18733: Applied Cryptography Recitation

Algebraic Structures and Number Theory

Gihyuk Ko March 3, 2017

Carnegie Mellon University

Cryptographers know what they want before they take it

- I want a public key crypto system
- I want one-way functions
- I want a PRG

Number theory has provided very elegant solutions to many questions in cryptography

Sets of elements with operation and structure

- \cdot ex) Set of all integers with addition
- \cdot ex) All integers mod 10 with addition mod 10
- \cdot ex) All invertible nxn matrices with matrix multiplication
- \cdot ex) All nonzero real numbers with multiplication

A group is a set **G** with some operation \cdot that has the following properties:

- $\forall a, b \in G, a \cdot b \in G$ (Closure)
- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. $\forall a, b, c \in G$ (Associative)
- $\exists 1 \in G$. $1 \cdot a = a$ and $a \cdot 1 = a$. $\forall a \in G$ (Identity)
- $\forall a \in G. \exists b \text{ s.t. } a \cdot b = 1 \text{ and } b \cdot a = 1$ (Inverse)

If a group *G* is also commutative, *G* is called an *Abelian Group* The *order* of a group *G*: |*G*| If |*G*| is finite, then *G* is a *finite group*

- $\cdot \ (\mathbb{Z},+):$ Set of integers under addition
- $\cdot \ (\mathbb{R},+)\!\!:$ Set of real numbers under addition
- + ($\mathbb{R}/\{0\}, \times$): Set of non-zero real numbers under multiplication
- $(\mathbb{Z}_n, +)$: Set of positive integers under addition mod n
- (GL_n , \times_n): General linear group (set of all $n \times n$ invertible matrices)
- $(\mathbb{Z}/\{0\}, \times)$: Set of all non-zero integers under multiplication

A ring is a set **R** with two operations $(+, \cdot)$ that has the following properties:

- *R* is an *Abelian group* under +
- $\forall a, b \in R, a \cdot b \in R$ (Closure)
- $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall a, b, c \in R$ (Associative)
- · $a \cdot b = b \cdot a$. $\forall a, b \in R$ (Communitive)
- $\exists 1 \in R \text{ s.t. } 1 \cdot a = a \text{ and } a \cdot 1 = a. \forall a \in R \text{ (Identity)}$
- $a \cdot b + c = a \cdot b + a \cdot c$. $\forall a, b, c \in R$ (Distributive)

 $(\mathbb{Z}_n, +, \times)$: Integers modulo *n* under addition and multiplication

- ex) $\mathbb{Z}_4 = \{0, 1, 2, 3\}$
 - Group under addition
 - Closed under multiplication
 - Associative and communitive under multiplication
 - Identity is 1
 - Distributive

A field is a set F with two operations $(+, \cdot)$ that has the following properties:

- \cdot F is an Abelian group under +
- The non-zero elements of F are an Abelian group under •
- $a \cdot (b + c) = a \cdot b + a \cdot c$. $\forall a, b, c \in F$ (Distributive)

A field is a ring with multiplicative inverses

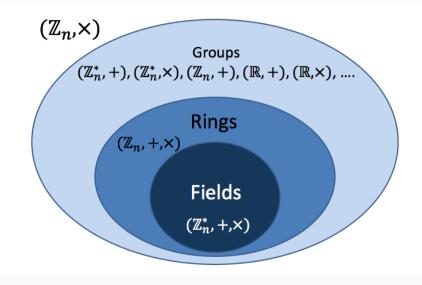
Consider a set \mathbb{Z}_n and operation \times

- $\cdot a \in \mathbb{Z}_n$ has an inverse iff gcd(a, n) = 1
 - Proof in class notes
- Form a group from \mathbb{Z}_n by taking the elements for which an inverse exists
- Call this $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n | gcd(a, n) = 1\}$

Mini-homework: Show that \mathbb{Z}_n^* is a group for every *n*!

