18734 Recitation

Statistical Distance Basic Cryptography

Amit Datta

Distance

• L1 distance

- Between two points
 - $-(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$
 - $-\sum_{i}|x_{i}-y_{i}|$

Distance between functions

Between two discrete functions

- $m_1(x), m_2(x)$
- $-x \in \{x_1, x_2, ..., x_n\}$
- $-\sum_{i} |m_{1}(x_{i}) m_{2}(x_{i})|$

Between two continuous functions

- $n_1(y), n_2(y)$
- $-y \in [y_1, y_2]$
- ${}_{y1}\int^{y2} |n_1(y) n_2(y)| dy$

Distance between probability distributions

- Between two discrete distributions
 - PMFs $p_1(x)$, $p_2(x)$
 - $-x \in \{x_1, x_2, ..., x_n\}$
 - $-\sum_{i} |p_{1}(x_{i}) p_{2}(x_{i})|$
- Between two continuous distributions
 - PDFs $f_1(y)$, $f_2(y)$
 - $-y \in [y_1, y_2]$
 - $\int_{y_1}^{y_2} |f_1(y) f_2(y)| dy$

Exercise

• Find L1 distance between the following distributions:

$$-f_1(x) = x/12$$
 $x \in [1, 5]$
 $-f_2(x) = 1/4$ $x \in [1, 5]$

Plot:

Fairness through Awareness

Metric $d: V \times V \rightarrow \mathbb{R}$ Lipschitz condition $||M(x) - M(y)|| \le d(x, y)$

V: Individuals

O: outcomes

Fairness through Awareness: Example

Santa is distributing blue and red candies

Basic Crypto Concepts

Basic Cryptographic Concepts

- Encryption scheme (symmetric and public key)
- Signature scheme
- Message authentication code
- Hash function

 A network protocol like SSL is built using these primitives

Symmetric Encryption Scheme

- Key generation algorithm
 - Produces a key that is used for encryption and decryption
- Algorithm to encrypt a message
- Algorithm to decrypt a ciphertext
- Correctness:
 - Decrypting a ciphertext obtained by encrypting message m with the corresponding key k returns m dec(enc(m,k),k) = m
- (Symbolic) Security:
 - A ciphertext cannot be decrypted without access to the key

Symmetric Encryption Scheme

- Key generation algorithm
 - generate random bits
- Algorithm to encrypt a message
 - $-\operatorname{enc}(m,k) = m \oplus k$

- $dec(c,k) = c \oplus k$
- Correctness:
 - dec(enc(m,k),k) = m. Satisfied?
- (Symbolic) Security:
 - A ciphertext cannot be decrypted without access to the key.

Public-Key Encryption Scheme

- Key generation algorithm
 - Produces private decryption & public encryption key pair
- Algorithm to encrypt a message
- Algorithm to decrypt a ciphertext
- Correctness:
 - Decrypting a ciphertext obtained by encrypting message m with the corresponding encrytion key returns m

$$dec(enc(m, pk(A)), sk(A)) = m$$

- (Symbolic) Security:
 - A ciphertext cannot be decrypted without access to the private decryption key

Public-Key Encryption Scheme

Public-Key Encryption Scheme

- Key generation algorithm
 - Generate random public key: e, secret key: d=1/e
- Algorithm to encrypt a message
 - $-\operatorname{enc}(m,e) = m^e$
- Algorithm to decrypt a ciphertext
 - $dec(c,d) = c^d$
- Correctness:
 - dec(enc(m, pk(A)), sk(A)) = m. Satisfied?
- (Symbolic) Security:
 - A ciphertext cannot be decrypted without access to the private decryption key.

Why would we want public-key encryption?

Signature Scheme

- Key generation algorithm
 - Produces private signing & public verification key pair
- Algorithm to sign data
- Algorithm to verify signature
- Correctness:
 - Message signed with a signing key verifies with the corresponding verification key

$$verify(m,sign(m,sk(A)), pk(A)) = ok$$

- Security:
 - A signature cannot be produced without access to the private signing key

Signature Scheme

- Key generation algorithm
 - private signing & public verification key pair (e, d=1/e)
- Algorithm to sign data
 - $sign(m, e) = m^e$
- Algorithm to verify signature
 - $\text{ verify}(m, c, d) = \text{ return } ok \text{ iff } m == c^d$
- Correctness:
 - verify(m, sign(m, sk(A)), pk(A)) = ok. Satisfied?
- Security:
 - A signature cannot be produced without access to the private signing key.

Message Authentication Code • Key generation algorithm

- - Produces a key
- Algorithm to mac a message
- Algorithm to verify a mac on a message
- Correctness:
 - Message mac-ed with key verifies with the same key verify(k, m, mac(k,m)) = ok
- Security:
 - A MAC cannot be produced without access to the key Similar to signature, but uses symmetric key

What property does a signature have, but a MAC does not?

Hash Functions

 Algorithm to hash a message m to a fixed length output hash(m)

Security (Collision resistance)

Given hash function hash: $X \rightarrow Y$, cannot find a collision, i.e. $x, x' \in X$ s.t. $x \neq x'$ and hash(x) = hash(x')

Hash Functions

- Algorithm to hash a message m to a fixed length output hash(m)
 - hash(m) = m % 10, where m is an integer

Security (Collision resistance)

Given hash function hash: $X \rightarrow Y$, cannot find a collision, i.e. $x, x' \in X$ s.t. $x \neq x'$ and hash(x) = hash(x'). Satisfied?