18-734/08-673: Foundations of Privacy Recitation on Logic

Lay Kuan Loh September 2, 2016

Administrative

 Thanks to everyone who posted about Privacy Policies on Piazza!

Projects

- See Piazza for a list of possible projects
- Form groups of 2 or 3
- You can propose your own project but must discuss it with the instructors
- Use Piazza "Search for Teammates" function to find partners if necessary

Learning goals

- Translating declarative English sentences into logical formulas
 - "My password is secure"
- Understanding satisfiability and validity in propositional and first-order logic
 - Satisfiable: x > 3
 - Valid: x = x
- Using quantifiers:
 - Predicate: x > 3
 - Proposition: $\forall x(x > 3)$
 - Proposition: $\exists x(x > 3)$

These topics are explored more in Homework 1

Introduction to Propositional Logic

Oth order

Propositions

- Statements that are either true/false
- Which of these are propositions?
 - 1. "Google is collecting information about you online"
 - 2. Given that 5% of men and 80% of women use makeup, can we tell the boss that 90% of online users should be served ads about makeup?
 - 3. "Please don't write down your password."
 - 4. IsEncrypted(x) \rightarrow SecurelyStored(x)

Logical Operators

Meaning	Logical Symbol
Not	٦
And	Λ
Or	V
Implies	\rightarrow
If and only if	\leftrightarrow

Translating sentences into logical notation

Propositional Statement	Propositional Variable
Has a Gmail account	Gm
Has a Facebook account	Fb
Has a MySpace account	Ms
Has a Yahoo account	Yh

Compound sentence	Propositional Formula
John does not have a Gmail account	$\neg Gm$
John has at least one account with Yahoo or Gmail	$Yh \vee Gm$
If John has a Facebook account, then he also has a Gmail account	$Fb \rightarrow Gm$
If John does not have Gmail account, then he has a Yahoo account; and if John do not have a Yahoo account, then he have a MySpace account.	$(\neg Gm \to Yh)$ $\land (\neg Yh \to Ms)$

Well-Formed Formula (WFF)

 A string that is syntactically legitimate according to the inductive definition

- Base Case:
 - Single variables (such as K,H) are WFFs
- Inductive Case:
 - If A is a WFF, then $\neg A$ is a WFF
 - If A, B are WFFs, then $A \land B$, $A \lor B$, $A \rightarrow B$, $A \leftrightarrow B$ are WFF

Semantics and the truth

Is this statement true?

"If John has a MySpace account, then he also has a Facebook account and a Gmail account"

$$Ms \rightarrow (Fb \land Gm)$$

Propositional Statement	Propositional Variable
Has a Gmail account	Gm
Has a Facebook account	Fb
Has a MySpace account	Ms
Has a Yahoo account	Yh

Truth assignments

- Truth assignment V: assigns T or F to each propositional variable
- Gives a truth value $V[\varphi]$ to any formula φ by applying these rules:

A	В	$\neg A$	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$
F	F	Т	F	F	Т	Т
F	Т	Т	F	Т	Т	F
Т	F	F	F	Т	F	F
Т	Т	F	Т	Т	Т	Т

Example truth assignment

$$\varphi = Ms \rightarrow (Fb \land Gm)$$

Truth assignment V: Ms=T, Fb=T, Gm=F

$$V[\varphi] = T \to (T \land F) = T \to F = F$$

Satisfiability

- V satisfies φ : V[φ] = T
 - Example: Given V[A=F, B=T] and $\varphi = A \rightarrow \neg$ B, then $V[\varphi] = F \rightarrow \neg T = F \rightarrow F = T$
- φ is satisfiable: $\exists V$ s.t. $V[\varphi] = T$
 - Example:
 - Given V[A=F, B=T] and $\varphi = A \to \neg$ B, then $V[\varphi] = F \to \neg T = F \to F = T$
 - Given V[A=T, B=T] and and $\varphi = A \to \neg$ B, then $V[\varphi] = T \to \neg T = T \to F = F$
- φ is unsatisfiable: $\forall V, V[\varphi] = F$
 - Example: $\varphi = A \land \neg A$
- φ is a tautology: $\forall V, V[S] = T$
 - Example: $\varphi = A \vee \neg A$

All φ that are WFF

Unsatisfiable formulas (never true)

Satisfiable formulas (true at least some of the time)

Tautology (always true)

