18734: Foundations of Privacy

Anonymous Credentials

Anupam Datta CMU Fall 2014

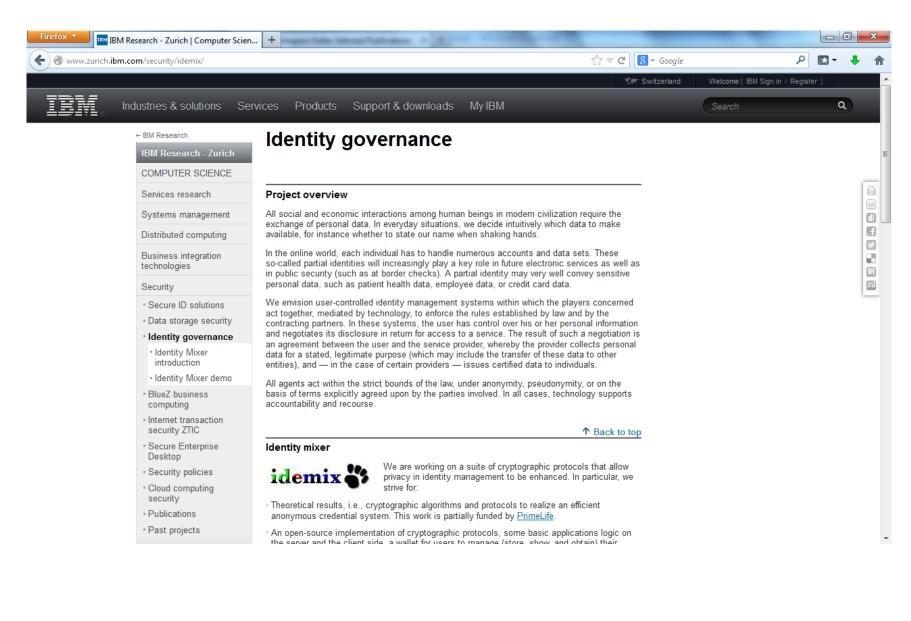
Credentials: Motivation

- ID cards
 - Sometimes used for other uses

- E.g. prove you're over 21, or verify your address
- Don't necessarily need to reveal all of your information
- Don't necessarily want issuer of ID to track all of it's uses
- How can we get the functionality/verifiability of an physical id in electronic form without extra privacy loss

Credentials: Motivation

- The goal
 - Users should be able to
 - Obtain credentials
 - Show some properties
 - Without
 - Revealing additional information
 - Allowing tracking


Credentials: Motivation

- Other applications
 - Transit tokens/passes
 - Electronic currency
 - Online polling

• Implementations

- Idemix (IBM), UProve (Microsoft)

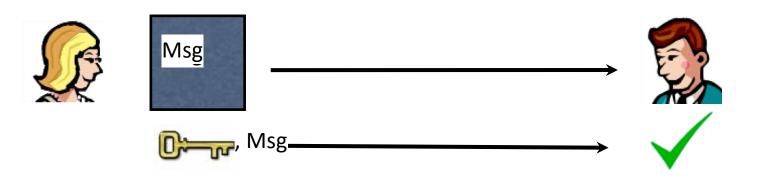
Firefox V U-Prove - Microsoft Research +	manarita, * (#)	
esearch.microsoft.com/en-us/projects/u-prove/	☆ マ C 🛛 🕄 ◄ Google	₽ 🖸 - 🖡 🏠
Microsoft Research Search Our research Connections Careers About us	Microsoft Translator Choose language 💽	
All Downloads Events Groups News People Projects Publications	Videos	E
U-Prove is an innovative cryptographic technology that allows users to minimally disclose certified information about themselves when interacting with online resource providers. U-Prove provides a superset of the security features of Public Key Infrastructure (PKI), and also provide strong privacy protections by offering superior user control and preventing unwanted user tracking.	2	
OVERVIEW A U-Prove token is a new type of credential similar to a PKI certificate that can encode attributes of any type, but with two important differences: 1) The issuance and presentation of a token is <i>unlinkable</i> due to the special type of public key and signature encoded in the token; the cryptographic "wrapping" of the attributes contain no correlation handles. This prevents unwanted tracking of users when they use their U-Prove tokens, even by colluding insiders.	1	
2) Users can minimally disclose information about what attributes are encoded in a token in response to dynamic verifier policies. As an example, a user may choose to only disclose a subset of the encoded attributes, prove that her undisclosed name does not appear on a blacklist, or prove that she is of age without disclosing her actual birthdate. These user-centric aspects make the U-Prove technology ideally suited to creating the digital	2	

