18734: Foundations of Privacy

Secure Two-Party Computation

Anupam Datta
CMU
Fall 2014

Secure Two-Party Computation

-Can Alice and Bob compute a function of their private data, without exposing anything about their data besides the result?

Roadmap

- Yao's Classic Garbled Circuits

Recent advances in practical secure two party computations

Yao's Protocol

Compute any function securely

- ... in the semi-honest model
\rightarrow First, convert the function into a boolean circuit

Alice's inputs

\mathbf{X}	\mathbf{y}	\mathbf{Z}
0	0	0
0	1	0
1	0	0
1	1	1

1: Pick Random Keys For Each Wire

■cfandacosk

- Next, evaluate one gate securely
- Later, generalize to the entire circuit
- Alice picks two random keys for each wire
- One key corresponds to " 0 ", the other to " 1 "
- 6 keys in total for a gate with 2 input wires

2: Encrypt Truth Table

- Alice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys

Original truth table: | x | | y | z |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | |
| 0 | 1 | 0 | |
| | Encrypted truth table: | $\mathrm{E}_{\mathrm{k}_{0 x}}\left(\mathrm{E}_{\mathrm{k}_{1 \mathrm{y}}}\left(\mathrm{K}_{0 z}\right)\right)$ | |
| 1 | 0 | 0 | |
| 1 | 1 | 1 | |

3: Send Garbled Truth Table

- Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob

4: Send Keys For Alice's Inputs

- Alice sends the key corresponding to her input bit
- Keys are random, so Bob does not learn what this bit is

5: Use OT on Keys for Bob’s Input

- Alice and Bob run oblivious transfer protocol
- Alice's input is the two keys corresponding to Bob's wire
- Bob's input into OT is simply his 1-bit input on that wire

6: Evaluate Garbled Gate

- Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys
- Bob does not learn if this key corresponds to 0 or 1
- Why is this important?

7: Evaluate Entire Circuit

- In this way, Bob evaluates entire garbled circuit
- For each wire in the circuit, Bob learns only one key
- It corresponds to 0 or 1 (Bob does not know which)
- Therefore, Bob does not learn intermediate values (why?)

-Bob tells Alice the key for the final output wire and she tells him if it corresponds to 0 or 1
- Bob does not tell her intermediate wire keys (why?)

Brief Discussion of Yao's Protocol

-Function must be converted into a circuit

- For many functions, circuit will be huge
\rightarrow If m gates in the circuit and n inputs, then need 4 m encryptions and n oblivious transfers
- Oblivious transfers for all inputs can be done in parallel
-Yao's construction gives a constant-round protocol for secure computation of any function in the semi-honest model
- Number of rounds does not depend on the number of inputs or the size of the circuit!

Acknowledgments

Slides 4-12 from Vitaly Shmatikov