Truth Table

$$\varphi = (x \to (\neg y \to z)))$$

X	У	Z	-	$\neg y$	$\neg y \rightarrow z$	$\mathbf{x} \to (\neg \mathbf{y} \to \mathbf{z})$
Т	Т	Т		F	Т	Т
Т	Т	F		F	Т	Т
Т	F	Т		Т	Т	T
Т	F	F		Т	F	F
F	Т	Т		F	Т	Т
F	Т	F		F	Т	Т
F	F	Т		Т	Т	Т
F	F	F		Т	F	Т

Proof that $((x \to y) \land x) \to y$ is a tautology

- Method 1
 - Using truth table
 - Semantic proof
- Method 2
 - Using inference rules
 - Syntactic proof

Method 1: Truth Table

\boldsymbol{x}	y	$x \rightarrow y$	$(x \to y) \land x$	$((x \to y) \land x) \to y$
Т	Т	Т	Т	Т
Т	Т	F	F	Т
Т	F	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	Т
F	Т	Т	F	Т
F	F	Т	F	Т
F	F	Т	F	Т

Completeness of propositional logic

- [Soundness] All theorems that can be proven are tautologies
- [Completeness] All tautologies are theorems

First Order Logic (FOL)

Uses quantifiers such as "for all" and "exists"

Logical Operators

Meaning	Logical Symbol		
Not	٦		
And	^		
Or	V		
Implies	\rightarrow		
If and only if	\leftrightarrow		

For All	\forall
Exists	3
Binary operators	=,<,>,≤,≥

Constants
Predicates
Functions

"Alex's password is different from everyone's password"

Variable

Stands for an object (person)

$$\forall x, \neg (Password(a) = Password(x))$$

Function name:

Maps object(s) \rightarrow object

Constant name:

Stands for a particular object, "Alex"

"Alex's password is different from everyone else's password"

Propositional logic

$$\forall x, \neg(a = x) \rightarrow \neg(Password(a) = Password(x))$$

Function name:
Maps object(s) → object

"If there is someone else with the same password as Alex's password, Alex is not a security expert"

$$\exists x \ (\neg(x = a) \land (Password(x) = Password(a))$$
$$\rightarrow \neg SecurityExpert(Alex)$$

Predicate name:
Maps object(s) → T/F

Vocabulary

A collection of constant names, function names, and predicate names

"Alex's father is smarter than everyone else's father"

$$\forall x, \neg(x = a) \rightarrow IsSmarter(Father(a), Father(x))$$

Constant name: a

Function name: Father

Predicate name: IsSmarter

Vocabulary

$$\exists x \ (Next(x) = a)$$

$$\forall x \ \forall y \ (IsPrior(x, Combine(a, y)) \rightarrow (Next(x) = y))$$

$$(\forall x \ IsPrior(x, Next(x))) \rightarrow (Next(a) = Next(a))$$

Vocabulary

Constant name: a

Function name: Next(.), Combine(.,.)

Predicate name: IsPrior(.,.)

Truth and Interpretations

$\exists x(IsPatientOf(x,H) \rightarrow HasCancer(x))$

 Truth of statement depends on the interpretation of the vocabulary

Interpretation: Establishes what the vocabulary means

Interpretation

- Specifies a nonempty set ("universe") of objects
- Constant-name → specific object
- Predicate-name → actual predicate
- Function-name → actual function

$\exists x(IsPatientOf(x,H) \rightarrow HasCancer(x))$

Interpretation #1:

- Universe = "All animals in Pittsburgh"
- H = "University of Pittsburgh Medical Center"
- x = "Rudolf"

False

$\exists x (IsPatientOf(x, H) \rightarrow HasCancer(x))$

Interpretation #2:

- Universe = "All human beings in Pittsburgh"
- H = "University of Pittsburgh Medical Center"
- x = "A cancer patient at the University of Pittsburgh Medical Center"

True

Satisfiability

- Interpretation I satisfies sentence $\varphi: I[\varphi] = T$
- φ is satisfiable: $\exists I$ s.t. $I[\varphi] = T$
- φ is unsatisfiable: $\forall I, I[\varphi] = F$
- φ is a tautology: $\forall I, I[\varphi] = T$

All well-formed sentences	in a	given	vocabul	ary
---------------------------	------	-------	---------	-----

Unsatisfiable

$$\exists x \neg (x = x)$$

Satisfiable

 $\exists x (IsPatientOf(x, H) \rightarrow HasCancer(x))$

Tautology

$$\forall x \ (x \to x)$$

$$\exists x \, \forall y \, (y = sha1(x))$$

$$\rightarrow \forall z \, \forall w (sha1(z) = sha1(w))$$

Problem: Show this is satisfiable.

