit Datta, Carnegie Mellon University

Continuous Uniform Distribution

Slide credit: Amit Datta, Carnegie Mellon University

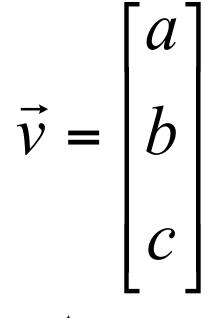
Laplace Distribution

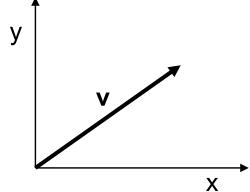

$$PDF = \frac{1}{2b}exp(-\frac{|y-\mu|}{b})$$

μ: location parameter

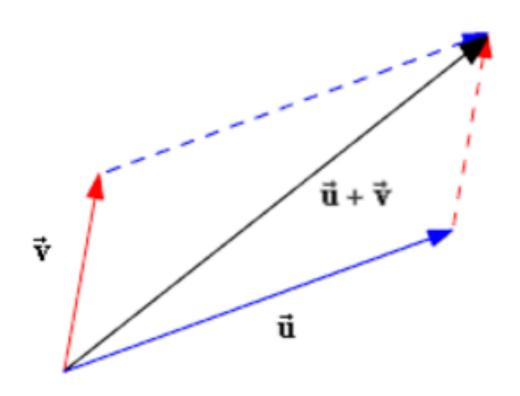
b: scale parameter

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\sigma^2\pi}} \; e^{-rac{(x-\mu)^2}{2\sigma^2}}$$



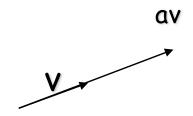

Linear Algebra Review

Slide credit: Miao Tang, University of Delaware


What is a Vector?

- Directed line segment in N-dimensions
 - Has "length" and "direction"
- $v = [a \ b \ c]^T$
 - Geometry becomes linear algebra on vectors like v

Vector Addition


$$u = (u1, u2)$$

 $v = (v1, v2)$

$$u + v = (u1+v1, u2+v2)$$

Slide credit: Miao Tang, University of Delaware

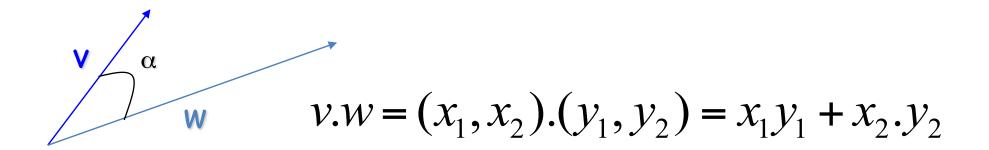
Scalar Product: av

$$a\mathbf{v} = a(x_1, x_2) = (ax_1, ax_2)$$

Changes only the length ("scaling"), but keep direction fixed.

Vectors: Dot Product

$$A \cdot B = A^T B = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = ad + be + cf$$
 Think of the dot product as a matrix multiplication


$$||A||^2 = A^T A = aa + bb + cc$$

The magnitude is the dot product of a vector with itself

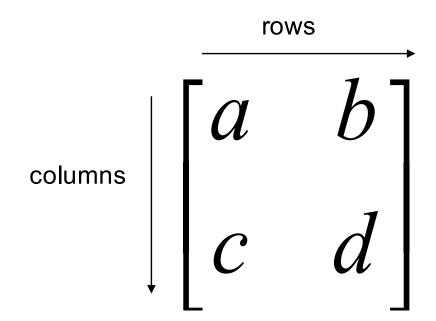
$$A \cdot B = ||A|| ||B|| \cos(\theta)$$

The dot product is also related to the angle between the two vectors

Inner (dot) Product: v.w or w^Tv

The inner product is a **SCALAR**

$$v.w = (x_1, x_2).(y_1, y_2) = ||v|| \cdot ||w|| \cos \alpha$$


$$v.w = 0 \Leftrightarrow v \perp w$$

If vectors \mathbf{v} , \mathbf{w} are "columns", then dot product is $\mathbf{w}^T \mathbf{v}$

Slide credit: Miao Tang, University of Delaware

Matrix

 A matrix is a set of elements, organized into rows and columns

Slide credit: Miao Tang, University of Delaware

Basic Matrix Operations

Addition, Subtraction, Multiplication: creating new matrices (or functions)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

Add elements

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a - e & b - f \\ c - g & d - h \end{bmatrix}$$

Subtract elements

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

Multiply each row by each column

Matrix Times Matrix

$$L = M \cdot N$$

$$\begin{bmatrix} l_{11} & l_{12} & l_{13} \\ l_{21} & l_{22} & l_{23} \\ l_{31} & l_{32} & l_{33} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \cdot \begin{bmatrix} n_{11} & n_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ n_{31} & n_{32} & n_{33} \end{bmatrix}$$

$$l_{12} = m_{11}n_{12} + m_{12}n_{22} + m_{13}n_{32}$$

Multiplication

• Is AB = BA?

