Foundations of Privacy 2014

Recitation on Logic

Blackboard Issues?

Propositional ("0 ${ }^{\text {th }}$ order") Logic

Propositional ("0 $0^{\text {th }}$ order") Logic

A model for a simple subset of mathematical reasoning

Not
And
Or
Implies
If And Only If
\wedge
V
\longrightarrow
\leftrightarrow

Propositional ("0 $0^{\text {th }}$ order") Logic

An English statement that can be true or false

Propositional variable: a symbol (letter) representing it
"Potassium is observed." k
"Hydrogen is observed." h
"Pixel 29 is black."
"It's raining."
p_{29}
r

Compound sentence

Potassium is not observed.

At least one of hydrogen and potassium is observed.

If potassium is observed then hydrogen is also observed.

If I'm not playing tennis then I'm watching tennis, and if I'm not watching tennis then l'm reading about tennis.

Propositional formula

- k
(hvk)
$(\mathrm{k} \rightarrow \mathrm{h})$
p,w,r
$((\neg p \rightarrow w) \wedge(\neg w \rightarrow r))$

Formally, formulas are strings made up of:

(punctuation)
(punctuation)
(not)
(and)
(or)
(implies)
(if and only if)
(variable symbols)

Well-formed formula (WFF)

= A string which is syntactically "legitimate".

$$
\begin{array}{cc}
\text { WFF } & \text { not a WFF } \\
\left(\left(x_{1} \wedge\left(x_{3} \rightarrow \neg x_{2}\right)\right) \vee x_{1}\right) & \left.x_{1} \wedge\right) \\
\neg\left(\left(x_{10} \leftrightarrow x_{11}\right) \wedge\left(x_{2} \rightarrow x_{5}\right)\right) & \left(\left(x_{1} \wedge\left(x_{3} \rightarrow \neg x_{2}\right)\right) \neg x_{1}\right)
\end{array}
$$

Well-formed formula (WFF)

Formally, WFFs have an inductive definition:

Base case:

Inductive rules:

Single variables are WFFs.

- If A is a WFF, so is $\neg A$.
- If A, B are WFFs, so are

$$
\begin{gathered}
(A \wedge B), \\
(A \vee B), \\
(A \rightarrow B), \\
(A \leftrightarrow B),
\end{gathered}
$$

Let's talk about TRUTH (SEMANTICS).

"If potassium is observed then carbon and hydrogen are also observed."

$(k \rightarrow(c \wedge h))$

Q: Is this statement true?

A: The question does not make sense.
"If potassium is observed then carbon and hydrogen are also observed."

$$
(k \rightarrow(c \wedge h))
$$

Whether this statement/formula is true/false depends on whether the variables are true/false ("state of the world").

If k is T, c is T, h is $F \ldots$
... the formula is False.
If k is F, c is F, h is $T \ldots$
... the formula is True.

Truth assignment \mathbf{V} : assigns T or F to each variable

Extends to give a truth value V[S] for any formula S by applying these rules:

A	B	$\neg \mathrm{A}$	$(\mathrm{A} \wedge \mathrm{B})$	(AvB)	$(\mathrm{A} \rightarrow \mathrm{B})$	$(\mathrm{A} \leftrightarrow \mathrm{B})$	$\neg \mathrm{A} \vee \mathrm{B}$
F	F	T	F	F	T	T	T
F	T	T	F	T	T	F	T
T	F	F	F	T	F	F	F
T	T	F	T	T	T	T	T

Truth assignment example

$$
\begin{gathered}
S=\left(x_{1} \rightarrow\left(x_{2} \wedge x_{3}\right)\right) \\
x_{1}=T \\
\mathbf{v}: \begin{array}{r}
x_{2}=T \\
x_{3}=F \\
\\
\mathbf{V}[S]=(T \rightarrow(T \wedge F)) \\
\mathbf{V}[S]=(T \rightarrow F) \\
\mathbf{V}[S]=
\end{array}
\end{gathered}
$$

