18734: Foundations of Privacy

## **Anonymous Credentials**

Anupam Datta CMU Fall 2016

#### Credentials: Motivation

- ID cards
  - Sometimes used for other uses
    - E.g. prove you're over 21, or verify your address
  - Don't necessarily need to reveal all of your information
  - Don't necessarily want issuer of ID to track all of it's uses
  - How can we get the functionality/verifiability of an physical id in electronic form without extra privacy loss



#### Credentials: Motivation

- The goal
  - Users should be able to
    - Obtain credentials
    - Show some properties
  - Without
    - Revealing additional information
    - Allowing tracking

#### Credentials: Motivation

- Other applications
  - Transit tokens/passes
  - Electronic currency
  - Online polling

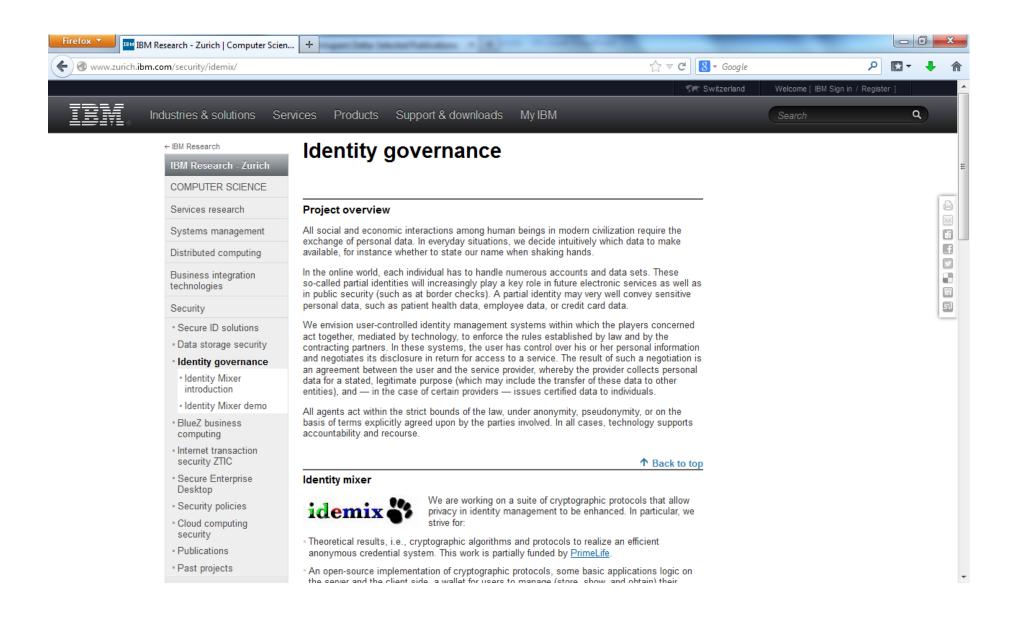
- Implementations
  - Idemix (IBM), UProve (Microsoft)



to dynamic verifier policies. As an example, a user may choose to only disclose a subset of the encoded attributes, prove that her undisclosed name does not appear on a blacklist, or prove that

These user-centric aspects make the LI-Prove technology ideally suited to creating the digital

she is of age without disclosing her actual birthdate.



#### Today

Focus on one kind of anonymous credentials: electronic cash

# Security without Identification David Chaum 1985

## **Building Blocks**

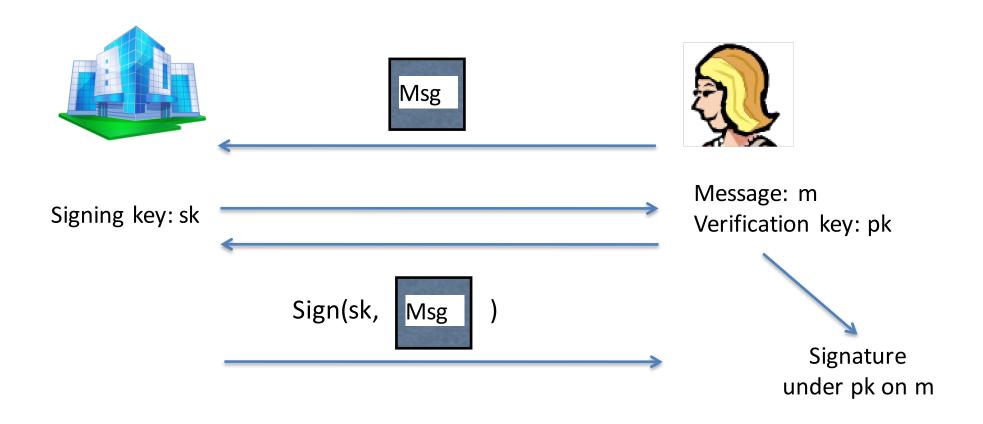
- Commitment schemes
- Blind signatures

#### Commitments

- Like locked box or safe
- Hiding hard to tell which message is committed to
- Binding there is a unique message corresponding to each commitment



#### Blind signatures



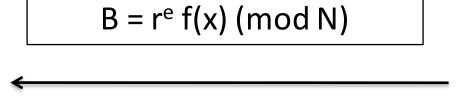
Alice learns only signature on her message. Signer learns nothing.

