18-734/08-673: Foundations of Privacy
Recitation on Logic

Lay Kuan Loh
September 2, 2016

Administrative

* Thanks to everyone who posted about Privacy
Policies on Piazza!

* Projects
— See Piazza for a list of possible projects
— Form groups of 2 or 3

— You can propose your own project but must discuss it
with the instructors

— Use Piazza “Search for Teammates” function to find
partners if necessary

Learning goals

* Translating declarative English sentences into logical
formulas

— “My password is secure”

* Understanding satisfiability and validity in propositional
and first-order logic

— Satisfiable: x > 3
— Valid: x = x
e Using quantifiers:
— Predicate: x > 3
— Proposition: Vx(x > 3)
— Proposition: 3x(x > 3)

These topics are explored more in Homework 1

Introduction to
Propositional Logic

Propositions

e Statements that are either true/false

 Which of these are propositions?

1. “Google is collecting information about you
online”

2. Giventhat 5% of men and 80% of women use

makeup, can we tell the boss that 90% of online
users should be served ads about makeup?

3. “Please don’t write down your password.”
4. IsEncrypted(x) = SecurelyStored(x)

Logical Operators

Logical Symbol

Not =
And A

Or \
Implies -

If and only if ©

Translating sentences into
logical notation

Propositional Statement | Propositional Variable

Has a Gmail account Gm
Has a Facebook account Fb

Has a MySpace account Ms

Has a Yahoo account Yh
Compound sentence Propositional Formula
John does not have a Gmail account -Gm
John has at least one account with Yahoo or Gmail YhV Gm
If John has a Facebook account, then he also has a Gmail Fb - Gm
account
If John does not have Gmail account, then he has a Yahoo (=Gm - Yh)
account; and if John do not have a Yahoo account, then A (=Yh — Ms)

he have a MySpace account.

Well-Formed Formula (WFF)

* A string that is syntactically legitimate according
to the inductive definition

* Base Case:
— Single variables (such as K,H) are WFFs

 Inductive Case:

— If Ais a WFF, then =4 is a WFF

— If A, B are WFFs, then AAB, AVB,A —» B, A & B are
WFF

Semantics and the truth

Is this statement true?

“If John has a MySpace account, then he also
has a Facebook account and a Gmail account”

Ms — (FbAGm)

Propositional Statement | Propositional Variable

Has a Gmail account Gm
Has a Facebook account Fb
Has a MySpace account Ms

Has a Yahoo account Yh

Truth assignments

* Truth assignment V: assigns T or F to each
propositional variable

* Gives a truth value V|[@] to any formula @ by
applying these rules:

4B | - | AnB |AVE A~ AcB.
F T T

F

— 4 T o S
— mm + ™M
ull

F T T F
F T F F
T T T T

Example truth assignment

@ = Ms - (Fb A Gm)

Truth assignment V: Ms=T, Fb=T, Gm=F

Vlpl=T > (TAF)=T>F=F

Satisfiability

* Vsatisfiesp: V|| =T
— Example: Given V[A=F, B=T]and ¢ = A — =B, then
Vlipl|=F > -T=F->F=T
* @ is satisfiable: AV st. V]|p| =T

— Example:

* Given V[A=F, B=T]and ¢ = A - —B,then V]p]=F -
T=F->F=T

* Given V[A=T, B=T] andand ¢ = A - =B, then V[p]| =T -
~T=T->F=F

* @ is unsatisfiable: VV,V]|p| = F
— Example: ¢ = AN -A

* @isatautology: VI,VI[S]| =T
— Example: o = AV =4

All ¢ that are WFF

Unsatisfiable formulas
(nevertrue)

Satisfiable formulas
(true at least some of the time)

Tautology
(always true)

Truth Table

(x - (=y = 2)))
x|y 2y yoz] X0 (yon)

(p:

Proof that ((x — y)Ax) — y is a tautology

* Method 1
— Using truth table
— Semantic proof

e Method 2

— Using inference rules
— Syntactic proof

Method 1: Truth Table

=

x|y iy | oA | (G oy
T T

mm m m m -4 -H4 - -
M1 M 4 4 M M 4 — B
- -4 -4 - T — ™™

M T Tm - M < ™M

Completeness of propositional logic

* [Soundness] All theorems that can be proven
are tautologies

 [Completeness] All tautologies are theorems

First Order Logic (FOL)

Logical Operators

Not —
And A
Or Vv
Implies -
If and only if o
For All |
Exists =
Binary operators =<,>,5,2
Constants
Predicates

Functions

“Alex’s password is different from
everyone’s password”

Variable
Quantifier Stands for an object (person)

| \

Vx, = (Password(a) = Password(x))

yah

Function name:
Maps object(s) = object

Constant name:
Stands for a particular object, “Alex”

“Alex’s password is different from
everyone else’s password”

Propositional logic

|

Vx,—(a = x) - =(Password(a) = Password(x))

Function name:
Maps object(s) = object

“If there is someone else with the same
password as Alex’s password, Alex is not a
security expert”

Ax (=(x = a) A (Password (x) = Password (a))
— —SecurityExpert(Alex)

Predicate name:
Maps object(s) 2 T/F

Vocabulary

A collection of constant names, function names,
and predicate names

“Alex’s father is smarter than everyone else’s father”
Vx,—(x = a) - IsSmarter(Father(a), Father(x))

Constant name: a
Function name: Father
Predicate name: IsSmarter

Vocabulary

dx (Next(x) = a)
Vx Vy (IsPrior(x, Combine(a,y)) - (Next(x) = y))
(Vx IsPrior(x, Next(x))) » (Next(a) = Next(a))

Vocabulary

Constant name: a

Function name: Next(.), Combine(.,.)
Predicate name: IsPrior(.,.)

Truth and Interpretations

dx(IsPatientOf (x,H) - HasCancer(x))

* Truth of statement depends on the
interpretation of the vocabulary

* Interpretation: Establishes what the
vocabulary means

Interpretation

Specifies a nonempty set (“universe”) of
objects

Constant-name — specific object
Predicate-name — actual predicate
Function-name ~ actual function

dx(IsPatientOf (x,H) - HasCancer(x))

Interpretation #1:

* Universe = “All animals in Pittsburgh”

 H = “University of Pittsburgh Medical Center”
* x = “Rudolt”

False

dx(IsPatientOf (x,H) - HasCancer(x))

Interpretation #2:
* Universe = “All human beings in Pittsburgh”
 H=“University of Pittsburgh Medical Center”

* X = “A cancer patient at the University of
Pittsburgh Medical Center”

True

Satisfiability

Interpretation | satisfies sentence @: I|@]| =T
@ is satisfiable: A s.t. I|lo]| =T

@ is unsatisfiable: VI, I|@]| = F

@ is a tautology: VI,I[@]| =T

All well-formed sentences in a given vocabulary

Unsatisfiable
Ax = (x = x)

Satisfiable
Ax(IsPatientOf (x, H) - HasCancer(x))

Tautology
Vx (x = x)

op

N

JIx Vy (y = shal(x))
- VzVw(shal(z) = shal(w))

Problem: Show this is satisfiable.

Interpretation
* Universe = All non-empty ASCII strings
e shal(.) =shal algorithm used for encryption

Solution

 IxVy (y = shal(x)) means “there exists an ASCII string x
such that every ASCI| string = shal(x)”

e Thatis FALSE
 So the whole sentence becomes TRUE
e Hence the sentence is SATISFIABLE

JIx Vy (y = shal(x))
- VzVw(shal(z) = shal(w))

Problem: Is this a tautology?

