
18733: Applied Cryptography Recitation
Asymptotic Security and Cryptographic Design

Gihyuk Ko
February 3, 2017

Carnegie Mellon University

Asymptotic Notations

Introduced in algorithmic complexity theory

• Used to simplify notion of complexity of solving a problem
• Categorizing different problems into similar groups

Notations

• O(n): f(n) = O(g(n)) if f(n)/g(n) is bounded as n→∞
• o(n): f(n) = o(g(n)) if f(n)/g(n)→ 0 as n→∞
• Ω(n): f(n) = Ω(g(n)) if f is an upper bound for g
• Θ(n): f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Θ(g(n))

ex) polynomial time algorithm: an algorithm that solves in O(nk) time for some
integer k

1

Asymptotic Formalization of Security

“Provable security is Asymptotic”
Security parameter 1n: n is chosen beforehand, may be the message length

a parameter we choose to prove security on

Adversary: polynomial time algorithm in n
Negiligible function ϵ : N→ [0, 1]

• ϵ(n) is negligible if ∀c, ∃n0 s.t. ϵ(n) < 1/nc for all n > n0
• ϵ(n) = O(1/nc) for all c (same with ϵ(n) = o(1/nc) for all c)

Proof of security: adversary’s advantage is negiligible!

2

Cryptographic Design: Motivation

A good thing: we have definitions for security

• Encryption: Semantic security (e.g. IND-CPA, IND$-CPA)
• PRNG: Statistical tests

How do we actually build functions that satisfy these security properties?
Given a function, how can we test that it satisfies these properties?

3

Cryptographic Design: Goals

Build a function that ...

... is secure ...
• No PPT adversary can have non-negligible advantage

... and usable.
• Easily computable
• Short keys
• Compact software representation
• Compact hardware representation
• Parallelly computable
• Efficient on a wide range of platforms it might be deployed on

4

Case Study: Salsa20

Salsa20: Created by Daniel Bernstein in 2005

← This guy!
5

What is Salsa20?

Encryption Function (aka Snuffle 2005): {0, 1}256{0, 1}270 → {0, 1}270

Inputs
• 256-bit key k (secret)
• Message m such that |m| ≤ 270

Outputs
• Ciphertext c such that |c| = |m|

Salsa20 Core: {0, 1}512 → {0, 1}512

Input: 512-bit
• 256-bit key k (secret)
• 64-bit nonce (public), 64-bit counter, 128-bit fixed word

Output: 512-bit

6

Salsa20: Encryption

Salsa20 Salsa20 Salsa20 Salsa20

{k,nonce, 1} {k,nonce, 2} {k,nonce, 3} {k,nonce, 4}

hk1 hk2 hk3 hk4
⊕ ⊕ ⊕ ⊕

m[0− 511] m[512− 1024] m[1025− 1536] m[1537− 1599]

c

7

Cryptographic Design: Salsa20

What should the “Salsa20 Core” boxes look like?

• Should it be very complex/complicated?
• Should they be extremely simple?

8

Functional Completeness

Every computable function (by a Turing Machine, i.e. not by Quantum Computer)
can be expressed as a series of NAND-gates

9

Should there be multiplication?

Multiplication Seems like a simple operation
Many processors do not have very quick multiplication implementations
Some processors have timing leaks with multiplication

• Motorola PowerPC 8450 (G4e): 2 cycles normally, 1 cycle if 15 msb of operand
are all 0s or 1s

10

Should there be S-Boxes?