Today

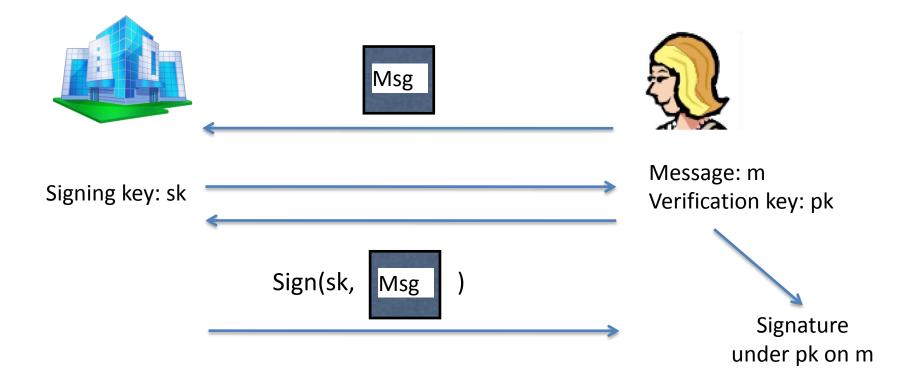
Focus on one kind of anonymous credentials: electronic cash

Security without Identification David Chaum 1985

Building Blocks


- Commitment schemes
- Blind signatures

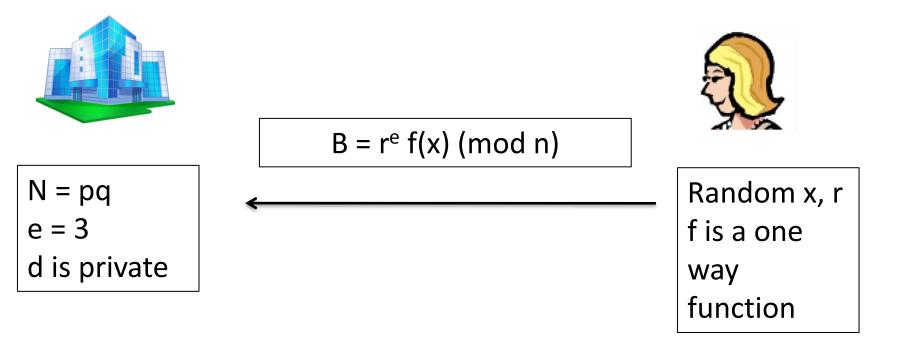
Commitments


Like locked box or safe

- Hiding hard to tell which message is committed to
- Binding there is a unique message corresponding to each commitment

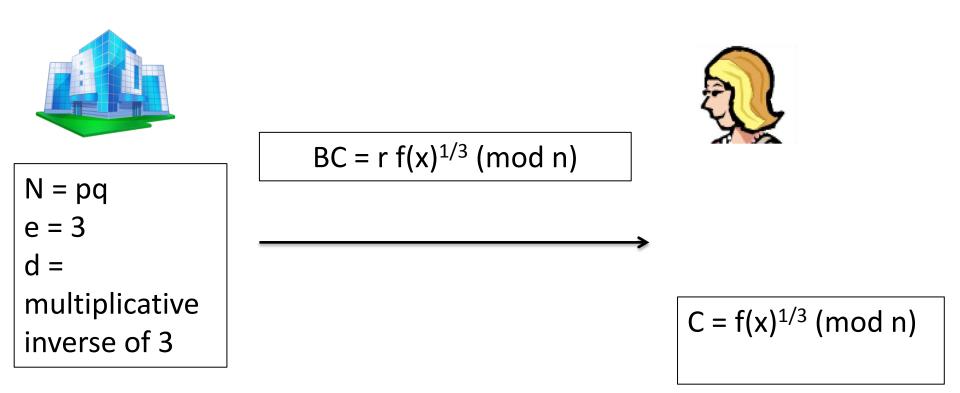
Blind signatures

Alice learns only signature on her message. Signer learns nothing.

