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Why Number Theory?

Cryptographers know what they want before they take it

• I want a public key crypto system
• I want one-way functions
• I want a PRG

Number theory has provided very elegant solutions to many questions in
cryptography
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Abstract Algebra / Number Theory

Sets of elements with operation and structure

• ex) Set of all integers with addition
• ex) All integers mod 10 with addition mod 10
• ex) All invertible nxn matrices with matrix multiplication
• ex) All nonzero real numbers with multiplication
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Groups

A group is a set G with some operation · that has the following properties:

• ∀a,b ∈ G,a · b ∈ G (Closure)
• (a · b) · c = a · (b · c). ∀a,b, c ∈ G (Associative)
• ∃1 ∈ G. 1 · a = a and a · 1 = a. ∀a ∈ G (Identity)
• ∀a ∈ G. ∃b s.t. a · b = 1 and b · a = 1 (Inverse)

If a group G is also commutative, G is called an Abelian Group
The order of a group G: |G|
If |G| is finite, then G is a finite group
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Groups: Examples

• (Z,+): Set of integers under addition
• (R,+): Set of real numbers under addition
• (R/{0},×): Set of non-zero real numbers under multiplication
• (Zn,+): Set of positive integers under addition mod n
• (GLn,×n): General linear group (set of all n× n invertible matrices)
• (Z/{0},×): Set of all non-zero integers under multiplication
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Rings

A ring is a set R with two operations (+, ·) that has the following properties:

• R is an Abelian group under +
• ∀a,b ∈ R,a · b ∈ R (Closure)
• (a · b) · c = a · (b · c) ∀a,b, c ∈ R (Associative)
• a · b = b · a. ∀a,b ∈ R (Communitive)
• ∃1 ∈ R s.t. 1 · a = a and a · 1 = a. ∀a ∈ R (Identity)
• a · b+ c = a · b+ a · c. ∀a,b, c ∈ R (Distributive)
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Rings: Example

(Zn,+,×): Integers modulo n under addition and multiplication

ex) Z4 = {0, 1, 2, 3}
Group under addition
Closed under multiplication
Associative and communitive under multiplication
Identity is 1
Distributive
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Fields

A field is a set F with two operations (+, ·) that has the following properties:

• F is an Abelian group under +
• The non-zero elements of F are an Abelian group under ·
• a · (b+ c) = a · b+ a · c. ∀a,b, c ∈ F (Distributive)

A field is a ring with multiplicative inverses
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Notes

Consider a set Zn and operation ×

• a ∈ Zn has an inverse iff gcd(a,n) = 1
• Proof in class notes

• Form a group from Zn by taking the elements for which an inverse exists
• Call this Z∗

n = {a ∈ Zn|gcd(a,n) = 1}
Mini-homework: Show that Z∗

n is a group for every n!
• Z∗

p = Zp − {0} if p is prime
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Overall
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Subgroups

Let G be a group

• S ⊈ G, if S is also a group, we call S a subgroup of G
• ex) Take G, and form S by taking the identity element 1 and another element
say g, so S = {1,g}, then expand S by taking the closure under the group
operation

• S = {1,g,g2,g3, ...}
• 2Z = {. . . ,−4,−2, 0, 2, 4, . . .} is a subgroup of Z
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Subgroups (cnt’d)

• Lagrange’s Theorem: Let H be a subgroup of a finite group G. The order of H
divides the order of G.

• Corollary: If |G| is prime, then |H| is either |G| or 1.
• Implication: Not always easy to find a generator of a group, so instead find
groups of prime order, i.e. |G| = p, then every element other than 1 is a
generator.

11



Quadratic Residue Subgroup

Given a group (Z∗
n,×)

• Quadratic Residue Subgroup of Z∗
n: QR∗n = {x2 ∈ Z∗

n|x ∈ Z∗
n}

• The set of all elements that are the result of squaring some other element in
the group

• This group is important anytime we want to compute square roots, we need
to know that the square root for each element in the group will exist

Useful facts:

• Given p an odd prime, x2 = 1 (mod p) has two solutions: x = 1 (mod p) or
x = −1 (mod p).

• Fermat’s Theorem: x(p−1) = 1 (mod p), where p− 1 is an even number
• |QR∗p| = |Z∗p|/2
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Legendre and Jacobi Symbol

Given a group (Z∗
p,×) where p > 2 is a prime

• Legendre Symbol Lp(x) = x
(p−1)
2 (mod p)

• Lp(x) = 1⇒ x ∈ QR∗p
• Lp(x) = −1⇒ x /∈ QR∗p

Given a group (Z∗
n,×) where n =

∏
i p

ci
i is a prime factorization of n

• Jacobi Symbol Jn(x) =
∏
i Lpi(x)ci (mod n)
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Miller-Rabin Primality Test

Fermat’s Theorem: If p is an odd prime, ap−1 = 1 mod p for all a
A quick reject test: if ap−1 mod p ̸= 1 mod p: reject!
Miller-Rabin test: if ap−1 mod p = 1 mod p:

• Let p− 1 = c · 2b where c: odd number, b > 0
ap−1 mod p = [. . . [ac mod p]2 . . .]2 mod p

• Fact:
• If p is an odd prime, then ac = 1 mod p or ac·2r = −1 mod p for some r

• Test(a): check if ac = 1 mod p or ac·2r = −1 mod p, accept if yes, reject if
no.

• Repeat Test(a) for multiple values of a, accept if every test passes.
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Discrete Logarithm and Legendre Symbol

Theorem: Let p be a prime, g a generator of Z∗p, and p− 1 = c · 2b. Given y = gx

mod p, There exists an efficient algorithm which computes b least significant bits
of x

• Step 1: Calculate Legendre symbol of y as Lp(y) = y
p−1
2 mod p

• Step 2a: If Lp(y) = 1 then y ∈ QR∗p → 2 | x, lsb(x) = 0. goto Step 3a.
• Step 2b: If Lp(y) = −1 then y /∈ QR∗p → 2 ∤ x, lsb(x) = 1. goto Step 3b.
• Step 3a: Set y′ = √y mod p = g x

2 mod p, goto Step 1.
• Step 3b: Set y′ =

√
y · g−1 mod p = g

x−1
2 mod p, goto Step 1.

Repeat above procedure for b times, and we get b-bit lsb of x!
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Questions?
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