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Number Theory

Number theory has provided very elegant solutions to many questions in
cryptography

- Pseudorandom Generators

- One-way functions

- Public Key Cryptography
Today: a few examples of number theoretic constructions in symmetric
cryptography

-+ Pseudorandom Generators
- Carter-Wegman MAC
- Provable Compression Functions



Pseudorandom Generators

Pseudorandom Generators: G : K — {0,1}*
Security of Pseudorandom Generators: Unpredictability of Next Bit

— R« %, {Xo...Xn} < G(R)

Secure PRG: for all PPT algorithms A

1
AdeR(g(A, G) = Pr [A({Xo .. .Xn}) = XH—H] < E +€



Practical Pseudorandom Generators

Random Seed

T - Practical pseudorandom generators
X are deterministic algorithms

- Seed is picked from state of the
Deterministic machine (e.g, temperature, time,

Algorithm N .
etc) which is considered random

- Previous output(X,) is used to
generate next output(X,4+)

How can we make next bit unpredictable

v from a deterministic algorithm?
Pseudo-random Bit Stream




Linear Congruential Generators

Number streams calculated from linear equations of the form:

Linear Congruential Generators
Xn41 = aXp + ¢ (mod m)

- m: modulus (m > 0)

- a: multiplier (0 < a < m)

- ¢ the increment (0 < c < m)

- Xo: starting value, or seed (0 < Xo < m)

Is this PRG always secure? No! a = ¢ = 1: predictable sequence!
Selection of a,c,m is critical!

One example value: m = 23" — 1 and a = 1103515245, ¢ = 12345 (glibc)



Blum-Blum-Shub Generator

Proposed by Lenore Blum, Manuel Blum, and Michael Shub
Has the strongest public proof for its strength (CSPRNG)

Blum-Blum-Shub Generator
Xn1 = X2 (mod m)

- m = pg: modulus where p, g are large primes (m > 0)
- Xo = s? (mod m): starting value, or seed (0 < s < m)

Is this PRG secure? Yes!
Security of this reduces to hardness of quadratic residue problem

In proof: Chinese Remainder Theorem, Quadratic residues, Legendre/Jacobi
symbols, and more (Security proof of BBS).


http://www.cs.miami.edu/home/burt/learning/Csc609.062/docs/bbs.pdf

Carter-Wegman MAC: Secure One-time MAC

MAC: | = (S, V) where S: MAC signing, V: MAC verification.
Security of One-time MAC: analogous to security of one-time pad

m

t — Rk $,t <« S(k,m)

(m',t) |
b =1ifV(k,m' t')=yes
b = 0 otherwise

Secure One-time MAC: for all PPT algorithms A
Advera(A,1) = Pri0(A, ) =1] < e



Carter-Wegman MAC: Example of One-time MAC

Can be secure against all adversaries and faster than PRF-based MACs (HMAC,
NMAC CBC-MAC, etc)

One-time MAC

S(kR,m) = Pp(a) + b (mod q)

- g: a large prime (e.g, g = 2128 4+ 51)

- k= (a,b): two random ints less or equal to g (0 < a,b < q)

- m=(m[1]...m[l]): an [-block message with a block size 128.

© Pr(x) = xHT 4 m[x! + - + m[1]x: a polynomial of degree [+ 1

It can be shown that given S(k, m), adversary has no information about S(k, m")
(proof in Blackboard's lecture note 05-integrity)



Carter-Wegman MAC

Construction from One-time MAC

Carter-Wegman MAC
CW((Rr, ko), m) = (r, F(ky, 1) ® S(k2, m))

- (5,V): asecure scheme
- F:Kgx{0,1}" — {0,1}": a secure PRF

- r: a random number in {0,1}"

Theorem: If (S, V) is a secure one-time MAC and F a secure PRF then CW is a
secure MAC outputing tags in {0, 1}2"



Provable Compression Functions

Compression functions: h(H,m): H x M — H
Used in Merkle-Damgard iterated construction
Provable Compression Function

h(H,m) = u"-v™ (mod p)

- p: random 2000-bit prime (p > 0)
- u,v: random numbers less than p (1 < u,v < p)

- m, H: inputs to the compresion function

Fact: finding collision for h(,-) is as hard as solving “discrete-log' modulo p
Discrete Log Problem: Given y = g* and g, output x.



Questions?