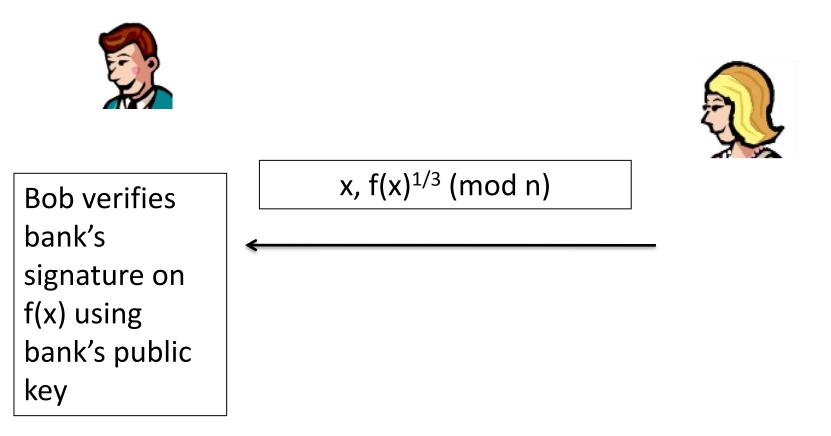

Background on RSA Signatures

- Key Generation
 - Generate primes p, q; N =pq
 - Public key = e; private key = d s.t.

 $ed = 1 \mod (p-1)(q-1)$


- Sign
 - C = M^d mod N
- Verify
 - Check M mod N = $C^e \mod N$
 - Note $C^e \mod N = M^{ed} \mod N = M \mod N$

Chaum's scheme (1)


- B is a blinded message: does not reveal information about f(x) to bank
- f(x) is a commitment to x

Chaum's scheme (2)

- BC = B^d (mod n) is a blind signature on B
- Bank issues blinded coin and takes \$1 from Alice's account
- Alice extracts coin

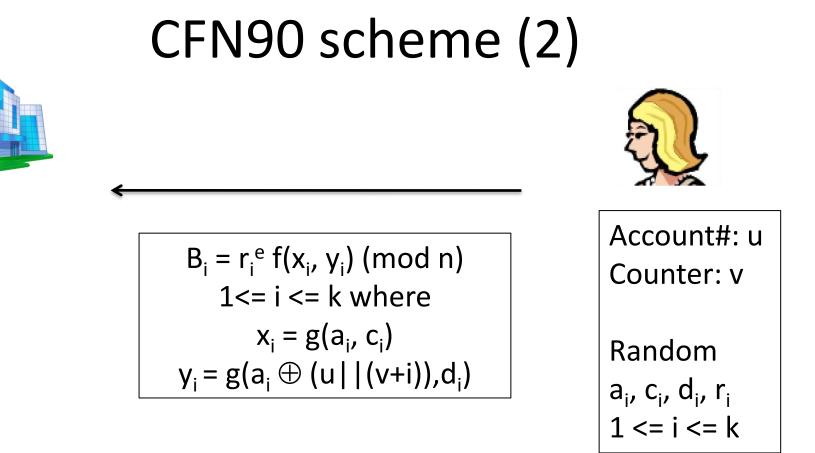
Chaum's scheme (3)

- Bob <u>calls bank immediately</u> to verify that the electronic coin has not been already spent
- Bank checks coin and, if OK, transfers \$1 to Bob's account

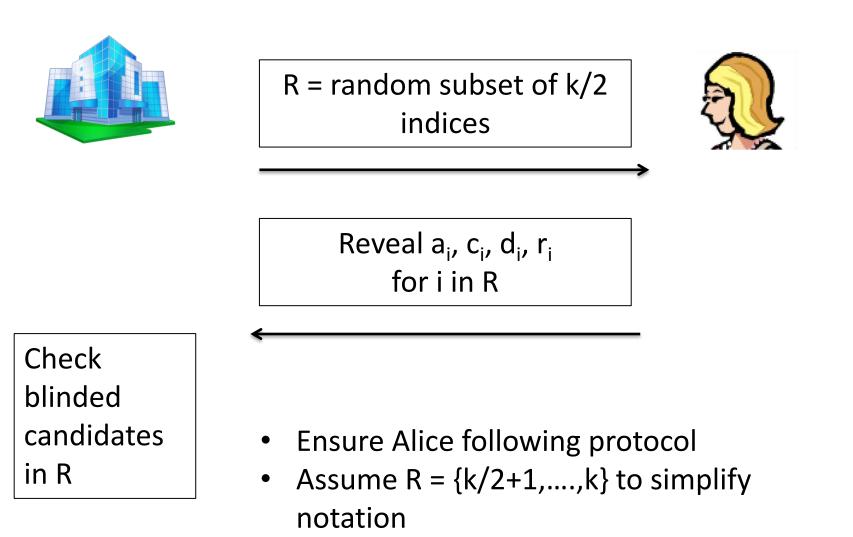
Can we do better?

