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Number Theory

Number theory has provided very elegant solutions to many questions in
cryptography

• Pseudorandom Generators
• One-way functions
• Public Key Cryptography

Today: a few examples of number theoretic constructions in symmetric
cryptography

• Pseudorandom Generators
• Carter-Wegman MAC
• Provable Compression Functions
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Pseudorandom Generators

Pseudorandom Generators: G : K→ {0, 1}∗

Security of Pseudorandom Generators: Unpredictability of Next Bit

..A. O.
{x0 . . . xn}

.
y

. k← $, {x0 . . . xn} ← G(k)

Secure PRG: for all PPT algorithms A

AdvPRG(A,G) = Pr [A({x0 . . . xn}) = xn+1] <
1
2 + ϵ
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Practical Pseudorandom Generators

• Practical pseudorandom generators
are deterministic algorithms

• Seed is picked from state of the
machine (e.g., temperature, time,
etc) which is considered random

• Previous output(Xn) is used to
generate next output(Xn+1)

How can we make next bit unpredictable
from a deterministic algorithm?
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Linear Congruential Generators

Number streams calculated from linear equations of the form:
Linear Congruential Generators
Xn+1 = aXn + c (mod m)

• m: modulus (m > 0)
• a: multiplier (0 < a < m)
• c: the increment (0 ≤ c < m)
• X0: starting value, or seed (0 ≤ X0 ≤ m)

Is this PRG always secure? No! a = c = 1: predictable sequence!
Selection of a, c,m is critical!

One example value: m = 231 − 1 and a = 1103515245, c = 12345 (glibc)
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Blum-Blum-Shub Generator

Proposed by Lenore Blum, Manuel Blum, and Michael Shub
Has the strongest public proof for its strength (CSPRNG)
Blum-Blum-Shub Generator
Xn+1 = X2n (mod m)

• m = pq: modulus where p,q are large primes (m > 0)
• X0 = s2 (mod m): starting value, or seed (0 ≤ s ≤ m)

Is this PRG secure? Yes!
Security of this reduces to hardness of quadratic residue problem

In proof: Chinese Remainder Theorem, Quadratic residues, Legendre/Jacobi
symbols, and more (Security proof of BBS).
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Carter-Wegman MAC: Secure One-time MAC

MAC: I = (S, V) where S: MAC signing, V: MAC verification.
Security of One-time MAC: analogous to security of one-time pad

..A. O.
m

.

(m′, t′)

. t. k← $, t← S(k,m).

b = 1 if V(k,m′, t′)=yes

.

b = 0 otherwise

Secure One-time MAC: for all PPT algorithms A

AdvPRG(A, I) = Pr [O(A, I) = 1] < ϵ
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Carter-Wegman MAC: Example of One-time MAC

Can be secure against all adversaries and faster than PRF-based MACs (HMAC,
NMAC CBC-MAC, etc)
One-time MAC
S(k,m) = Pm(a) + b (mod q)

• q: a large prime (e.g., q = 2128 + 51)
• k = (a,b): two random ints less or equal to q (0 < a,b ≤ q)
• m = (m[1] . . .m[l]): an l-block message with a block size 128.
• Pm(x) = xl+1 +m[l]xl + · · ·+m[1]x: a polynomial of degree l+ 1

It can be shown that given S(k,m), adversary has no information about S(k,m′)

(proof in Blackboard's lecture note 05-integrity)
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Carter-Wegman MAC

Construction from One-time MAC
Carter-Wegman MAC
CW((k1, k2),m) = (r, F(k1, r)⊕ S(k2,m))

• (S, V): a secure one-time MAC scheme
• F : KF × {0, 1}n → {0, 1}n: a secure PRF
• r: a random number in {0, 1}n

Theorem: If (S, V) is a secure one-time MAC and F a secure PRF then CW is a
secure MAC outputing tags in {0, 1}2n
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Provable Compression Functions

Compression functions: h(H,m) : H×M→ H
Used in Merkle-Damgard iterated construction

Provable Compression Function
h(H,m) = uH · vm (mod p)

• p: random 2000-bit prime (p > 0)
• u, v: random numbers less than p (1 ≤ u, v < p)
• m,H: inputs to the compresion function

Fact: finding collision for h(·, ·) is as hard as solving `discrete-log' modulo p
Discrete Log Problem: Given y = gx and g, output x.

9



Questions?
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