Interpretation

- Universe = All non-empty ASCII strings
- sha1(.) = sha1 algorithm used for encryption

Solution

- $\exists x \ \forall y \ (y = sha1(x))$ means "there exists an ASCII string x such that every ASCII string = sha1(x)"
- That is FALSE
- So the whole sentence becomes TRUE
- Hence the sentence is SATISFIABLE

$$\exists x \ \forall y \ (y = sha1(x))$$

$$\rightarrow \forall z \ \forall w (sha1(z) = sha1(w))$$

Problem: Is this a tautology?

There is no "truth table" method

Not possible to enumerate all interpretations

$$\exists x \, \forall y \, (y = sha1(x))$$

$$\rightarrow \forall z \, \forall w \big(sha1(z) = sha1(w) \big)$$

Problem: Is this a tautology?

Solution: Yes

Proof:

- Let I be any interpretation
- Case $I[\exists x \forall y (y = sha1(x))] = F$
 - Sentence becomes TRUE
- Case $I[\exists x \forall y (y = sha1(x))] = T$
 - Every ASCII string equals sha1(x)
 - In that case,
 - $\forall z \ \forall w (sha1(z) = sha1(w)) = T$
- No matter what, I[the sentence] = T

Mechanical method to show that $\exists x \ \forall y \ (y = sha1(x))$ $\rightarrow \forall z \ \forall w (sha1(z) = sha1(w))$ is a tautology

Inference Rules

Temporal Logic

Propositional/First-Order logic vs Temporal logic

Propositional/First-Order logic

- One static state where formulae is evaluated
- Example:
 - S = "It is snowing"
 - Is k true? No, but only today.

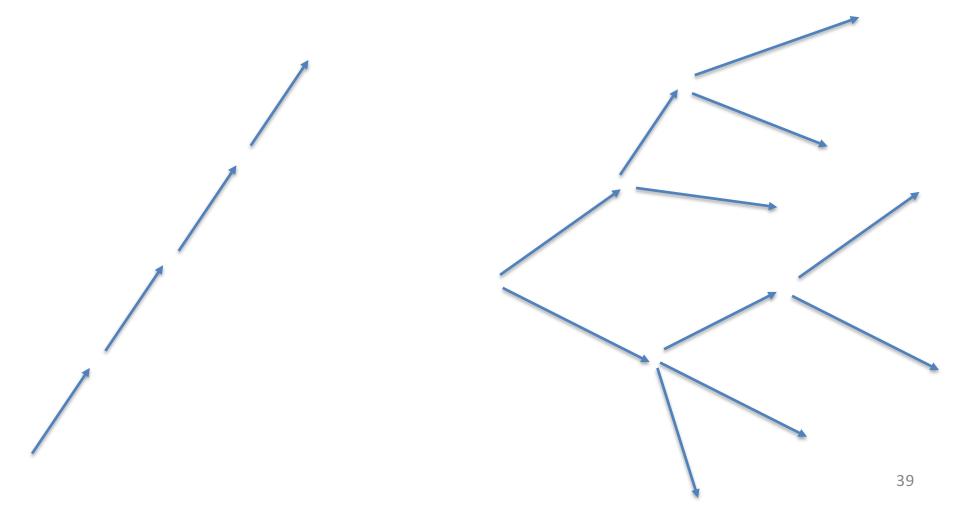
Temporal logic

- Formalizes statements such as
 - It will snow someday in the future
 - It will snow everyday in future

What does time look like?

Linear Temporal Logic

Branching Temporal Logic



Linear Temporal Logic Operators - Unary

- $\bigcirc \varphi$:
 - Next: φ has to hold at the next state
 - Example:
 - Google will collect information about me tomorrow
 - O CollectInfo
- $\Box \varphi$:
 - Globally: φ has to hold on the entire subsequent path
 - Example:
 - Google is always collecting information about you
 - CollectInfo
- $\Diamond \varphi$
 - Finally: φ eventually has to hold somewhere on the subsequent path
 - Example:
 - Google will eventually collect information about me
 - ♦ CollectInfo

Linear Temporal Logic Operators - Binary

- φUφ
 - φ has to hold at least until φ , which holds at the current or future position
 - Example:
 - Google will collect information about you until you die
 - CollectInfo U Die
- $\varphi \mathcal{R} \phi$
 - φ has to be true until and including the point where φ first becomes true. If φ never becomes true, φ must remain true forever.
 - Example
 - Google will collect information about you until you install a Privacy tool
 - CollectInfo R InstallPrivacyTool

In the future, I will install a privacy tool, and then Google will never collect information about me again

 $\Diamond(InstallPrivacyTool \land \Box \neg CollectInfo)$

Inference rules

(Optional)

What is a logical proof?

