18734: Foundations of Privacy

Database Privacy: k-anonymity and de-anonymization attacks

Divya Sharma CMU Fall 2014

Publicly Released Large Datasets

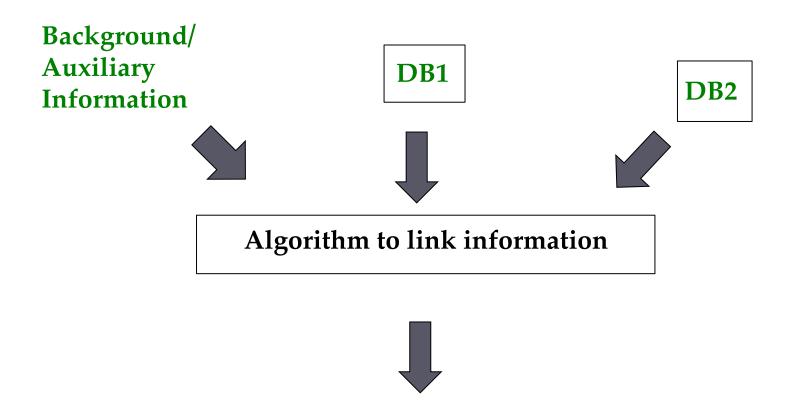
- Useful for improving recommendation systems, collaborative research
- Contain personal information
- Mechanisms to protect privacy, e.g. anonymization by removing names
- Yet, private information leaked by attacks on anonymization mechanisms

Article Discussion

AOL search data leak

From Wikipedia, the free encyclopedia

Non-Interactive Linking



De-identified record

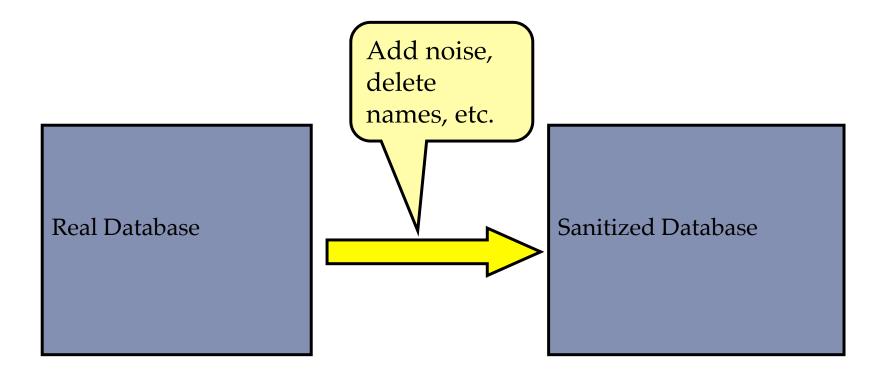
Roadmap

Motivation

Privacy definitions

- Netflix-IMDb attack
- Theoretical analysis
- Empirical verification of assumptions
- Conclusion

Sanitization of Databases



Health records

Census data

Protect privacy

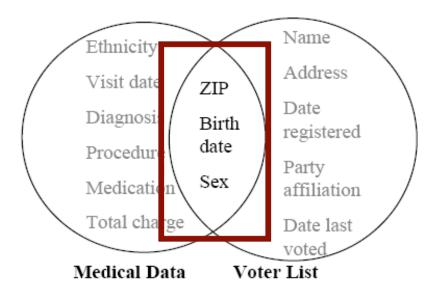
Provide useful information (utility)

Database Privacy

- Releasing sanitized databases
 - 1. k-anonymity [Samarati 2001; Sweeney 2002]
 - 2. Differential privacy [Dwork et al. 2006] (future lecture)

Re-identification by linking

Linking two sets of data on shared attributes may uniquely identify some individuals:



87 % of US population uniquely identifiable by 5-digit ZIP, gender, DOB

K-anonymity

- Quasi-identifier: Set of attributes that can be linked with external data to uniquely identify individuals
- ▶ Make every record in the table indistinguishable from at least *k*-1 other records with respect to quasi-identifiers
- Linking on quasi-identifiers yields at least *k* records for each possible value of the quasi-identifier

K-anonymity and beyond

	Non-Sensitive			Sensitive
	Zip Code Age		Nationality	Condition
1	13053	28	Russian	Heart Disease
2	13068	29	American	Heart Disease
3	13068	21	Japanese	Viral Infection
4	13053	23	American	Viral Infection
5	14853	50	Indian	Cancer
б	14853	55	Russian	Heart Disease
7	14850	47	American	Viral Infection
Q	1/1850	40	American	Viral Infection
9	13053	31	American	Cancer
10	13053	37	Indian	Cancer
11	13068	36	Japanese	Cancer
12	13068	35	American	Cancer