Satisfiability

V satisfies S :

$$
\mathbf{V}[\mathrm{S}]=\mathrm{T}
$$

S is satisfiable:

$$
\text { there exists } \mathbf{V} \text { such that } \mathbf{V}[\mathrm{S}]=\mathbf{T}
$$

S is unsatisfiable:

$$
\mathbf{V}[S]=\mathbf{F} \text { for all } \mathbf{V}
$$

S is a tautology:

$$
\mathbf{V}[\mathrm{S}]=\mathbf{T} \text { for all } \mathbf{V}
$$

All well-formed formulas

unsatisfiable

$$
(k \wedge \neg k)
$$

satisfiable

(k $\rightarrow(\mathrm{c} \wedge \mathrm{h})$)
tautology

$$
(h \rightarrow h)
$$

"Potassium is observed and potassium is not observed."
"If potassium is observed then carbon and hydrogen are observed."
"If hydrogen is observed then hydrogen is observed."

Tautology: automatically true, for 'purely logical' reasons

Unsatisfiable: automatically false, for purely logical reasons

Satisfiable (but not a tautology):
truth value depends on the state of the world

$$
S=((x \rightarrow(y \rightarrow z)) \leftrightarrow((x \wedge y) \rightarrow z))
$$

Truth table

\mathbf{X}	\mathbf{y}	\mathbf{z}	$((\mathbf{x} \rightarrow(\mathrm{y} \rightarrow \mathbf{z})) \leftrightarrow((\mathrm{x} \wedge \mathrm{y}) \rightarrow \mathbf{z}))$
F	F	F	
F	F	T	
F	T	F	
F	T	T	
T	F	F	
T	F	T	
T	T	F	
T	T	T	

$$
S=((x \rightarrow(y \rightarrow z)) \leftrightarrow((x \wedge y) \rightarrow z))
$$

Truth table

X	y	z	$((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \in((\mathrm{x} \wedge \mathrm{y}) \rightarrow \mathrm{z}))$
F	F	F	T
F	F	T	
F	T	F	
F	T	T	
T	F	F	
T	F	T	
T	T	F	
T	T	T	

S is satisfiable!

$$
S=((x \rightarrow(y \rightarrow z)) \leftrightarrow((x \wedge y) \rightarrow z))
$$

Truth table

X	y	z	$((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \in((\mathrm{x} \wedge \mathrm{y}) \rightarrow \mathrm{z}))$
F	F	F	T
F	F	T	T
F	T	F	T
F	T	T	T
T	F	F	T
T	F	T	T
T	T	F	T
T	T	T	T

S is a tautology!

Problem: Show $(((\mathrm{x} \rightarrow \mathrm{y}) \wedge \mathrm{x}) \rightarrow \mathrm{y})$ is a tautology.

Truth-table method: quite long, not intuitive

Can we build up a proof systematically?
Inference rules:
\neg introduction
\wedge introduction
v introduction
\rightarrow introduction
A
A
$A \rightarrow B$
$A \rightarrow B$
$A \rightarrow B$
A
A

$$
\begin{aligned}
& \frac{(x \rightarrow y) \wedge x}{(x \rightarrow y)} \wedge \text { elimination } \frac{(x \rightarrow y) \wedge x}{x} \wedge \text { elimination } \\
& \qquad y \\
& (((x \rightarrow y) \wedge x) \rightarrow y
\end{aligned}
$$

What is a proof?
A sequence of statements, each of which is an axiom, or a hypothesis, or follows from previous statements using an inference rule

Problem: Show $(((x \rightarrow y) \wedge x) \rightarrow y)$ is a tautology.

Solution 1: Truth-table method (semantic proof)
Solution 2: Use proof system: (syntactic proof)
Are all theorems (whatever can be proved) tautology?
Yes...for propositional logic
This property is called soundness of propositional logic

Are all tautology theorems?