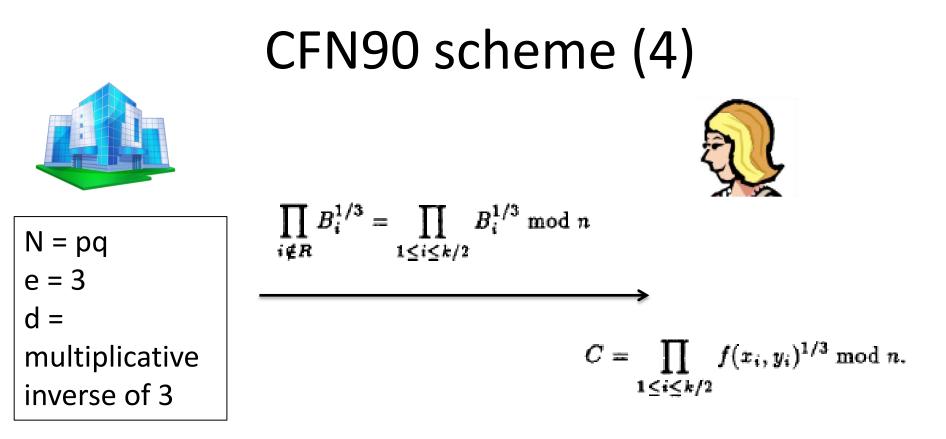
- Do not require Bob to call Bank immediately
- Catch Alice if she tries to spend the same coin twice

Untraceable Electronic Cash Chaum, Fiat, Naor 1990


CFN90 scheme (1)

N = pq	
e = 3	
d is private	
k is a	
security	
parameter	


- f, g are collision-resistant functions
- f(.,.) is a random oracle
- g(x, .) is a one-to-one function


Obtaining an Electronic Coin

- B_i is a blinded message: does not reveal information about f(x,y) to bank
- f(x,y) is a commitment to (x, y)
- x, y are constructed to reveal u in case Alice tries to spend the same coin twice

CFN90 scheme (3)

- Bank issues blinded coin and takes \$1 from Alice's account
- Bank and Alice increments Alice's counter v by k
- Alice extracts coin

Paying with an Electronic Coin

CFN90 scheme (5)

To pay Bob one dollar, Alice and Bob proceed as follows:

- 1. Alice sends C to Bob.
- 2. Bob chooses a random binary string $z_1, z_2, \ldots, z_{k/2}$.
- 3. Alice responds as follows, for all $1 \le i \le k/2$:

a. If $z_i = 1$, then Alice sends Bob a_i , c_i and y_i .

b. If $z_i = 0$, then Alice sends Bob x_i , $a_i \oplus (u || (v + i))$ and d_i .

- 4. Bob verifies that C is of the proper form and that Alice's responses fit C.
- Bob later sends C and Alice's responses to the bank, which verifies their correctness and credits his account.
 - Steps 2, 3: Alice reveals her commitment
 - Step 4: Bob check's Alice's commitment and Bank's signature on coin C
 - Step 5: Note Bob does <u>not</u> have to call Bank immediately

CFN90 scheme (6)

- What if Alice double-spends (gives the same coin to both Bob and Charlie)?
- Bank stores coin C, random strings $z_1, z_2,..., z_{k/2}$ and a_i (if $z_i = 1$) and $a_i \oplus (u||(v+i))$ (if $z_i = 0$)
- If Alice double spends, then wp ½ Bank obtains a_i and a_i ⊕ (u||(v+i)) for the same i and thus obtains Alice's identity and transaction counter u||(v+i)

CFN90 scheme (7)

- What if Alice colludes with merchant Charlie and sends the same coin C and the same z to him as she did with Bob?
- Bank knows that one of Bob and Charlie are lying but not who; cannot trace back to Alice
- Solution: Every merchant has a fixed query string different from every other merchant + a random query string

Summary

- Electronic Cash
 - Untraceable if issued coins are used only once
 - Traceable if coin is double spent
 - (Some) collusion resistance