	Non-Sensitive			Sensitive
	Zip Code	Age	Nationality	Condition
1	130**	< 30	*	Heart Disease
2	130**	< 30	*	Heart Disease
3	130**	< 30	*	Viral Infection
4	130**	< 30	*	Viral Infection
5	1485*	≥ 40	*	Cancer
6	1485*	≥ 40	*	Heart Disease
7	1485*	≥ 40	*	Viral Infection
0	1/195*	≥ 40	ale.	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Figure 1. Inpatient Microdata

Figure 2. 4-anonymous Inpatient Microdata

Provides some protection: linking on ZIP, age, nationality yields 4 records

Limitations: lack of diversity in sensitive attributes, background knowledge, subsequent releases on the same data set

Re-identification Attacks in Practice

Examples:

- Netflix-IMDB
- Movielens attack
- Twitter-Flicker
- Recommendation systems Amazon, Hunch,...

Goal of De-anonymization: To find information about a record in the released dataset

Roadmap

- Motivation
- Privacy definitions
- Netflix-IMDb attack

- Theoretical analysis
- Empirical verification of assumptions
- Conclusion

Anonymization Mechanism

Each row corresponds to an individual

Each column corresponds to an attribute, e.g. movie

Delete name identifiers and add noise

		Gladiator	Titanic	Heidi
?	\mathbf{r}_1	4	1	0
	r_2	2	1.5	1
	\mathbf{r}_3	0.5	1	1

Anonymized Netflix DB

De-anonymization Attacks Still Possible

Isolation Attacks

- Recover individual's record from anonymized database
- E.g., find user's record in anonymized Netflix movie database

Information Amplification Attacks

- Find more information about individual in anonymized database
- E.g. find ratings for specific movie for user in Netflix database

Netflix-IMDb Empirical Attack [Narayanan et al 2008]

Anonymized Netflix DB

	Gladiator	Titanic	Heidi
\mathbf{r}_1	4	1	0
r_2	2	1.5	1
\mathbf{r}_3	0.5	1	1

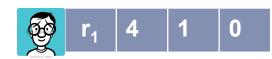
Publicly available IMDb ratings (noisy)

	Titanic	Heidi
Bob	2	1

Used as auxiliary information

Weighted Scoring Algorithm

Isolation Attack!



Problem Statement

Anonymized database

	Gladiator	Titanic	Heidi
\mathbf{r}_1	4	1	0
r_2	2	1.5	1
\mathbf{r}_3	0.5	1	1

Auxiliary information about a record (noisy)

		Titanic	Heidi
6	Bob	2	1

Attacker uses algorithm to find record

Attacker's goal: Find r_1 or record similar to Bob's record Enhance theoretical understanding of why empirical de-anonymization attacks work

Research Goal

Characterize classes of auxiliary information and properties of database for which re-identification is possible

Roadmap

- Motivation
- Privacy definitions
- Netflix-IMDb attack
- Theoretical analysis

- Empirical verification of assumptions
- Conclusion

Netflix-IMDb Empirical Attack [Narayanan et al 2008]

Anonymized Netflix DB

	Gladiator	Titanic	Heidi
\mathbf{r}_1	4	1	0
\mathbf{r}_2	2	1.5	1
\mathbf{r}_3	0.5	1	1

Publicly available IMDb ratings (noisy)

	Titanic	Heidi
Bob	2	1

Used as auxiliary information

Weighted Scoring Algorithm

What does **auxiliary information** about a record mean?

How do you measure similarity of this record with Bob's record?

(Similarity Metric)