Yes...for propositional logic
This property is called completeness of propositional logic

Semantic entailment

Definition:

Formulas A_{1}, \ldots, A_{m} entail formula S,

$$
\text { written } \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \models \mathrm{~S}
$$

if every interpretation I which makes
A_{1}, \ldots, A_{m} equal T also makes S equal T.

Tautology: $\phi \vDash S$

Syntactic entailment

Definition:

Formulas A_{1}, \ldots, A_{m} entail formula S,

$$
\text { written } \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \vdash \mathrm{~S} \text {, }
$$

if assuming A_{1}, \ldots, A_{m} yields a proof of S

Theorem: $\phi \vdash$ S

Soundness and Completeness

Soundness:

$\Gamma \vdash S$ implies $\Gamma \models S$

Completeness:
$\Gamma \models S$ implies $\Gamma \vdash S$

First order logic (FOL)

A model for pretty much all mathematical reasoning

Not, And, Or, Implies, If And Only If
Plus: \quad For All (\forall), There Exists ((\exists), Equals (=) "constants", "predicates", "functions"

Variables like x now represent objects, not truth-values.
"Alex is smarter than everyone":
$\forall x$ IsSmarter(a
constant name:
stands for a
particular object
predicate name:
stands for a mapping,
object(S) $\mapsto T / F$
"Alex is smarter than everyone":
$\forall x$ IsSmarter(a, x)
"Alex is smarter than everyone else":
$\forall x(\neg(x=a) \rightarrow$ IsSmarter $(\mathbf{a}, \mathrm{x}))$
propositional logic, as usual
equality (of objects)
"Alex is smarter than everyone":
$\forall x$ IsSmarter(a, x)
"Alex is smarter than everyone else":
$\forall x(\neg(x=\mathbf{a}) \rightarrow$ IsSmarter $(\mathbf{a}, \mathrm{x}))$
"Alex's father is smarter than everyone else's father":
$\forall x(\neg(x=a) \rightarrow I$ sSmarter(Father(a),Father(x)))
function name:
stands for a mapping, object(s) \mapsto object

Vocabulary: A collection of constant-names, function-names, predicate-names.

Vocabulary from the previous slide:
one constant-name: one function-name: Father(•) one predicate-name:
a

IsSmarter(•, •)

Vocabulary: A collection of constant-names, function-names, predicate-names.

Another example of a vocabulary:
one constant-name: two function-names: $\operatorname{Next(\cdot),\quad \text {Combine(}\cdot ,\cdot)~}$ one predicate-name: (IsPrior(•, •)

Example (well-formed) "sentences":

$$
\exists x(\operatorname{Next}(x)=a)
$$

$\forall x \forall y(\operatorname{IsPrior}(x, \operatorname{Combine}(a, y)) \rightarrow(\operatorname{Next}(x)=y))$
$(\forall x \operatorname{IsPrior}(x, \operatorname{Next}(x))) \rightarrow(\operatorname{Next}(a)=\operatorname{Next}(a))$

Sorts/Type and Scope

Domain can be partitioned into sorts - a:boy b:girl
Sorted Logic - $\forall x$:boy $P(x)$
Unsorted logic $-\forall x: x \in$ Boy $\rightarrow \mathrm{P}(x)$

Scope:

$$
\forall x . \exists y, z \cdot x^{2}=y^{2}+z^{2}
$$

Let's talk about TRUTH.

$\exists x(\operatorname{Next}(\mathrm{x})=\operatorname{Combine}(\mathrm{a}, \mathrm{a}))$

Q: Is this sentence true?

A: The question does not make sense.
Whether or not this sentence is true depends on the interpretation of the vocabulary.

Interpretation:

Informally, says what objects are and what the vocabulary means.

$\exists x(\operatorname{Next}(x)=\operatorname{Combine}(\mathrm{a}, \mathrm{a}))$

Q: Is this sentence true?