• Instance of Anonymous Credentials

Questions

Commitment

- Temporarily hide a value, but ensure that it cannot be changed later
 - Example: sealed bid at an auction
- 1st stage: commit
 - Sender electronically "locks" a message in a box and sends the box to the Receiver
- 2nd stage: reveal
 - Sender proves to the Receiver that a certain message is contained in the box

Properties of Commitment Schemes

- Commitment must be hiding
 - At the end of the 1st stage, no adversarial receiver learns information about the committed value
 - If receiver is probabilistic polynomial-time, then <u>computationally</u> hiding; if receiver has unlimited computational power, then <u>perfectly</u> hiding
- Commitment must be binding
 - At the end of the 2nd stage, there is only one value that an adversarial sender can successfully "reveal"
 - Perfectly binding vs. computationally binding
- Can a scheme be perfectly hiding and binding?

Discrete Logarithm Problem

- Intuitively: given g^x mod p where p is a large prime, it is "difficult" to learn x
 - Difficult = there is no known polynomial-time algorithm
- g is a generator of a multiplicative group Z_{p}^{*}
 - Fermat's Little Theorem
 - For any integer a and any prime p, a^{p-1}=1 mod p.
 - g⁰, g¹ ... g^{p-2} mod p is a sequence of distinct numbers, in which every integer between 1 and p-1 occurs once
 - For any number $y \in [1 .. p-1]$, $\exists x s.t. g^x = y \mod p$
 - If $g^q=1$ for some q>0, then g is a generator of Z_q , an order-q subgroup of Z_p^*

Pedersen Commitment Scheme

- Setup: receiver chooses...
 - Large primes p and q such that q divides p-1
 - Generator g of the order-q subgroup of Z_{p}^{*}
 - Random secret a from Z_q
 - h=g^a mod p
 - Values p,q,g,h are public, a is secret
- Commit: to commit to some x∈Z_q, sender chooses random r∈Z_q and sends c=g^xh^r mod p to receiver
 This is simply g^x(g^a)^r=g^{x+ar} mod p
- Reveal: to open the commitment, sender reveals x and r, receiver verifies that c=g^xh^r mod p

Security of Pedersen Commitments

- Perfectly hiding
 - Given commitment c, every value x is equally likely to be the value commited in c
 - Given x, r and any x', <u>exists</u> r' such that $g^{x}h^{r} = g^{x'}h^{r'}$ r' = (x-x')a⁻¹ + r mod q (but must know a to <u>compute</u> r')
- Computationally binding
 - If sender can find different x and x' both of which open commitment c=g^xh^r, then he can solve discrete log
 - Suppose sender knows x,r,x',r' s.t. $g^{x}h^{r} = g^{x'}h^{r'} \mod p$
 - Because h=g^a mod p, this means x+ar = x'+ar' mod q
 - Sender can compute a as (x'-x)(r-r')⁻¹
 - But this means sender computed discrete logarithm of h!

RSA Blind Signatures

One of the simplest blind signature schemes is based on RSA signing. A traditional RSA signature is computed by raising the message *m* to the secret exponent *d* modulo the public modulus *N*. The blind version uses a random value *r*, such that *r* is relatively prime to *N* (i.e. gcd(r, N) = 1). *r* is raised to the public exponent *e* modulo *N*, and the resulting value $r^e \mod N$ is used as a blinding factor. The author of the message computes the product of the message and blinding factor, i.e.

$$m' \equiv mr^e \pmod{N}$$

and sends the resulting value m' to the signing authority. Because r is a random value and the mapping $r \mapsto r^e \mod N$ is a permutation it follows that $r^e \mod N$ is random too. This implies that m' does not leak any information about m. The signing authority then calculates the blinded signature s' as:

$$s' \equiv (m')^d \pmod{N}.$$

s' is sent back to the author of the message, who can then remove the blinding factor to reveal s, the valid RSA signature of *m*:

$$s \equiv s' \cdot r^{-1} \pmod{N}$$

This works because RSA keys satisfy the equation $r^{ed} \equiv r \pmod{N}$ and thus

$$s \equiv s' \cdot r^{-1} \equiv (m')^d r^{-1} \equiv m^d r^{ed} r^{-1} \equiv m^d r r^{-1} \equiv m^d \pmod{N},$$

hence s is indeed the signature of m.