r₁ 4 1 0

Definition: Asymmetric Similarity Metric

	Gladiator v ₁	Titanic v ₂	Heidi v ₃
y	5	0	-
r	0	2	3

Individual Attribute Similarity

$$T(y(i), r(i)) = 1 - \frac{|y(i) - r(i)|}{p(i)}$$

$$T(y(v_1), r(v_1)) = 1 - \frac{|5-0|}{5} = 0$$

Intuition: Measures how closely two people's ratings match on one movie

Movie (i)	T(y(i), r(i))
Gladiator	0
Titanic	0.6
Heidi	0

p(i): range of attribute i

Similarity Metric

Intuition: Measures how closely two people's ratings match overall

$$S(y,r)$$
 0.6/2 = 3

$$S(y,r) = \sum_{i \in \text{supp}(y)} \frac{T(y(i),r(i))}{|\text{supp}(y)|}$$

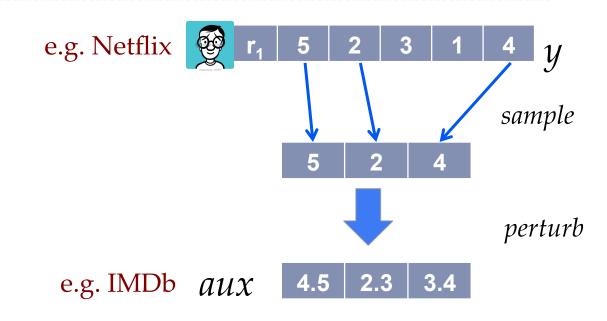
supp(y): non null attributes in y

Definition: Auxiliary Information

Intuition: *aux* about *y* should be a subset of record *y*

aux can be noisy

aux captures information available outside normal data release process



Bound level of perturbation in *aux*

$$\gamma \in [0,1]$$

 (m,γ) -perturbed auxiliary information

$$\forall i \in \text{supp}(aux) T(y(i), aux(i)) \ge 1 - \gamma$$

 $|\sup(aux)| = m = \text{no. of non null attributes in } aux$

Weighted Scoring [Narayanan et al 2008, Frankowski et al 2006]

Intuition: The fewer the number of people who watched a movie, the rarer it is Weight of an attribute *i*

$$w(i) = \frac{1}{\log(|\operatorname{supp}(i)|)}$$

 $|\sup(i)|$ = no. of non null entries in column i Use weight as an indicator of rarity

Score gives a weighted average of how closely two people match on every movie, giving higher weight to rare movies

Scoring Methodology

$$Score(aux, r_j) = \sum_{i \in \text{supp}(aux)} \frac{w(i) * T(aux(i), r_j(i))}{|\text{supp}(aux)|}$$

 $|\sup(aux)| = m = \text{no. of non null attributes in } aux$

Compute *Score* for every record *r* in anonymized DB to find out which one is closest to target record *y*

Weighted Scoring Algorithm [Narayanan et al 2008]

Compute *Score* for every *r* in *D*

$Score(aux, r_j) =$. 7	$w(i) * T(aux(i), r_j(i))$
$Score(uux, r_j) =$	i∈supp(aux)	$ \operatorname{supp}(aux) $

W _i	0.63	0.5	0.63
	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3
\mathbf{r}_1	5	2	-
r_2	3	1	4
r_3	-	2	4

Score(aux, r _j)		
0.52		
0.40		
0.23		

\mathbf{v}_1	\mathbf{v}_{2}	_ (11)
4.5	2.3] aux

One of the records *r* in anonymized database is *y*, which row is it?

Eccentricity measure > threshold

 $e(aux,D) = \max_{r \in D}(Score(aux,r)) - \max_{2,r \in D}(Score(aux,r))$

Output record with max Score

Score(aux, r) used to predict S(y,r)

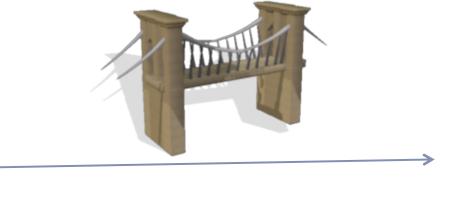
Where do Theorems Fit?

4.5

2.3

Computed:

Score of all records r in D with aux



Theorems help bridge the gap

Desired:

Guarantee about *Similarity*

r₁ 5 2 -

2 -

Theorems

▶ Theorem 1: When Isolation Attacks work? <

Theorem 2: Why Information Amplification Attacks work?

Theorem 1: When Isolation Attacks work?

Intuition: If eccentricity is high, algorithm always finds the record corresponding to auxiliary information!

If

aux is (m,γ) -perturbed Eccentricity threshold > γ M Eccentricity: Highest score - Second highest score

 γ : Indicator of perturbation in aux

M : Average of weights in aux

Ŏ: Record output by algorithm

y : Target record

then

 $Score(aux, \breve{O}) = Score(aux, y)$

If \check{O} is the only record with the highest score then $\check{O} = y$

Isolation Attack: Theorem

Theorem IV.1 Let y denote the target record from a given database D. Let aux_y denote (m, γ) -perturbed auxiliary information about record y. If the eccentricity measure $e(aux_y, D) > \gamma M$ where $M = \frac{\sum_{i \in supp(aux_y)} w_i}{|supp(aux_y)|}$ is the scaled sum of weights of attributes in aux,, then

- 1) $\max_{r \in D}(Score(aux_y, r)) = Score(aux_y, y)$. 2) Additionally, if only one record has maximum score value = $Score(aux_y, y)$, then the record o returned by the algorithm is the same as target record y.

Theorems

Theorem 1: When Isolation Attacks work?

Theorem 2: Why Information Amplification Attacks work?

Intuition: Why Information Amplification Attacks work?

If two records agree on rare attributes, then with high probability they agree on other attributes too

• Use intuition to find record *r* similar to *aux* on many rare attributes (using *aux* as 'proxy' for y)

Intuition: Why Information Amplification Attacks work?