- A sequence of statements
- Each statement is an axiom / hypothesis, or follows from previous statements using an inference rule

Example Inference Rule

Assumptions

$$\frac{A \to C \qquad B \to C \qquad A \lor B}{\text{Conclusion}} \lor \text{-ELIM}$$

Α	"Need apples"
В	"Need beans"
С	"Went to convenience store"

Assumptions

- If I need asparagus, I will go to the convenience store
- If I need broccoli, I will go to the convenience store
- I need either asparagus or broccoli.

Conclusion

I went to the convenience store

Checking that the rule makes sense

Assumptions

$$\underbrace{A \to C \qquad B \to C}_{A \to C}$$

F

Conclusion

F

 $\frac{A \vee B}{} \vee \text{-Elim}$

V-Eli

				D \ C	A 1/ B	
Α	В	С	$A \rightarrow C$	$B \rightarrow C$	AVB	$(A \rightarrow C) \land (B \rightarrow C) \land (A \lor B) \rightarrow C$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	Т
Т	F	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т	Т
F	T	F	Т	F	Т	Т
F	F	Т	Т	Т	F	Т

F

Assumptions imply conclusion for

all possible truth assignments to

Т

the propositional variables

Propositional Logic: Building up a proof system systematically

$$\frac{A \to B \qquad A \to \neg B}{\neg A} \neg \text{-Intro} \qquad \frac{B \qquad \neg B}{A} \neg \text{-Elim}$$

$$\frac{B - \neg B}{A} \neg \text{-ELIM}$$

$$\begin{array}{c} A \\ \vdots \\ \frac{B}{A \to B} \to \text{-Intro} \\ \hline \frac{A \to B}{C} \to \text{-Elim} \end{array}$$

$$\frac{A \to B}{C} \to -\text{ELIM}$$

$$\frac{A}{A \wedge B} \wedge \text{-Intro}$$

$$\frac{A \wedge B}{A} \wedge \text{-Elim}$$

$$\frac{A}{A \vee B} \vee \text{-Intro}$$

$$\frac{A \to C \qquad B \to C \qquad A \lor B}{C} \lor \text{-Elim}$$

Propositional logic: Proof via inference rules

$$\frac{\frac{(x \to y) \land x}{x \to y} \land \text{-Elim}}{\frac{y}{((x \to y) \land x} \land \text{-Elim}} \to \text{-Elim}$$

$$\frac{y}{((x \to y) \land x) \to y} \to \text{-Intro}$$

First-order Logic: Building up a proof system systematically

$$\frac{P(a) \text{ arbitrary a}}{\forall x. P(x) \text{ true}} \forall \text{-Intro}$$

$$\frac{\forall x. P(x) \text{ true}}{P(a) \text{ arbitrary a}} \forall \text{-ELIM}$$

$$\frac{P(a) \text{ for some element a}}{\exists x. P(x) \text{ true}} \exists \text{-Intro}$$

$$\frac{\exists x. P(x) \text{ true}}{P(a) \text{ for some element a}} \exists \text{-ELIM}$$

Propositional logic: Proof via inference rules

Question:

 Given that Google collects information on all its users, and that John is a user of Google, does Google collect information about John?

Formalization

- $\forall x(UserOf(x,Google) \rightarrow CollectsInfo(Google,x))$
- UserOf(John, Google)
- ??CollectsInfo(Google, John)

 $\frac{\forall x, \mathsf{UserOf}(x,\mathsf{Google}) \to \mathsf{CollectsInfo}(\mathsf{Google},x)}{\mathsf{UserOf}(\mathsf{John},\mathsf{Google}) \to \mathsf{CollectsInfo}(\mathsf{Google},\mathsf{John})} \; \forall \text{-}\mathrm{Elim} \\ \mathsf{CollectsInfo}(\mathsf{Google},\mathsf{John}) \; \to \text{-}\mathrm{Elim}$

Acknowledgements

 Slides based off past versions of 18-734 recitations, created by Arunesh Sinha and Amit Datta