#### Background on RSA Signatures

- Key Generation
  - Generate primes p, q; N =pq
  - Public key = e; private key = d s.t. ed =  $1 \mod (p-1)(q-1)$
- Sign
  - $C = M^d \mod N$
- Verify
  - Check M mod N = C<sup>e</sup> mod N
  - Note C<sup>e</sup> mod N = M<sup>ed</sup> mod N = M mod N

## Chaum's scheme (1)







Random x, r f is a one way function

- B is a blinded message: does not reveal information about f(x) to bank
- f(x) is a commitment to x

## Chaum's scheme (2)





$$BC = r f(x)^{1/3} (mod n)$$



$$C = f(x)^{1/3} \pmod{n}$$

- BC = B<sup>d</sup> (mod n) is a blind signature on B
- Bank issues blinded coin and takes \$1 from Alice's account
- Alice extracts coin

## Chaum's scheme (3)





Bob verifies bank's signature on f(x) using bank's public key

x, f(x)<sup>1/3</sup> (mod n)

- Bob <u>calls bank immediately</u> to verify that the electronic coin has not been already spent
- Bank checks coin and, if OK, transfers \$1 to Bob's account

#### Can we do better?

- Do not require Bob to call Bank immediately
- Catch Alice if she tries to spend the same coin twice

#### Untraceable Electronic Cash Chaum, Fiat, Naor 1990

#### CFN90 scheme (1)



N = pq e = 3 d is private k is a security parameter

- f, g are collision-resistant functions
- f(.,.) is a random oracle
- g(x, .) is a one-to-one function

# Obtaining an Electronic Coin

## CFN90 scheme (2)





$$B_{i} = r_{i}^{e} f(x_{i}, y_{i}) \text{ (mod n)}$$

$$1 <= i <= k \text{ where}$$

$$x_{i} = g(a_{i}, c_{i})$$

$$y_{i} = g(a_{i} \oplus (u \mid (v+i)), d_{i})$$

Account#: u

Counter: v

Random  $a_i$ ,  $c_i$ ,  $d_i$ ,  $r_i$  $1 \le i \le k$ 

- B<sub>i</sub> is a blinded message: does not reveal information about f(x,y) to bank
- f(x,y) is a commitment to (x, y)
- x, y are constructed to reveal u in case Alice tries to spend the same coin twice

## CFN90 scheme (3)



R = random subset of k/2 indices



Reveal a<sub>i</sub>, c<sub>i</sub>, d<sub>i</sub>, r<sub>i</sub> for i in R

Check blinded candidates in R

- Ensure Alice following protocol
- Assume R = {k/2+1,...,k} to simplify notation

## CFN90 scheme (4)





$$\prod_{i \notin R} B_i^{1/3} = \prod_{1 \le i \le k/2} B_i^{1/3} \bmod n$$

$$C = \prod_{1 \le i \le k/2} f(x_i, y_i)^{1/3} \bmod n.$$

- Bank issues blinded coin and takes \$1 from Alice's account
- Bank and Alice increments Alice's counter v by k
- Alice extracts coin

## Paying with an Electronic Coin

#### CFN90 scheme (5)

To pay Bob one dollar, Alice and Bob proceed as follows:

- Alice sends C to Bob.
- Bob chooses a random binary string z<sub>1</sub>, z<sub>2</sub>,..., z<sub>k/2</sub>.
- 3. Alice responds as follows, for all  $1 \le i \le k/2$ :
  - a. If  $z_i = 1$ , then Alice sends Bob  $a_i$ ,  $c_i$  and  $y_i$ .
  - b. If  $z_i = 0$ , then Alice sends Bob  $x_i$ ,  $a_i \oplus (u || (v + i))$  and  $d_i$ .
- Bob verifies that C is of the proper form and that Alice's responses fit C.
- Bob later sends C and Alice's responses to the bank, which verifies their correctness
  and credits his account.
  - Steps 2, 3: Alice reveals her commitment
  - Step 4: Bob check's Alice's commitment and Bank's signature on coin C
  - Step 5: Note Bob does <u>not</u> have to call Bank immediately

#### CFN90 scheme (6)

- What if Alice double-spends (gives the same coin to both Bob and Charlie)?
- Bank stores coin C, random strings  $z_1, z_2,...,z_{k/2}$  and  $a_i$  (if  $z_i = 1$ ) and  $a_i \oplus (u \mid | (v+i))$  (if  $z_i = 0$ )
- If Alice double spends, then wp ½ Bank obtains a<sub>i</sub> and a<sub>i</sub> ⊕ (u||(v+i)) for the same i and thus obtains Alice's identity and transaction counter u||(v+i)