S-box: Arbitrary mapping between some inputs and outputs via pre-defined
lookup table
Due to memory restrictions, they can only support 8 bit operations

• Several lookups required to mangle 32 bits

Can introduce timing attacks due to cache interactions

11

Timing Attack

Crypto gets deployed in many settings

• Software library on personal computer
• Hardware on commercial processors
• Specialized payment processing equipment – Aircraft equipment
• Military applications
• ... and thousands of other environments

Some obscure unforseen implementations might leak private information

12

Timing Attack

Calling a real world cryptographic function introduces side channels

A O
(m0,m1)

c

c = Enc(k,m0)

c = Enc(k,m1)

b← $, k← $

Adv(A) = Pr[A(Enc(k,m0)) = 1]− Pr[A(Enc(k,m1)) = 1]

13

Timing Attack: Example

Let f : {0, 1}n → {0, 1}n be an encryption function where the runtime is equal to:

• 1ms * (number of positions where key and message are both 1)

Attack: input messages starting with 0 · · · 01, checking runtimes to figure out bits
of the key are 1 and what bits are 0

14

Other Side Channels

• Power consumption
• Heat
• Noise
• Memory latency
• Cache timings
• ... and many others

Side channels can vary a lot and very domain-specific

15

Add-Rotate-XOR (ARX) Operations

Add ⊞: n-bit addition mod 2n

10010101(2) ⊞ 11110110(2) = 10001011(2)

Rotate <<<: constant-distance rotation operations

10010101(2) <<< 1 = 00101011(2)

XOR ⊕: bitwise addition

10010101(2) ⊕ 11110110(2) = 01100011(2)

These operations are immune to timing attacks!!

16

Salsa20: Encryption

Salsa20 Salsa20 Salsa20 Salsa20

{k,nonce, 1} {k,nonce, 2} {k,nonce, 3} {k,nonce, 4}

hk1 hk2 hk3 hk4
⊕ ⊕ ⊕ ⊕

m[0− 511] m[512− 1024] m[1025− 1536] m[1537− 1599]

c

17

Salsa20 Core

0x61707865 k[0,31] k[32,63] k[64,95]
k[96,127] 0x3320646e nonce[0,31] nonce[32,63]
ctr[0,31] ctr[32,63] 0x79622d32 k[128,159]
k[160,191] k[192,223] k[224,255] 0x6b206574

Round: Let bn = n below diagonal
For each column do:

1. b1⊕ = ((b3 ⊞ b4) <<< 7)
2. b2⊕ = ((b4 ⊞ b1) <<< 9)
3. b3⊕ = ((b1 ⊞ b2) <<< 13)
4. b4⊕ = ((b2 ⊞ b3) <<< 18)

Transpose the matrix
18

Design Choices

Why the particular rotation distances?

“I chose the Salsa20 rotation distances 7, 9, 13, 18 as doing a good job of
spreading every low-weight change across bit positions within a few rounds.
The exact choice of distances doesn’t seem very important.”

Why not interchange the addition and XOR?

“I chose “xor a rotated sum” over “add a rotated xor” for simple performance
reasons: the x86 architecture has a three-operand addition (LEA) but not a
three-operand xor.”

19

Is Salsa20 Secure?

• Can we tell that our choice of function is really secure?
• Cryptanalysis is required to see if the function is secure against several
‘well-known-attacks’

20

Meet in the Middle Attack

round 1 round 2 round 3

n
−
j

j

(k,m) f f (k, c)

If we can find j bits in the middle of the cipher such that they do not depend on
the l bits of the k-bit key, then we can reduce complexity of the exhaustive search
attack to 2k−l + 2l.

21

Salsa20 Attacks

• Currently best known attack breaks 8 rounds
• Differential variant of meet-in-the-middle attack: truncated differential
cryptanalysis

• 2165-operation attack on Salsa20/5 by Crowley
• Aumasson, Fischer, Khazaei, Meier, and Rechberger reported a 2249-operation
attack on Salsa20/8 and a 2153-operation attack on Salsa20/7.

22

Takeaways

Design of cryptographic implementations is very heuristic

• Needs to work well on current hardware
• Needs to be very fast
• Should be designed to resist known attacks
• Security is never really proved, just argued for, primitive is subject to attacks
• Proofs exist but rely on unproven (but thought to be safe) assumptions

23

Questions?

23

