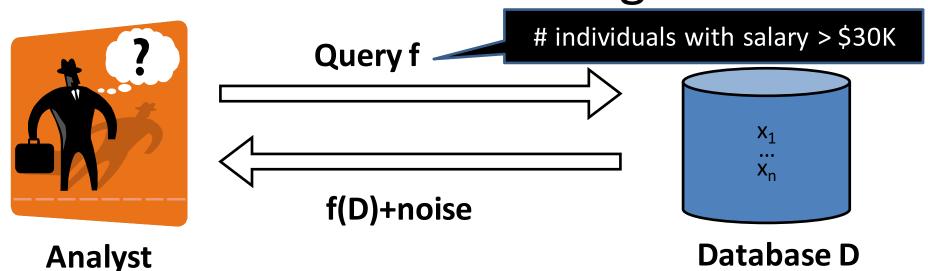

Privacy-preserving Release of Statistics: Differential Privacy

Nicolas Christin
(slides by Anupam Datta)
CMU

Fall 2016

Privacy-Preserving Statistics: Non-Interactive Setting


Goals:

- Accurate statistics (low noise)
- Preserve individual privacy (what does that mean?)

Database Dmaintained by trusted curator

- Census data
- Health data
- Network data
- •

Privacy-Preserving Statistics: Interactive Setting

Goals:

- Accurate statistics (low noise)
- Preserve individual privacy (what does that mean?)

Database Dmaintained by trusted curator

- Census data
- Health data
- Network data
- •

Some possible defenses

- Anonymize data
 - Re-identification, information amplification
- Queries over large data sets
 - Differencing attack
- Query auditing
 - Refusal leaks, computational tractability
- Summary statistics
 - Frequency lists

Classical Intuition for Privacy

- "If the release of statistics S makes it possible to determine the value [of private information] more accurately than is possible without access to S, a disclosure has taken place." [Dalenius 1977]
 - Privacy means that anything that can be learned about a respondent from the statistical database can be learned without access to the database

Similar to semantic security of encryption

Impossibility Result [Dwork, Naor 2006]

 Result: For reasonable "breach," if sanitized database contains information about database, then some adversary breaks this definition

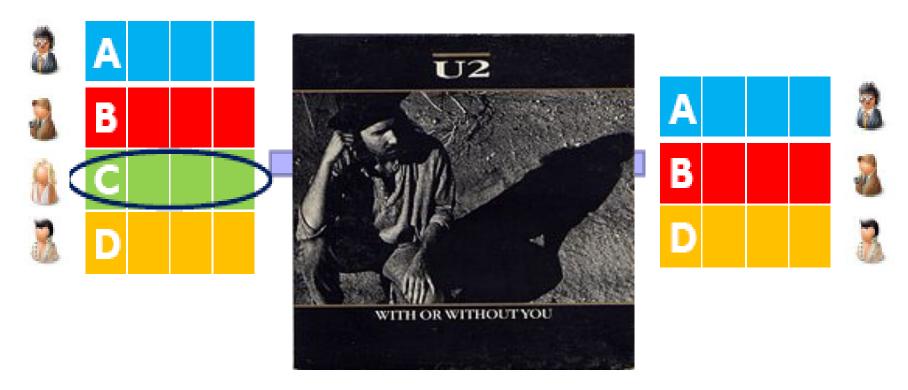
Example

- Terry Gross is two inches shorter than the average Lithuanian woman
- DB allows computing average height of a Lithuanian woman
- This DB breaks Terry Gross's privacy according to this definition... even if her record is <u>not</u> in the database!

Very Informal Proof Sketch

- Suppose DB is uniformly random
- "Breach" is predicting a predicate g(DB)
- Adversary's background knowledge:

```
r, H(r; San(DB)) 


g(DB)

where H is a suitable hash function, r=H(DB)
```

- By itself, does not leak anything about DB
- Together with San(DB), reveals g(DB)

Differential Privacy: Idea

[Dwork, McSherry, Nissim, Smith 2006]

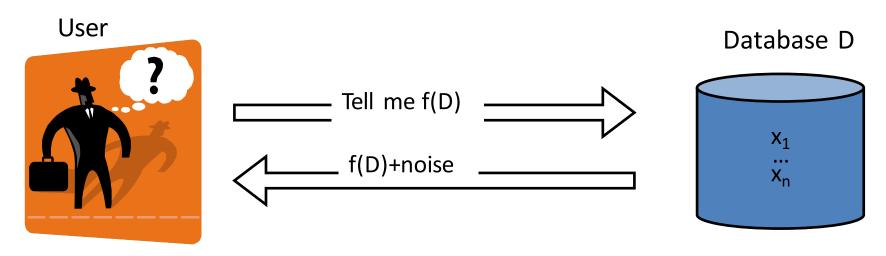
Released statistic is about the same if any individual's record is removed from the database