A: The question does not make sense.
Whether or not this sentence is true depends on the interpretation of the vocabulary.

Interpretation:

Specifies a nonempty set ("universe") of objects. Maps each constant-name to a specific object. Maps each predicate-name to an actual predicate. Maps each function-name to an actual function.

$\exists x(\operatorname{Next}(x)=\operatorname{Combine}(\mathbf{a}, \mathrm{a}))$

Interpretation \#1:

- Universe $=$ all strings of 0 's and 1's
- $\mathbf{a}=1001$
- $\operatorname{Next}(\mathrm{x})=\mathrm{x} 0$
- Combine $(x, y)=x y$
- $\operatorname{IsPrior}(x, y)=$ True iff x is a prefix of y

For this interpretation, the sentence is...
...False

$\exists x(\operatorname{Next}(x)=\operatorname{Combine}(\mathbf{a}, \mathrm{a}))$

Interpretation \#2:

- Universe = integers
- $\mathbf{a}=0$
- $\operatorname{Next}(\mathrm{x})=\mathrm{x}+1$
- Combine $(x, y)=x+y$
- IsPrior $(x, y)=$ True iff $x<y$

For this interpretation, the sentence is...

$\exists x(\operatorname{Next}(x)=\operatorname{Combine}(\mathbf{a}, \mathrm{a}))$

Interpretation \#2:

- Universe = positive integers
- $\mathbf{a}=0$
- $\operatorname{Next}(x)=x+1$
- Combine $(x, y)=x+y$
- IsPrior $(x, y)=$ True iff $x<y$

For this interpretation, the sentence is...
...False

Satisfiability / Tautology

Interpretation I satisfies sentence S:

$$
\mathrm{I}[\mathrm{~S}]=\mathrm{T}
$$

S is satisfiable: there exists I such that I[S]=T
S is unsatisfiable:
I [S] = F for all I
S is a tautology:
I [S] = T for all I

All sentences in a given vocabulary
unsatisfiable

$$
\exists x \neg(\operatorname{Next}(x)=\operatorname{Next}(x))
$$

satisfiable

$\exists x(\operatorname{Next}(x)=\operatorname{Combine}(\mathbf{a}, \mathrm{a}))$
tautology
$(\forall x(x=a)) \rightarrow(\operatorname{Next}(a)=a)$

Tautology: automatically true, for 'purely logical' reasons

Unsatisfiable: automatically false, for purely logical reasons

Satisfiable (but not a tautology):
truth value depends
on the interpretation
of the vocabulary

$$
(\exists y \forall x(x=\operatorname{Next}(y))) \rightarrow(\forall w \forall z(w=z))
$$

Problem 1: Show this is satisfiable.
Let's pick this interpretation:
Universe $=$ integers, $\quad \operatorname{Next}(\mathrm{y})=\mathrm{y}+1$.
Now ($\exists \mathrm{y} \forall x(x=\operatorname{Next}(y)))$ means
"there's an integer y such that every integer $=\mathrm{y}+1$ ".

That's False!
So the whole sentence becomes True. Hence the sentence is satisfiable.

$$
(\exists y \forall x(x=\operatorname{Next}(y))) \rightarrow(\forall w \forall z(w=z))
$$

Problem 2: Is it a tautology?

There is no "truth table method".
You can't enumerate all possible interpretations!
It seems like you have to use some cleverness...

$$
(\exists y \forall x(x=\operatorname{Next}(y))) \rightarrow(\forall w \forall z(w=z))
$$

Problem 2: Is it a tautology?
Solution: Yes, it is a tautology!
Proof:
Let I be any interpretation.
If $1[\exists \mathrm{y} \forall \mathrm{x}(\mathrm{x}=\operatorname{Next}(\mathrm{y}))]=\mathrm{F}$, then the sentence is True.

If I $[\exists y \forall x(x=\operatorname{Next}(y))]=T$,
then every object equals $\operatorname{Next(y).}$
In that case, $I[\forall w \forall z(w=z)]=T$.
So no matter what, I [the sentence] = \mathbf{T}.