For > 90% of records

> 0.75

▶ If a high **fraction** of attributes in *aux* are **rare**, then any record *r* that is **similar to** *aux*, is **similar to** *y*

Similarity > 0.75

Similarity > 0.65

Theorem 2: Why Information Amplification Attacks work?

Define Function

If a high **fraction** of attributes in aux are rare, then any record r $f_D(\eta_1, \eta_2, \eta_3)$ similar to aux, is similar to y

- Measure overall similarity between target record *y* and *r* that depends on:

 η_1 : Fraction of rare attributes in *aux*

 η_2 : Lower bound on similarity between r and aux

 η_3 : Fraction of target records for which guarantee holds

$$S(y,r) \ge f_D(\eta_1,\eta_2,\eta_3)$$

Theorem 2: Why Information Amplification Attacks work?

Using Function

$$f_D(\eta_1,\eta_2,\eta_3)$$

$$S(y,r) \ge f_D(\eta_1,\eta_2,\eta_3)$$

Theorem gives guarantee about similarity of record output by algorithm with target record

Roadmap

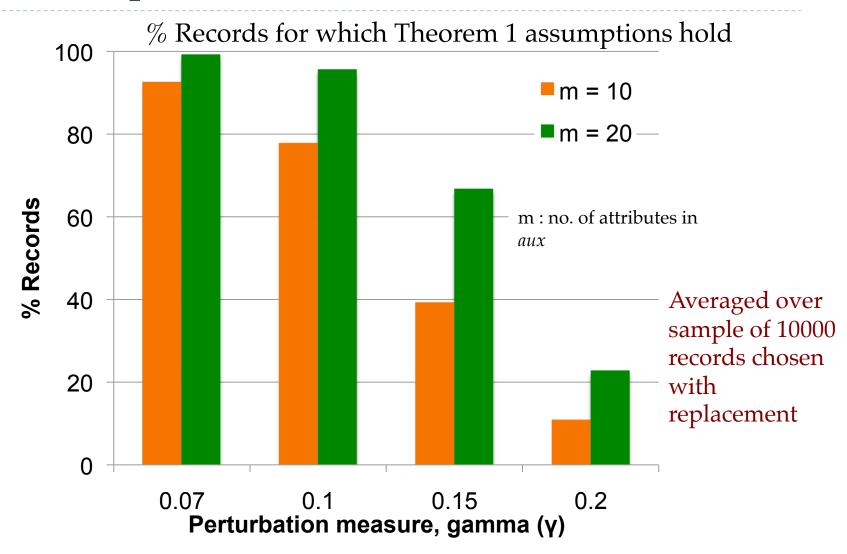
- Motivation
- Privacy definitions
- Netflix-IMDb attack
- Theoretical analysis
- Empirical verification of assumptions

Conclusion

Empirical verification

- Use `anonymized' Netflix database with 480,189 users and 17,770 movies
- Percentage values claimed in our results = percentage of records not filtered out because of
 - insufficient attributes required to form aux OR
 - insufficient rare or non-rare attributes required to form aux

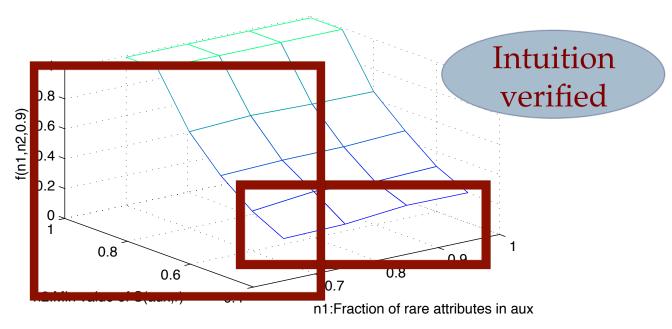
Do Assumptions hold over Netflix Database?



Does Intuition about f_D hold for Netflix Database?

 $f_D(\eta_1, \eta_2, \eta_3)$ can be evaluated given D

$$S(y,r) \ge f_D(\eta_1,\eta_2,\eta_3)$$



For Netflix DB,

 $f_D(\eta_1, \eta_2, \eta_3)$ is monotonically increasing in η_1 and η_2 and tends to 1 as η_2 increases

Roadmap

- Motivation
- Privacy definitions
- Netflix-IMDb attack
- Theoretical analysis
- Empirical verification of assumptions
- Conclusion

Conclusion

- Naïve anonymization mechanisms do not work
- We obtain provable bounds about, and verify empirically, why some de-anonymization attacks work in practice
- Even perturbed auxiliary information can be used to launch de-anonymization attacks if:
 - Database has many rare dimensions and
 - Auxiliary information has information about these rare dimensions

Acknowledgment

▶ Slides 5-9 are from CMU 18-739 (Fall 2009) taught by Anupam Datta, with minor edits

Questions?