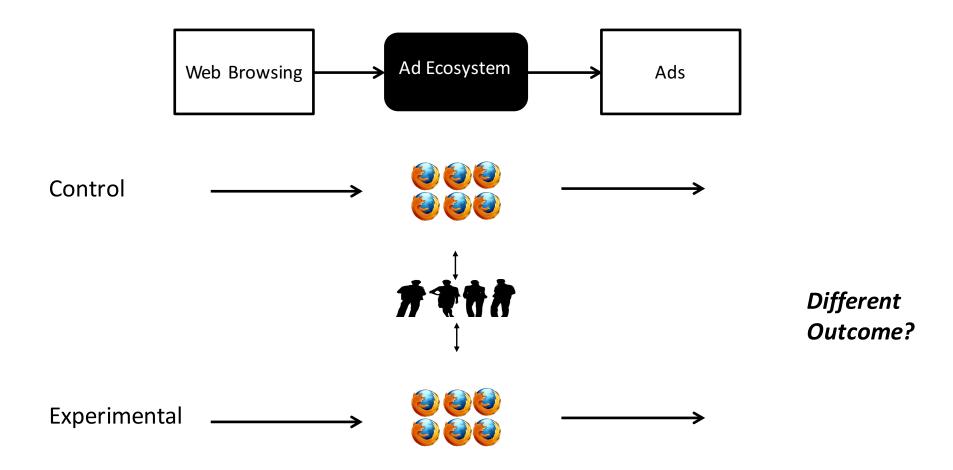
Slide credit: Miao Tang, University of Delaware

Multiplication

Is AB = BA?

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & \dots \\ \dots & \dots \end{bmatrix} \quad \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ea + fc & \dots \\ \dots & \dots \end{bmatrix}$$

- Matrix multiplication AB:
 - Apply transformation B first, then transform using A
- Not commutative


Matrix operating on vectors

- Matrix is like a <u>function</u> that <u>transforms the vectors on a plane</u>
- Matrix operating on a general point => transforms x- and y-components
- System of linear equations: matrix holds the coefficients

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Logistic Regression and AdFisher

AdFisher

Slide Credit: Amit Datta

Determining whether the difference in outcomes is statistically significant

- AdFisher splits the measurements collected into training and testing subsets.
- Examines the training subset to select a classifier that distinguishes between the measurements taken from each group.
- Uses logistic regression for classification.

Logistic Regression

- Technique for classification
 - Know as "regression" because a linear model is fit to the feature space
 - Probabilistic method of classification
- Models relationship between set of variables
 - Binary variables: Allergic to peanuts
 - Categorical: types of cancer such as brain cancer / leukemia / lymphoma / melanoma / etc
 - Continuous: weight / height

Ways to express probability

•
$$Pr(E1) = p$$

•
$$Pr(E2) = 1 - p = q$$

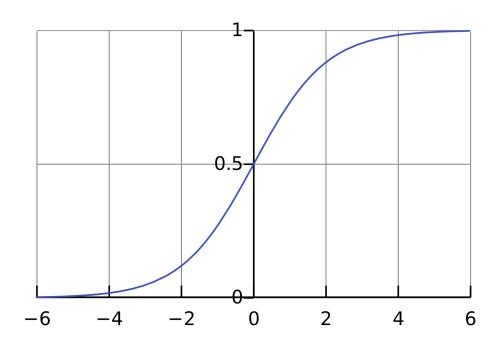
Express Pr(E1) as:

	Notation	Range		
standard	р	0	0.5	1
odds	p/q	0	1	+∞
Log(odds)	log (p/q)	-∞	0	+∞

Slide credit: J. Jeffry Howbert, University of Washington

Log(odds)

- If neither event is favored:
 - $-\log(\text{odds}) = \log(0.5/0.5) = \log(1) = 0$
- If event E1 is favored over event E2:
 - $\text{Log}(\text{odds of E1}) = \log(p/q) = \log(0.8/0.2) = \log(4)$
 - $\text{Log}(\text{odds of E2}) = \log(q/p) = \log(0.8/0.2) = -\log(4)$


Useful in domains where relative probabilities are small

Log(odds) to logistic functions

$$z = \log\left(\frac{p}{1-p}\right)$$

$$\frac{p}{1-p} = e^z$$

$$p = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

Slide credit: J. Jeffry Howbert, University of Washington

Using a logistic regression model

- Model a vector B in d-dim features space
- For a point x in feature space, project it onto B to convert it into a real number it into a real number z in the range in the range - ∞ to + ∞
- Map z to range [0,1] using logistic function

$$p = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

 Prediction from a logistic regression model can be viewed as a probability of class membership

Training a logistic regression model

- Optimize vector B
- Ensures the model gives the best possible reproduction of training set labels
- Usually done by numerical approximation of maximum likelihood