#### CFN90 scheme (7)

- What if Alice colludes with merchant Charlie and sends the same coin C and the same z to him as she did with Bob?
- Bank knows that one of Bob and Charlie are lying but not who; cannot trace back to Alice
- Solution: Every merchant has a fixed query string different from every other merchant + a random query string

#### Summary

- Electronic Cash
  - Untraceable if issued coins are used only once
  - Traceable if coin is double spent
  - (Some) collusion resistance

Instance of Anonymous Credentials

## Questions

#### Commitment

- Temporarily hide a value, but ensure that it cannot be changed later
  - Example: sealed bid at an auction
- 1<sup>st</sup> stage: commit
  - Sender electronically "locks" a message in a box and sends the box to the Receiver
- 2<sup>nd</sup> stage: reveal
  - Sender proves to the Receiver that a certain message is contained in the box

#### **Properties of Commitment Schemes**

- Commitment must be hiding
  - At the end of the 1<sup>st</sup> stage, no adversarial receiver learns information about the committed value
  - If receiver is probabilistic polynomial-time, then computationally hiding; if receiver has unlimited computational power, then perfectly hiding
- Commitment must be binding
  - At the end of the 2<sup>nd</sup> stage, there is only one value that an adversarial sender can successfully "reveal"
  - Perfectly binding vs. computationally binding
- Can a scheme be perfectly hiding and binding?

#### Discrete Logarithm Problem

- Intuitively: given g<sup>x</sup> mod p where p is a large prime, it is "difficult" to learn x
  - Difficult = there is no known polynomial-time algorithm
- g is a generator of a multiplicative group Z<sub>p</sub>\*
  - Fermat's Little Theorem
    - For any integer a and any prime p, a<sup>p-1</sup>=1 mod p.
  - g<sup>0</sup>, g<sup>1</sup> ... g<sup>p-2</sup> mod p is a sequence of distinct numbers, in which every integer between 1 and p-1 occurs once
    - For any number  $y \in [1 ... p-1]$ ,  $\exists x s.t. g^x = y \mod p$
  - If  $g^q=1$  for some q>0, then g is a generator of  $Z_q$ , an order-q subgroup of  $Z_p^*$

#### Pedersen Commitment Scheme

- Setup: receiver chooses...
  - Large primes p and q such that q divides p-1
  - Generator g of the order-q subgroup of Z<sub>p</sub>\*
  - Random secret a from Z<sub>q</sub>
  - h=g<sup>a</sup> mod p
    - Values p,q,g,h are public, a is secret
- Commit: to commit to some x∈Z<sub>q</sub>, sender chooses random r∈Z<sub>q</sub> and sends c=g<sup>x</sup>h<sup>r</sup> mod p to receiver
  - This is simply  $g^{x}(g^{a})^{r}=g^{x+ar} \mod p$
- Reveal: to open the commitment, sender reveals x and r, receiver verifies that c=g<sup>x</sup>h<sup>r</sup> mod p

#### Security of Pedersen Commitments

#### Perfectly hiding

- Given commitment c, every value x is equally likely to be the value committed in c
- Given x, r and any x', exists r' such that  $g^x h^r = g^{x'} h^{r'}$  $r' = (x-x')a^{-1} + r \mod q$  (but must know a to compute r')

#### Computationally binding

- If sender can find different x and x' both of which open commitment c=g<sup>x</sup>h<sup>r</sup>, then he can solve discrete log
  - Suppose sender knows x,r,x',r' s.t.  $g^xh^r = g^{x'}h^{r'} \mod p$
  - Because  $h=g^a \mod p$ , this means  $x+ar = x'+ar' \mod q$
  - Sender can compute a as (x'-x)(r-r')-1
  - But this means sender computed discrete logarithm of h!

#### **RSA Blind Signatures**

One of the simplest blind signature schemes is based on RSA signing. A traditional RSA signature is computed by raising the message m to the secret exponent d modulo the public modulus N. The blind version uses a random value r, such that r is relatively prime to N (i.e. gcd(r, N) = 1). r is raised to the public exponent e modulo N, and the resulting value  $r^e \mod N$  is used as a blinding factor. The author of the message computes the product of the message and blinding factor, i.e.

$$m' \equiv mr^e \pmod{N}$$

and sends the resulting value m' to the signing authority. Because r is a random value and the mapping  $r\mapsto r^e \mod N$  is a permutation it follows that  $r^e \mod N$  is random too. This implies that m' does not leak any information about m. The signing authority then calculates the blinded signature s' as:

$$s' \equiv (m')^d \pmod{N}$$
.

s' is sent back to the author of the message, who can then remove the blinding factor to reveal s, the valid RSA signature of m:

$$s \equiv s' \cdot r^{-1} \pmod{N}$$

This works because RSA keys satisfy the equation  $r^{ed} \equiv r \pmod{N}$  and thus

$$s \equiv s' \cdot r^{-1} \equiv (m')^d r^{-1} \equiv m^d r^{ed} r^{-1} \equiv m^d r r^{-1} \equiv m^d \pmod{N},$$

hence s is indeed the signature of m.