There is no “truth table” method

Not possible to enumerate all interpretations

Jx Vy (y = shal(x))
—> Vz VW(Shal(z) = Shal(w))

Problem: Is this a tautology?
Solution: Yes

Proof:
 Let/ be anyinterpretation
* Case I[Elx‘v’y(y = Shal(x))] =F

— Sentence becomes TRUE
* Case I[Elx‘v’y(y = Shal(x))] =T

— Every ASCII string equals shal(x)

— |In that case,

* Vz Vw(shal (z) = shal (W)) =T

* No matter what, I[the sentence| =T

Mechanical method to show that
dx Vy (y = Shal(x))
— Vz VW(Shal(z) = Shal(w))
is a tautology

Temporal Logic

Propositional/First-Order logic vs
Temporal logic

Propositional/First-Orderlogic Temporal logic

e (One staticstate where * Formalizes statements such
formulae is evaluated as
 Example: — It will snhow someday in the
future

— S ="t is snowing”

— It will snow everyday in future
— Is k true? No, but only today. yaay

What does time look like?

/
/ /
/ NN

Linear Temporal Logic Operators -
Unary

« Og:
— Next: @ has to hold at the next state
— Example:
* Google will collect information about me tomorrow
O Collectinfo
. Q:

— Globally: ¢ has to hold on the entire subsequent path
— Example:

* Google is always collecting information about you
« [] Collectinfo

° <>(p
— Finally: ¢ eventually has to hold somewhere on the subsequent path

— Example:
* Google will eventually collect information about me

 OCollectinfo

Linear Temporal Logic Operators -
Binary

* @Ug

— @ has to hold at least until ¢, which holds at the current or future
position

— Example:
* Google will collect information about you until you die
* Collectinfo U Die
* PR¢

— @ has to be true until and including the point where ¢ first becomes
true. If ¢ never becomes true, @ must remain true forever.

— Example

* Google will collect information about you until you install a Privacy
tool

* Collectinfo R InstallPrivacyTool

In the future, | will install a privacy tool, and
then Google will never collect information about
me again

O(InstallPrivacyTool A | |=Collectinfo)

Inference rules

What is a logical proof?

* A sequence of statements

* Each statement is an axiom / hypothesis, or

follows from previous statements using an
inference rule

Example Inference Rule

Assumptions
A—C B—C AV B

Conclusion O

V-ELIM

A “Need apples”
B “Need beans”

C “Went to convenience store”

Assumptions

* If I need asparagus, | will go to the convenience store
* If I need broccoli, | will go to the convenience store

* | need either asparagus or broccoli.

Conclusion
* | went to the convenience store

Checking that the rule makes sense

Assumptions Assumptions imply conclusion for
all possible truth assignments to
A — C B — C A vV B the propositional variables
V-ELIM
Conclusion C
A | B | c||A>C|B>C | AVB |
T T T T T T T
T T F F F T T
T F T T T T T
T F F F T T T
F T T T T T T
F T F T F T T
F F T T T F T
F F F T T F T

46

Propositional Logic:
Building up a proof system systematically

A— B A— B B -B
—-INTRO —-ELIM
-A A
A
B A— B A
—-INTRO —-ELIM
A— B C
A B ANB
A-INTRO A-ELIM
ANB
A A—C B —C AV B
V-INTRO V-ELIM

AV B C

47

Propositional logic:
Proof via inference rules

xr — N\ X xr — N\ X
(y) A-ELIM (y) A-ELIM

T — Y X
y- ELIM

Y

»-INTRO
(z—=y)Azx)—>y

48

First-order Logic:
Building up a proof system systematically

P(a) arbitrary a Va.P(x) true
V-INTRO . V-ELIM
Vx.P(x) true P(a) arbitrary a
P(a) for some element a dzx.P(x) true
3-INTRO J-ELIM

Jdz.P(x) true P(a) for some element a

49

Propositional logic:
Proof via inference rules

Question:

* Given that Google collectsinformation on all its users, and
that John is a user of Google, does Google collect information
aboutJohn?

Formalization

 Vx(UserOf(x,Google) — Collectsinfo(Google, x))
 UserOf(John,Google)

o ??Collectsinfo(Google,John)

Va, UserOf (z, Google) — CollectsInfo(Google, x)
V-ELIM

UserOf (John, Google) — CollectsInfo(Google, John) UserOf (John, Google) -
—-ELIM

CollectsInfo(Google, John)

51

Acknowledgements

e Slides based off past versions of 18-734
recitations, created by Arunesh Sinha and
Amit Datta