An Information Flow Idea

Changing input databases in a specific way changes output statistic by a small amount

Not Absolute Confidentiality

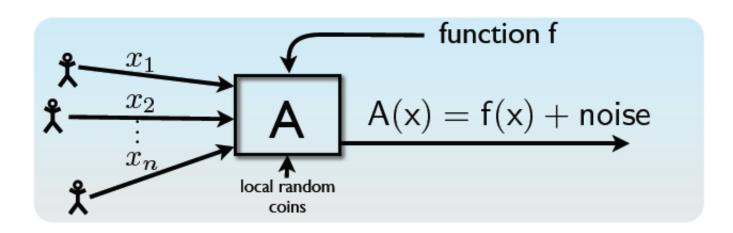
Does not guarantee that Terry Gross's height won't be learned by the adversary


Differential Privacy: Definition

Randomized sanitization function κ has ε -differential privacy if for all data sets D_1 and D_2 differing by at most one element and all subsets S of the range of κ ,

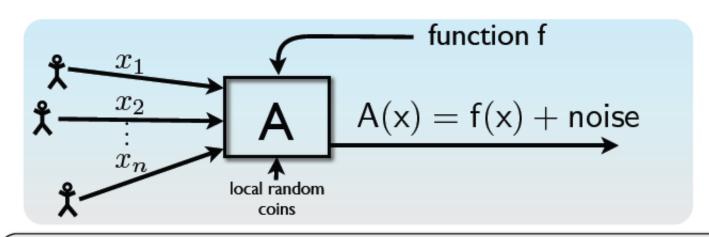
$$\Pr[\kappa(D_1) \subseteq S] \le e^{\varepsilon} \Pr[\kappa(D_2) \subseteq S]$$

Answer to query # individuals with salary > \$30K is in range [100, 110] with approximately the same probability in D_1 and D_2

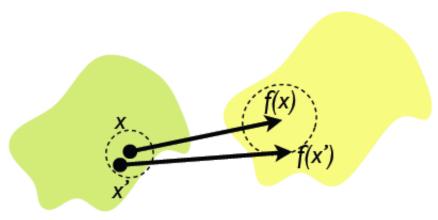

Achieving Differential Privacy: Interactive Setting

How much and what type of noise should be added?

Slide: Adam Smith


Example: Noise Addition

- Say we want to release a summary $f(x) \in \mathbb{R}^p$ > e.g., proportion of diabetics: $x_i \in \{0,1\}, \ f(x) = \frac{1}{n} \sum x_i$
- Simple approach: add noise to f(x)
 - How much noise is needed?
- Intuition: f(x) can be released accurately when f is insensitive to individual entries x_1, x_2, \ldots, x_n


Slide: Adam Smith

Global Sensitivity

• Global Sensitivity: $GS_f = \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|_1$

 \triangleright Example: $\mathsf{GS}_{\mathrm{proportion}} = \frac{1}{\mathsf{n}}$

Exercise

- Function f: # individuals with salary > \$30K
- Global Sensitivity of f = ?

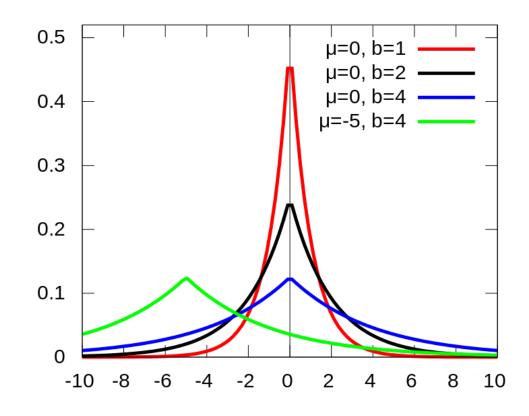
• Answer: 1

Background on Probability Theory (see Oct 11, 2013 recitation)

Continuous Probability Distributions

Probability density function (PDF), f_X

$$\Pr[a \le X \le b] = \int_a^b f_X(x) \, dx.$$

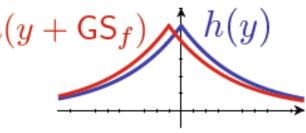

- Example distributions
 - Normal, exponential, Gaussian, Laplace

Laplace Distribution

$$\mathsf{PDF} = \frac{1}{2\,b} \exp\left(-\frac{|x-\mu|}{b}\right)$$

Mean = μ

Variance = $2b^2$

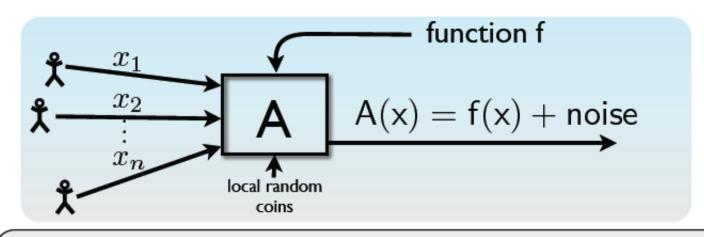

Source: Wikipedia

Laplace Distribution

 \triangleright Laplace distribution Lap (λ) has density

$$h(y) \propto e^{-|y|/\lambda}$$

Changing one point translates curve


Change of notation from previous slide:

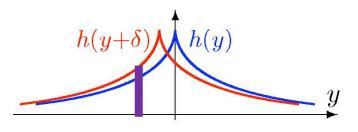
$$x \rightarrow y$$
 $\mu \rightarrow 0$ $b \rightarrow \lambda$

Achieving Differential Privacy

Slide: Adam Smith

Laplace Mechanism

• Global Sensitivity: $GS_f = \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|_1$


 \triangleright Example: $GS_{\text{proportion}} = \frac{1}{n}$

Theorem: If $A(x) = f(x) + Lap\left(\frac{GS_f}{\epsilon}\right)$, then A is ϵ -differentially private.

Laplace Mechanism: Proof Idea

Theorem: If
$$A(x) = f(x) + Lap\left(\frac{GS_f}{\epsilon}\right)$$
, then A is ϵ -differentially private.

Laplace distribution $\mathsf{Lap}(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$

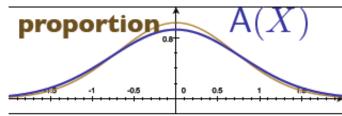
$$\frac{\Pr[A(x) = t]}{\Pr[A(x') = t]}$$

Sliding property of
$$\mathsf{Lap}\Big(\frac{\mathsf{GS}_f}{\varepsilon}\Big)$$
: $\frac{h(y)}{h(y+\delta)} \leq e^{\varepsilon \cdot \frac{\|\delta\|}{\mathsf{GS}_f}}$ for all y, δ

Proof idea:

$$A(x)$$
: blue curve

$$A(x')$$
: red curve


$$\delta = f(x) - f(x') \le \mathsf{GS}_f$$

Slide: Adam Smith

Example: Noise Addition

Example: proportion of diabetics

- $ightharpoonup GS_{\text{proportion}} = \frac{1}{n}$
- ➤ Release $A(x) = proportion \pm \frac{1}{\epsilon n}$
- Is this a lot?
 - If x is a random sample from a large underlying population, then sampling noise $\approx \frac{1}{\sqrt{n}}$
 - > A(x) "as good as" real proportion

Using Global Sensitivity

- Many natural functions have low global sensitivity
 - Histogram, covariance matrix, strongly convex optimization problems

Composition Theorem

• If A_1 is ε_1 -differentially private and A_2 is ε_2 -differentially private and they use independent random coins then $< A_{1,} A_2 >$ is $(\varepsilon_1 + \varepsilon_2)$ -differentially private

 Repeated querying degrades privacy; degradation is quantifiable

Applications

- Netflix data set [McSherry, Mironov 2009; MSR]
 - Accuracy of differentially private recommendations (wrt one movie rating) comparable to baseline set by Netflix
- Network trace data sets [McSherry, Mahajan 2010; MSR]

Packet-level analyses		High accuracy
Packet size and port dist.	(§5.1.1)	strong privacy
Worm fingerprinting [27]	(§5.1.2)	weak privacy
Flow-level analyses		
Common flow properties [30]	$(\S 5.2.1)$	strong privacy
Stepping stone detection [33]	(§5.2.2)	medium privacy
Graph-level analyses		
Anomaly detection [13]	(§5.3.1)	strong privacy
Passive topology mapping [9]	$(\S 5.3.2)$	weak privacy

Challenge: High Sensitivity

 Approach: Add noise proportional to sensitivity to preserve ε-differential privacy

- Improvements:
 - Smooth sensitivity [Nissim, Raskhodnikova, Smith 2007; BGU-PSU]
 - Restricted sensitivity [Blocki, Blum, Datta, Sheffet 2013;
 CMU]

THE SENSITIVITY

IS TOO DA

Challenge: Identifying an Individual's Information

Information about an individual may not be just in their own record

 Example: In a social network, information about node A also in node B influenced by A, for example, because A may have caused a link between B and C

Differential Privacy: Summary

- An approach to releasing privacy-preserving statistics
- A rigorous privacy guarantee
 - Significant activity in theoretical CS community
- Several applications to real data sets
 - Recommendation systems, network trace data,...
- Some challenges
 - High sensitivity, identifying individual's information, repeated querying