$(\exists y \forall x(x=\operatorname{Next}(y))) \rightarrow(\forall w \forall z(w=z))$

Problem 2: Is it a tautology?

Hmm... It's really a shame that there's no truth table method.

Is there any "mechanical method"??

More Inference Rules

$$
\begin{aligned}
& \frac{\forall \text { introduction }}{\text { a var }} \\
& P(a) \text { true } \\
& \forall x \text {. } P(x) \text { true } \\
& \exists x . P(x) \text { true } \\
& \exists \text { elimination } \\
& \text { a var } \\
& P(a) \text { true } \\
& \forall \text { elimination } \\
& \text { a var } \forall x . P(x) \text { true } \\
& P(a) \text { true } \\
& \exists x . P(x) \text { true } \quad C \text { true } \\
& \text { C true }
\end{aligned}
$$

Prove $\forall x . \exists y . y>x$ over natural number

a var

a var $\forall x, x+1>x$ true
$a+1 \operatorname{var} \quad a+1>a$ true

$$
\exists y \cdot y>a
$$

\exists introduction
$\forall x \cdot \exists y \cdot y>x^{\forall \text { introduction }}$

Checking tautologies

Consequence:

There is a purely mechanical (algorithmic) way to verify that a given S is a tautology.

Just brute-force search for the shortest proof in Deductive Calculus!

Logical entailment

"Is S a tautology of 1 t order logic?"
moderately interesting
"Assuming 'axioms' $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}$,
is S a logical consequence ('theorem')?"

more typical kind of thing to be interested in

Temporal logic

Propositional/FO logics have just one static state where formulae are evaluated

E.g.:
k stands for "it is snowing"
Is k true? No, but, only for today.

How to say:
 It will snow someday in future.
 It will snow everyday in future

Actually, it is possible to say the above in FOL, but, there is a much more elegant logic, which is also computationally easier to reason about

Temporal Logic Operators

Temporal operators:

Textual	Symbolic \dagger	Explanation	Diagram
Unary operators:			
X ¢	$\bigcirc \phi$	neXt: ϕ has to hold at the next state.	$\bullet \longrightarrow \stackrel{---\rightarrow+\longrightarrow *----),}{ }$
G ϕ	$\square \phi$	Globally: ϕ has to hold on the entire subsequent path.	
F ϕ	$\rangle \phi$	Finally: ϕ eventually has to hold (somewhere on the subsequent path).	$\cdot \longrightarrow \cdot---\vec{\phi} \longrightarrow \cdot---$ -
Binary operators:			
$\psi \mathbf{U} \phi$	$\psi \mathcal{U} \phi$	Until: ψ has to hold at least until ϕ, which holds at the current or a future position.	$\dot{\psi} \longrightarrow \dot{\psi}^{--->} \vec{\psi}^{+\dot{\phi}^{---->}}$
$\psi \mathrm{R} \phi$	$\psi \mathcal{R} \phi$	Release: ϕ has to be true until and including the point where ψ first becomes true; if ψ never becomes true, ϕ must remain true forever.	

| Textual | Symbolict | Explanation | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Unary operators: | neXt: ϕ has to hold at the next state. | Diagram | |
| $\mathrm{X} \phi$ | Globally: ϕ has to hold on the entire subsequent | | |
| path. | | | |

$F G \phi, G F \phi$

Is $G \phi$ equivalent to $\neg F \neg \phi$

$\downarrow x . \varphi$
At the current time y holds
current time

φ holds

$$
\begin{aligned}
& \downarrow x \cdot(\Leftrightarrow \downarrow y \cdot((x-y) \geqslant 14 \wedge \psi) \\
& y=15 \quad x=50
\end{aligned}
$$

Acknowledgement: Slides are from last year's recitation

Acknowledgement2: Many Slides are from 15251