• $\mathbb{Z}_p^* = \mathbb{Z}_p - \{0\}$ if p is prime

Overall



Let G be a group

- $\cdot S \nsubseteq G$, if S is also a group, we call S a subgroup of G
- ex) Take G, and form S by taking the identity element 1 and another element say g, so $S = \{1, g\}$, then expand S by taking the closure under the group operation

- Lagrange's Theorem: Let *H* be a subgroup of a finite group *G*. The order of *H* divides the order of *G*.
- Corollary: If |G| is prime, then |H| is either |G| or 1.
- Implication: Not always easy to find a generator of a group, so instead find groups of prime order, i.e. |G| = p, then every element other than 1 is a generator.

Quadratic Residue Subgroup

Given a group (\mathbb{Z}_n^*, \times)

- Quadratic Residue Subgroup of \mathbb{Z}_n^* : $QR_n^* = \{x^2 \in \mathbb{Z}_n^* | x \in \mathbb{Z}_n^*\}$
- The set of all elements that are the result of squaring some other element in the group
- This group is important anytime we want to compute square roots, we need to know that the square root for each element in the group will exist

Useful facts:

- Given p an odd prime, $x^2 = 1 \pmod{p}$ has two solutions: $x = 1 \pmod{p}$ or $x = -1 \pmod{p}$.
- Fermat's Theorem: $x^{(p-1)} = 1 \pmod{p}$, where p 1 is an even number
- $|QR_{p}^{*}| = |Z_{p}^{*}|/2$

Given a group (\mathbb{Z}_p^*, \times) where p > 2 is a prime

- Legendre Symbol $L_p(\mathbf{x}) = x^{\frac{(p-1)}{2}} \pmod{p}$
- $L_p(x) = 1 \Rightarrow x \in QR_p^*$
- $L_p(x) = -1 \Rightarrow x \notin QR_p^*$

Given a group (\mathbb{Z}_n^*, \times) where $n = \prod_i p_i^{c_i}$ is a prime factorization of n

• Jacobi Symbol $J_n(\mathbf{x}) = \prod_i L_{p_i}(\mathbf{x})^{c_i} \pmod{n}$

Fermat's Theorem: If *p* is an odd prime, $a^{p-1} = 1 \mod p$ for all *a* A quick reject test: if $a^{p-1} \mod p \neq 1 \mod p$: reject! Miller-Rabin test: if $a^{p-1} \mod p = 1 \mod p$:

• Let
$$p - 1 = c \cdot 2^b$$
 where c: odd number, $b > 0$

 $a^{p-1} \mod p = [\dots [a^c \mod p]^2 \dots]^2 \mod p$

• Fact:

• If p is an odd prime, then $a^c = 1 \mod p$ or $a^{c \cdot 2^r} = -1 \mod p$ for some r

- Test(*a*): check if $a^c = 1 \mod p$ or $a^{c \cdot 2^r} = -1 \mod p$, accept if yes, reject if no.
- Repeat Test(*a*) for multiple values of *a*, **accept** if every test passes.

Theorem: Let *p* be a prime, *g* a generator of Z_p^* , and $p - 1 = c \cdot 2^b$. Given $y = g^x \mod p$, There exists an efficient algorithm which computes *b* least significant bits of *x*

- Step 1: Calculate Legendre symbol of y as $L_p(y) = y^{\frac{p-1}{2}} \mod p$
- Step 2a: If $L_p(y) = 1$ then $y \in QR_p^* \rightarrow 2 \mid x, lsb(x) = 0$. goto Step 3a.
- Step 2b: If $L_p(y) = -1$ then $y \notin QR_p^* \to 2 \nmid x, lsb(x) = 1$. goto Step 3b.
- Step 3a: Set $y' = \sqrt{y} \mod p = g^{\frac{x}{2}} \mod p$, goto Step 1.
- Step 3b: Set $y' = \sqrt{y \cdot g^{-1}} \mod p = g^{\frac{x-1}{2}} \mod p$, goto Step 1.

Repeat above procedure for *b* times, and we get *b*-bit lsb of *x*!

Questions?